


Inside the IBM PC 


Revised and Enlarged 

Peter Norton 

BRADY 
New York 



Inside the IBM PC, Revised and Enlarged 

Copyright © 1986 by Brady Books, a division 
of Simon & Schuster, Inc. 
All rights reserved 
including the right of reproduction 
in whole or in part in any form 

BRADY 

Simon & Schuster, Inc. 
Gulf+ Western Building 
One Gulf+ Western Plaza 
New York, NY 10023 

DISTRIBUTED BY PRENTICE HALL TRADE 

Manufactured in the United States of America 

8 9 10 

Library of Congress Cataloging in Publication Data 

Norton, Peter, 1943
Inside the IBM PC. 

Bibliography: p. 361 

Includes index. 

1. IBM microcomputers. I. Title. 

QA76.8.I2594N67 1985 004.165 85-25562 
ISBN 0-89303-583-1 (paper edition) 
ISBN 0-13-467325-5 (book/disk) 

Printed in the United States of America 



Contents 

Introduction I viii 

A Maze to Think About I x 

Some Things To Try I xi 


1 A Family Tree I 1 

1.1 Some Family History I 1 

1.2 The PC Family I 4 

1.3 The 8086 Family I 8 

Some Things To Try I 11 


2 Fundamentals: What a Computer Is I 13 

2.1 My Computer, the Model I 13 

2.2 An Outline of the Computer I 15 

Some Things To Try I 20 


3 Data! I 23 

3.1 Bits, Bytes, and Characters I 23 

3.2 Learning About Hexadecimal I 27 

3.3 Standard Numbers I 31 

3.4 Hot Numbers I 34 

3.5 Stringing Along / 37 

Some Things To Try / 39 


4 The PC Character Set / 41 

4.1 A Character Set Overview / 41 

4.2 The Ordinary ASCII Characters I 43 

4.3 The ASCII Control Characters / 48 

4.4 A Cast of Odd Characters / 52 

Some Things To Try / 56 


5 Hardware: The Parts of the PCs / 57 

5.1 The Breakdown / 57 

5.2 Options and Adapters / 63 

5.3 Key Chips / 67 

Some Things To Try I 71 


6 Brains: Our Microprocessors / 73 

6.1 What the Microprocessor Can Do I 73 

6.2 Math Auxiliary: the 87s / 78 

6.3 Tools at Hand: Memory and Ports, Registers and Stacks I 82 

6.4 Interrupts: The Driving Force / 87 


iii 



6.5 Special Features about the 286 / 94 

Some Things To Try / 96 


7 The Memory Workbench / 99 

7.1 Memory Overview / 99 

7.2 Getting Into Memory / 102 

7.3 The PC's Memory Organization / 105 

7.4 Into Extended Memory / 114 

7.5 Memory Banks and Expanded Memory / 117 

Some Things To Try / 120 


8 Disks: The Basic Story / 121 

8.1 Basic Disk Ideas / 121 

8.2 Varieties of Disks / 126 

Some Things To Try / 132 


9 Disks: The DOS Perspective / 133 

9.1 DOS Disk Overview / 133 

9.2 The Structure of a DOS Disk / 138 

9.3 Learning About File Formats / 142 

9.4 ASCII Text Files / 144 

Some Things To Try / 148 


10 Disks: Deeper Details / 149 

10.1 Hard Disk Features and Partitions / 149 

10.2 Detailed Disk Structure / 154 

10.3 Nonstandard Formats and Copy Protection / 161 

Some Things To Try / 163 


11 Video: An On-Screen Overview / 165 

11.1 How the Screen Works / 165 

11.2 Video Mode Overview / 168 

11.3 Exploring Video Modes / 177 

Some Things To Try / 179 


12 Video: Text Fundamentals / 181 

12.1 Text Mode Outline / 181 

12.2 Details of the Text Mode / 185 

12.3 Text Mode Tricks / 193 

Some Things To Try / 197 


13 Video: Graphics Fundamentals / 199 

13.1 Graphics Mode Outline / 199 

13.2 A Tour of the Graphics Modes / 204 


iv 



13.3 Graphics Details / 211 

Some Things To Try / 215 


14 Keyboard Magic / 217 

14.1 Basic Keyboard Operation / 217 

14.2 Keyboard Tricks / 226 

Some Things To Try / 229 


15 Other Parts: Communication, Printers and More / 231 

15.1 Printers: The Parallel Port / 231 

15.2 Communication Lines: The Serial Port / 233 

15.3 Sound / 236 

15.4 Miscellaneous Parts / 240 

Some Things To Try / 245 


16 Built-In BIOS: The Basic Ideas / 247 

16.1 The Ideas Behind the BIOS / 247 

16.2 How the ROM-BIOS Works / 249 

Some Things To Try / 254 


17 Built-In BIOS: Digging In / 255 

17.1 Working Principles and Machine Problems / 255 

17.2 The BIOS Services / 257 

Some Things To Try / 264 


18 The Role of DOS / 267 

18.1 What Any DOS is About / 267 

18.2 History and Concepts of Our DOS / 269 

18.3 Installable Drivers and Flexible Facilities / 272 

18.4 Visual Shells: TopView and Others / 274 

Some Things To Try / 276 


19 DOS Serving Us / 277 

19.1 Command Processing / 277 

19.2 Batch Processing / 281 

Some Things To Try / 282 


20 DOS Serving Our Programs / 285 

20.1 DOS Services and Philosophy / 285 

20.2 All the DOS Services / 287 


21 How Programs Are Built / 293 

21.1 A Little Talk About Programming Languages / 293 

21.2 Translating Programs / 303 


v 



21.3 Putting Programs Together / 309 

Some Things To Try / 312 


22 	 Exploring and Tinkering / 315 

22.1 The Point of Exploring and Tinkering / 315 

22.2 Working with DEBUG / 317 

22.3 Working with NU / 320 

Some Things To Try / 326 


A 	 Program Listings / 327 

MAZE / 327 

HEXTABLE / 330 

ALL-CHAR / 331 

REF-CHAR / 332 

BOXES / 333 

MSG-HUNT / 337 

VID-MODE / 338 

COLORTEXT / 340 

GRAPHTXT / 342 

COLOR-4 / 343 

KEY-BITS / 346 


B Narrative Glossary I 349 


C Products and Trademarks I 359 


D Other Sources of Information I 361 


Index I 363 


User's Manual for the Optional Diskette I 373 


vi 



About the Author 

Peter Norton was born in Seattle, Washington, and educated at Reed 
College in Portland, Oregon. During the past 20 years, he has worked with 
a wide variety of computer equipment from personal computers to the larg
est main-frames, and he has worked on every kind of software from the 
most intricate system programming to thoroughly mundane commercial 
applications. 

Shortly after he began working with microcomputers, he created, for 
the IBM PC family of computers, the now-legendary Norton Utilities soft
ware package. 

Although Mr. Norton continues to develop software for small com
puters, his work now concentrates on writing about the use of personal 
computing. 

Limits of Liability and Disclaimer of Warranty 

The author and publisher of this book have used their best efforts in prepar
ing this book and the programs contained in it. These efforts include the 
development, research, and testing of the theories and programs to deter
mine their effectiveness. The author and publisher make no warrantyof any 
kind, expressed or implied, with regard to these programs or the documen
tation contained in this book. The author and publisher shall not be liable in 
any event for incidental or consequential damages in connection with, or 
arising out of, the furnishing, performance, or use of these programs. 

Note to Authors 

Have you written a book related to personal computers? Do you have 
an idea for developing such a project? If so, we would like to hear 
from you. Brady produces a complete tange of books for the per
sonal computer market. We invite you to write to Editorial Depart
ment, Brady Books, Prentice Hall Press, One Gulf+ Western Plaza, 
New York, NY 10023. 

vii 



Introduction 

his is the beginning of a marvelous voyage of discovery into 
the secrets, wonders, and mysteries of the IBM PersonalT
Computer and the family of computers that has grown up 
around it. 

From the day it first appeared, the IBM Personal Computer has been 
stirring up excitement and fascination, because the PC-as everyone calls 
it-marked the coming of age of personal computing. Today, the PC is 
solidly established as the power tool without equal for helping business and 
professional people improve their performance and the quality of their 
work. The PC has also spawned a great many other computers-some from 
IBM, and some from the makers of "PC compatible" computers-that 
have become what we call "the PC family." 

This book is designed to help you understand the remarkable PC and 
its entire family. In this book, we-you and I-will set off to discover the 
mysteries and wonders of what the PC is and what marvels it can perform. I 
am excited and enthused about the PC and the PC family, and I want to lead 
you into understanding the workings of this marvel and sharing with me the 
excitement of knowing what it is, how it works, and what it can do. 

As you must have already realized, this isn't a book for people who 
are having trouble finding the On/Off switch on their computers. Instead, 
it's for people like you who have both the intelligence and the curiosity to 
comprehend this wonderful family of machines. My goal is to make under
standing the PC easy for you and fun as well. 

This is, more than anything else, a book of understanding, written to 
help you learn what you really need to know about the PC. You can very 
successfully use a PC without really understanding it. However, the better 
you understand your PC, the better equipped you are to realize the potential 
in the machine, to recognize the best software and hardware for your 
machine, and-let's not forget this-to deal with emergencies that might 
arise when working with a PC. After all, when something goes wrong in 
your PC, the better you understand the machine the more likely you are to 
make the right moves to fix the problem, rather than goof up and make 
things worse. 

There are a lot of reasons why we might want to understand the inner 
workings of our pes. One reason, a really good one, is simply for the 
intellectual satisfaction and sense of mastery that comes with understanding 
the tools that you work with. Another reason is to open up new realms for 
yourself. After all, there is plenty of demand these days for people who 

Vlll 



have PC savvy. But perhaps the most practical reason is the one that I 
suggested above. By analogy, we might think back to the early days of the 
automobile, when you had to be an amateur mechanic to safely set out on a 
journey by car. It doesn't take the skills of a mechanic to drive a car today, 
because cars have been tamed for everyday use. We'd like it to be that way 
with computers, but frankly computing hasn't progressed that far yet. 
Today, to safely and successfully use a personal computer you need some 
degree of expertise-and the more expert you are, the better you can deal 
with the practical crises that sometimes arise. 

This book is here to help you, to take you as far as possible into the 
realm of expertise, to help you join that select band of wizards who really 
know how to make the PC perform its magic. 

If you know anything about me, Peter Norton, or about the first edi
tion of this book, you know that I made my reputation, and this book 
became a best-seller, by explaining the technical wizardry of the PC. In the 
early days of the PC, that was what PC users needed most-an inside 
technical explanation of how the PC worked. The world of the PC has 
matured and changed since then, and so have the needs of the mainstream 
of PC users. Today people still need to understand their machines, how 
they work, and what it takes to make them sing, but the focus of people's 
needs has changed, so this new edition of Inside the IBM PC has changed 
as well. 

You will still find in here lots and lots of interesting and useful techni
cal information that will help you understand what makes the PC tick. But 
now, I'm drawing a dividing line between two kinds of material that you'll 
be seeing here. The first and main part of this book explains the basic 
principles of the PC and the PC family covering all those elements that you 
need to comprehend the PC without having to plow through a great deal of 
technical information; that part of the book is for all readers, and you can 
easily identify it because it appears as normal text. 

For readers who want to go further, dig deeper, and understand more 
technical details, the second phase of the book, identified by this head: 

TECHNICAL BACKGROUND I I I ••• __________ 

will cover the heavier stuff. In these sections, we'll go into the hardware 
and programming details that show the underlying engineering that gets 
things done in the PC family. These more advanced sections are for anyone 
who wants to have more than simply a practical understanding of the PC
this part is for anyone who wants to actually wear the wizard's cap and 

ix 



perform, or at the least know how to perform, the real magic that the PC 
can be made to do. When you see this head, you'll know we're going into 
deeper country, and you should stay back or come along, as suits your 
needs. 

Another thing that you'll find in this book are some sample programs 
that we can use to show off some of the PC's capabilities, to illustrate and 
exercise features of the machine, or just to have some fun. These programs 
will generally use the BASIC programming language, so that it will be 
relatively easy for you to try out what they have to show you by simply 
keying them in from the listings that appear here. You'll also find, at the 
end of each chapter, a few things to do that you can use to test your 
understanding or a few exercises that you can perform to develop your PC 
skills. Along those lines, we have a bit of fun for you. 

A Maze to Think About 

For the fun of it, I wrote a little program in BASIC that illustrates what 
a lot of life is like, including the process of learning to fully understand our 
PCs. (You'll find the listing for the program, called MAZE, in Appendix 
A, where we've placed all the longer programming examples.) In Figure 
1-1, you will see what it looks like in the middle portion of a program. The 
program has drawn two boxes marked START and FINISH, and it's started 
working a path from one to the other. In this case the program doesn't 
know where it's going, so it winds a random path until it stumbles onto the 
goal; but when it gets there it rewards you with some fanfare (as you'll see 
if you try running the full program). 

Fortunately this book isn't like that. We'll be working our way in a 
purposeful fashion toward our goal of understanding the PC. Sometimes, 
though, it can feel like the path from START to FINISH is as aimless as the 
operation of this particular program. 

I'm offering this toy program to you for two reasons. The first is that 
y{)U might actually find a use for it-for example, if you ever have to 
convince someone just how circuitous the path to success can be, you can 
use this program to make the point. You can use it to tell your boss why 
results haven't been appearing instantly and to explain to your friends the 
easy path you took to mastery of pe~sonal computing. The second reason is 
to provide a little food for thought. 

One of the most important and valuable things for us to learn about our 
computers is just how complex a task it is to add polish and refinement to 
computer programs. If you understand that, then you're better prepared to 

x 



II START I:F=================;-r 

II FINISH II 

Figure 1-1. The start-to-fmish maze in progress. 

understand the realities of the program you work with (or any programs you 
might want to design and build). So, here are some questions to ponder 
about our toy MAZE program before we plunge into the Chapter I and 
explore the basic ideas of computers. 

Some Things to Try 

1. 	 If you haven't already taken a peek at the MAZE program listing 
in Appendix A, ask yourself how complex a task it is to write a 
program that draws a random path from START to FINISH and 
recognizes when it gets there. Write an outline-in English or in 
any programming language that you're familiar with-of a pro
gram to do what this program does. How would you make sure 
that the lines don't run off the edge of the screen? How would you 
know when the program reaches its goal? 

2. 	 Take a look at the MAZE program listing in Appendix A. Is it 
longer and more complex than you thought it would be, or less? If 
you know how to "read" a BASIC program, or if you can puzzle 
your way through it, check to see if my version of the program 
includes any important details that yours didn't or vice versa; did 
you cover any significant details that I missed? 

xi 



3. 	 As the MAZE program draws its path, it just writes over any lines 
that have already been drawn. What if we want to recognize when 
we cross an old line, or to avoid retracing along an existing line? 
Without getting into the programming specifics, try to work out 
the logical details that have to be added to the program. What 
details are most important? Which details might just be called 
icing on the cake? Does adding a feature like this make the pro
gram much more complex? What does that suggest to you about 
the overall character of computer programs? 

xii 



I 
A Family Tree 

O ne of the most important-and interesting-things about the 
IBM Personal Computer family is that it is a family, a group 
of related computers instead of a single computer. This makes 
the story of the PC a richer and more fascinating one, and it 

makes the PC more important and more useful to us, because, as a family, 
the PC gives us a wide selection of computers differing in features, price, 
and performance. 

In this chapter we're going to take a look at the PC family tree. It's a 
multi-dimensioned story, because there are several different ways to view 
the PC family. One dimension of the story is historical-it covers the 
chronological unfolding of the original IBM PC and its relatives. Another 
dimension-another way of analyzing the PC family-looks at the different 
models of PC. This aspect of the story, the model-by-model aspect, empha
sizes the range of computing power and the range of features in the PC 
family. A sidelight to both of those dimensions is the role that non-IBM 
members of the family play. These are the so-called PC clones, distant 
relatives of the PC and members of the extended family. And still another 
dimension to the story is the tale of the family of microprocessors that 
power the PC and that will lead it into the future. 

We'll take a look at all that in this chapter, so that we have a good 
overall understanding of what the PC family is, and where it's going. 

1.1 Some Family History 

The public history of the PC began in August 1981, when IBM first 
announced "The IBM Personal Computer," what we all know as the origi
nal PC. The behind-the-scenes story began earlier, of course, but not as 
long before as one might guess. From the decision to try to make an IBM 
Personal Computer to the day of announcement took, we're told, just about 
a year-a remarkably short time for so large and so deliberately-acting an 
institution as IBM. The prehistory of the PC, as interesting as it may be, 



INSIDE THE mM PC 

reatly isn't our concern here (but I'll pass on to you one fascinating tid-bit, 
in the sidebar How the PC Became a 16-Bit Computer). What is of real 
interest and use to us is a brief history of how each model of PC appeared, 
so that we can better understand how the PC family came to be, and where 
it is headed. 

How the PC Became a 16·Bit Computer 

At the time that the PC was being planned, all personal computers 
belonged to a now-obsolete category called 8-bit computers. (For 
more on 8- and 16-bit computers, see the last section of this chapter, 
and Chapter 3, titled Data!) 

According to one legend, the PC almost became an 8-bit computer, 
which would have severely reduced its capabilities compared to what 
it was to become, and would have made the growth of the original 
PC into a PC family much more difficult. 

As the story goes, mM was planning to make the PC an 8-bit 
computer because that was the clear standard of the time. But one of 
the industry experts that mM consulted in the planning of the PC 
was Bill Gates, the legendary founder of Microsoft Corporation. Bill 
understood that although 8-bit computing was strong at the time, its 
days were numbered. For the mM PC to be really successful, it had 
to lead the way into the much more powerful realm of 16-bit 
computing. Bill knew this and talked IBM into changing its plans. 

Whether this story is truth or legend, the decision to make the PC a 
16-bit computer was extremely important in making the IBM PC the 
dominant desktop computer it is today. 

The history outlined here is necessarily incomplete, because there are 
many details that I don't have space to relate and because the history of the 
PC family continues to unfold even as I'm writing this. But here is the main 
story. 

The IBM PC made its first appearance in the fall of 1981. By spring of 
1982, PCs were being shipped in volume, but to everyone's amazement 
demand far exceeded the supply. The PC was clearly "an overnight suc
cess." While this success may have caught IBM and the rest of the com
puter industry off guard, everyone quickly woke up to the possibilities that 
this created. 

During the earliest days of the PC, a number of experienced computer 
executives and engineers realized that there was a real need for a version of 
the PC that could be carried around-that idea turned into Compaq Com

2 



1.1 SOME FAMILY HISTORY 

puter Corporation. Their first addition to the PC family (the first addition 
by IBM or anyone else) was the computer known as the Compaq. The 
Compaq was announced in the fall of 1982, just over a year after the 
original PC was announced. 

The following spring, in 1983, saw IBM's first addition to the PC 
family-the XT model, which added a high-capacity hard disk storage 
facility to the Pc. Compaq matched the XT with a portable version in the 
fall of 1983 called the Compaq Plus. 

In 1983 word began leaking out that IBM was planning a 
less-expensive scaled-down version of the PC that could be used as a home 
computer or just a more economical model of PC for business and profes
sional use. This machine was the PCjr, widely known as "the Peanut." 

Nearly everyone expected the PCjr to be an even bigger hit than the 
original PC, but when it first appeared at the end of 1983, it was an enor
mous disappointment. The PCjr was doomed to a short life, thanks to a 
hard-to-use keyboard, seemingly limited expandability, and other 
problems-such as interference between the keyboard and diskette drive 
that made the jr annoying to use--combined with less-than-expected inter
est in home computers in the jr's price range. Throughout 1984 the jr 
limped along, despite several heroic attempts on IBM's part to make it a 
success. In 1985 the jr was discreetly allowed to die, awaiting IBM's 
revised plans for the low end of the PC family. 

But if 1984 was a year of disappointment for the low-end PCjr, it was 
an exciting year for the high end of the PC family. The summer of 1984 
saw two high-powered models of PC appear. First there was Compaq Desk
Pro, the first member of the PC family to have more basic computing power 
than the original Pc. Shortly after that, IBM introduced the AT model, 
which had a much greater computing speed than the PC and XT or even the 
new DeskPro. 

All during this time, IBM was adjusting to the remarkable success of 
the PC family and the growing importance of personal computing. This led 
to a gradual and subtle change of philosophy in IBM's management of the 
PC family, which I call "mainstreaming." This is a tendency to change the 
focus of the PC family away from isolated and individual personal comput
ing into a more institutionalized approach that fit the PC family better into 
the central parts of IBM's computing business. This marked the end of 
some of the wild-and-woolly days of the PC, and passed into an era of 
somewhat less personal personal computing. 

That's a short summary of the main points of the history of the PC 
family. But there's another way to view the chronology of the PC family 
that's less detailed and precise, and which gives us a sweeping overview 

3 



INSIDE THE mM PC 

and analysis of the PC's history. It's a summary of what has characterized 
each of the fIrst six years of the PC: 

• 	 1980-planning: 

IBM decides to make a PC, and begins design. 


• 	 1981-announcement: 
The PC design is fInished and, in August, the PC is 
announced, surprising everybody. 

• 	 1982-runaway success: 
The PC appears in stores, and is wildly successful, beyond 
anyone's expectations, including IBM's. 

• 	 1983-hard disks and home thrills: 
Early in the year the XT is introduced, adding a hard disk to 
the PC line; at the end of the year after overblown anticipation 
and speculation, the PCjr is announced. 

• 	 1984-jr fades and Sr appears: 
The PCjr passes through the main period of its disappointing 
history; in the summer the AT is announced, pointing the way 
toward the new generation of pes. 

• 	 1985-the changing of the guard: 
IBM consolidates and refInes the PC line, preparing to replace 
old models with a second generation; the PC family is redi
rected into the mainstream of IBM's products. 

In summary, that's the history of the PC family. Now let's take a 
closer look at the various models of PC to see how they relate to each other. 

1.2 The PC family 

The historical perspective that we've just gone through gives you some 
sense of how the PC family as we know it today has evolved, and it should 
give you a feeling for the irregular fIts and starts that naturally accompany 
computer family life. But it doesn't make coherent sense of the various 
members and how they relate to each other, in power and in features. 
That's what we're going to take a look at now. 

As I did in the last section, I have to offer a disclaimer here to alert 
you to the limitations in this family outline. Three factors constrain how 
complete our view of the family can be. The fIrst is a constraint of passing 

4 



1.2 THE PC FAMILY 

time: no sooner can I describe the current state of things than new develop
ments arise. What we'll find here is as complete as it could be when I wrote 
these words. The second constraint is space: if we tried to mention every 
obscure and distant relative of the extended PC family, the family tree 
would spread out wider than you or I are likely to have patience to compre
hend. Finally the third constraint is my own judgment, in deciding which 
elements of the family tree are most important and most worth discussing. 

With those honest limitations in mind, let's take a look at the main 
models of computer that make up the PC family tree. Figure 1-1 gives you 
a rough sketch of the family. The line in the center indicates the main trunk 
of the PC family, arranged in the order of how powerful each model is, 
from the least powerful PCjr at the top to the most powerful AT at the 
bottom. Spreading to the sides are the models with diverging features. 
Figure 1-1 gives a rough sense of just how unusual, strange, or maverick 
each model is by how far away from the main trunk it appears. 

Let's begin by talking our way down the main trunk of the tree, from 
top to bottom. The ftrst, and least powerful member of the family is the 
ill-fated PCjr. To give some measure to the idea of how powerful and 
capable each model is, we'll compare them to a more-or-Iess standard PC, 

PCjr 

I 
Compaq PC --- DG13270 PC - Portable PC I ""'- X370 

Compaq Plus XT 

I 
Compaq Desk Pro 

I 
AT-AT 370 

I 
Compaq-286 - Compaq Desk Pro-286 

Figure 1-1. The main PC family tree. 

5 



INSIDE THE IBM PC 

in terms of computing speed and disk storage capacity. By both measures, 
the PCjr is about half of a standard PC; by another measure, internal mem
ory capacity (which doesn't vary between most other models), the PCjr is 
also about half a standard PC's memory. 

Next in scale comes the original PC-by its own standard, it's 100 
percent of what a PC should be. It has the computing power to perform 
roughly a quarter-million instructions per second; in computer jargon, that's 
Y4 "mips." Its disk storage capacity is typically 360,000 characters (bytes) 
in each of two "floppy"diskette drives-for a total of almost ¥4 of a million 
bytes. Its internal memory capacity (which is, in effect, the workspace 
where the computing activity takes place) is typically a quarter million 
bytes, but it can be increased to two and a half times that much. 

The next step in succession is the XT model. The XT exactly matches 
the PC in both computing speed and internal storage. What sets it apart is a 
much larger (and also faster working) disk; this kind of disk is called a hard 
disk (or afixed disk) as opposed to the conventional floppy diskettes that the 
PC uses. A computer's disk acts as a combination of file drawer and work
ing library, and so a larger and faster disk significantly increases the practi
cal working capabilities of the computer, even though the XT has the same 
computing speed and the same internal working memory space as the PC. 
The size of the XT disk is ten million characters, over a dozen times as 
much as a PC; and the effective working speed of the XT's hard disk is 
about five times as fast as the PC's floppy diskettes. 

A small step further down the line comes the Compaq DeskPro model. 
The DeskPro uses a different and faster microprocessor than the PC and 
XT, so it has a faster computing speed; relative to a PC, the DeskPro has 
about 50 percent more computing power. (In Section 1.3 we'll see what 
this faster microprocessor is.) The disk capacity is also greater in the Desk
Pro, with up to 20 million bytes, twice what the XT has. Thanks to the 
faster computing speed and the bigger disk, the DeskPro seems to be an 
even bigger jump beyond the XT than the XT was beyond the PC. But in 
practice it's a much smaller step; nevertheless, an important step. 

The next big jump in capacity comes with IBM's AT model. Like the 
DeskPro, the AT uses a different microprocessor engine to gain extra speed 
over the PC; but the AT's is faster still, much faster. That gives the AT the 
computing power of about five PCs or more than three DeskPros-that' s a 
lot more computing power. To go along with that computing power, the AT 
has a 20-million byte disk, twice the XTs, and it can accommodate even 
larger disks if needed. Just to sweeten the cake even further, the AT can 
take on more internal working memory than any of the previous models, as 
much as three or more million bytes; under ordinary circumstances, though, 

6 



1.2 THE PC FAMILY 

we can't take advantage of this extra working storage, so we've got to 
discount its importance. 

The final step (so far) in the main trunk of the PC family is the 
Compaq Deskpro-286 model. The Deskpro-286 is much like IBM's AT 
model, but its engine revs one-third faster than the AT's, giving it a third 
more raw computing power; it comes equipped with a hard disk that holds 
30 million bytes. 

Scattered along this main part of the PC family are a number of PC 
clones, which aren't of any special interest by themselves, though some of 
them can be distinct bargains when it comes to buying. Among the many 
that fall into this category are the Tandy models 1000 (equivalent to a PC) 
and 1200 (equivalent to an XT); the NCR PC-4 and the Zenith 150 (PCs); 
and the Texas Instruments Business Pro (an AT class of machine). 

Branching off the main trunk, we find a number of very interesting 
variations on the PC mainstream. The first branch consists of the portables 
(also called transportables or "luggable" since they can be carried, but not 
easily). The portables bring together the main computer and a display 
screen into one rugged case-which makes it practical to carry them 
around, check them as airline luggage, or even ship them. Four portables 
are noteworthy: the original Compaq (the first, and some consider the best 
of the PC clones) and the IBM Portable PC model, both of which are 
equivalent to a standard PC; the Compaq Plus, a portable that's equivalent 
to the XT; and finally the Compaq Portable-286, a portable mate to the 
Deskpro-286, more than equivalent to the standard IBM AT model. 

Also in the broad category of portables, but a in a distinct class by 
itself (at least for a while) is the lap-sized Data General One, or DG-l. The 
DG-l is a partly failed attempt to take the' 'lug" out of portable computing 
by making a PC that's small and light enough to carry easily. Due to its 
unique design, the DG-l has 85 percent of the computing power of a PC
slightly less than standard-but twice the disk space. The DG-l was a 
heroic but unsuccessful attempt to make a truly portable PC; it's sure to be 
followed by more successful ones as the advance of technology permits. By 
itself the DG-l isn't an important member of our PC family, but it repre
sents a class of machines that are likely to become important. 

Finally we get to the most exotic realm of PC family members, the 
ones that have truly unusual capabilities. There are three models from IBM 
worth mentioning; all of them are essentially PCs that can also do double 
duty as something else. The 3270-PC acts as an XT -class of PC, and it also 
serves as a standard-type terminal (called a 3270) that can talk to and work 
with a large "mainframe" IBM computer. The other two exotics in the line 
are the XT-370 and the AT-370. These little wonders can function as an XT 

7 



INSIDE THE IBM PC 

or AT, and also carry out much of the work of a full-sized mainframe 
computer. These three, needless to say, are quite special machines, but they 
are part of our PC family. 

The last category of computers for us to discuss are the distant rela
tives of the PC, computers that are similar to, and partly-but only partly
compatible with the IBM PC. Notable among these are the Tandy model 
2000, the Texas Instruments Professional Computer, the Wang PC, the 
DEC Rainbow, and the NEC APC-III. Frankly, there are more of these 
sometimes-oddball distant relatives than anyone can keep track of. They're 
not of a great deal of interest to us, but I'm mentioning some of the more 
widely known ones so that if you hear of them, and wonder where they fit 
into the PC family portrait, you'll know. 

1.3 The 8086 Family 

One of the keys to understanding the PC family is understanding the 
microprocessor that acts as the working "brains" of the computer. Unlike 
the mainframe computer tradition, microcomputers like our PC aren't 
designed and built in an independent way. Instead, nearly all microcomput
ers incorporate many standard components that are designed independently 
of the computers in which they are used. 

If a computer maker, such as IBM, designs a computer from scratch, 
then they can determine what the features and capabilities of the computer 
will be. This includes the instruction set, or internal language, that the 
computer will have. However, most microcomputers, including our PC, 
aren't made that way. Instead, they get their thinking power (and instruc
tion set) from one of several standard microprocessors offered by com
puter chip makers. IBM could have chosen from several possible 
microprocessors to serve as the brains of the PC. The one they chose 
would both define the current instruction set, or language, for the PC, and 
also define a great many things about the direction the computer could 
take in the future. 

IBM chose the Intel 8088 microprocessor as the brains or engine inside 
the Pc. The 8088 is just one member of a whole family of microprocessors, 
called the 8086 family, that was designed by the pioneering silicon chip 
maker, Intel. By choosing the 8088 for the original PC, IBM committed the 
PC family to live within the range of possibilities that are defined by its 
microprocessor fanlily. To understand what the PC family is (and can 
become), we need to understand the main points of its microprocessor 
family, the 8086 family. 

8 



1.3 THE 8086 FAMILY 

Before I cause any confusion, I need to make clear that while each 
member of the PC family of computers uses a member of the 8086 micro
processor family for its brain, there isn't any direct correspondence between 
the PC family and the 8086 family. There isn't a separate member of the 
PC family for each member of the 8086 family. Since each PC includes 
something from the 8086 family, knowing about this family can help us 
understand the directions that the PC family can take. 

The founding member of the Intel 8086 family is the 8086 chip itself, 
the chip that the whole family is named after. The 8086 was designed to 
introduce the concept of 16-bit computing, which means that the computer 
can deal with 16 bits of information at a time (we'll get a clearer idea of 
what that means when we discuss bits and our computer's data in Chapter 
3). The previous generation of Intel microprocessors, the 8080, were 8-bit 
computers. 

The 8086, as a 16-bit microprocessor, had a much greater range of 
capabilities than its predecessors. The power of a microprocessor is only 
very loosely implied by describing it as "8-bit" or "16-bit" or "32-bit"; 
the features of each new generation of computer chips go far beyond what 
the bit rating suggests. But this bit rating does at least tell us how much data 
the computer can sling around at a time, and the 8086 could sling twice as 
much as the 8080 that went before it. 

There was an inherent practical problem, though, in using the 8086 as 
the base of a computer design. While the 8086 had 16-bit capabilities 
internally-which is very good-it also had to work exclusively with other 
computer components that handle 16 bits at a time as well. When the PC 
was being designed, 8-bit parts were plentiful and cheap; 16-bit parts were 
more expensive and in shorter supply. This presented an obstacle to anyone 
designing a computer around the 8086. 

Intel found a simple, practical solution to this problem with the 8088 
chip. The 8088 internally has all the 16-bit skills of the 8086, but when it 
communicates with other circuitry around it, it talks only 8 bits at a time; 
this slightly reduces the speed of the 8088, but it makes it possible for the 
8088 to work with other components that are cheap and plentiful. 

For practical reasons, IBM designed the original model of PC around 
the 8088-a microprocessor with 16-bit power, but 8-bit economy. The 
8088 formed the heart of the first four models of PC from IBM-the PC, 
the XT, the Portable PC, and the PCjr-as well as the first two Compaq 
contributions to the family-the Compaq and the Compaq Plus. Most other 
"PC clones" also used the 8088. However, when Compaq wanted to add 
more computing power to their third model, the DeskPro, they used the 
8086 for its greater speed. 

9 



INSIDE THE IBM PC 

After designing the 8086 and its junior brother the 8088, Intel began 
working on some improvements and extensions to this family of microproc
essors. Up to this time, all microprocessors, including these two, relied on 
the assistance of other related computer chips which played a supporting 
role in getting the computer's work done. Intel realized that there were two 
important disadvantages in having these support functions performed by 
separate circuit chips: working with separate chips slowed down the opera
tion of the computer, and increased the total cost of making a computer. If 
many of the support functions were incorporated into the same chip as the 
microprocessor, it could work faster, and using fewer chips would reduce 
the cost. 

This thinking led to the development of the Intel 80186 and 80188 
(which are usually called the 186 and the 188 for short). These two new 
microprocessors had some extra instructions and capabilities that their pred
ecessors didn't have, but their main feature was that they integrated several 
support functions into the microprocessor. As you've probably guessed 
from the model numbers, the 186 is like the 8086 in being 16-bits inside 
and out, while the 188, like the 8088, has an 8-bit external face with 16-bit 
internal skills. 

Either of these 18x chips could be used to power major members of the 
PC family, but that hasn't happened. They have been used in quite a 
number of distant relatives of the PC, including the near-PC-compatible 
Tandy 2000 computer. Neither IBM nor Compaq has used either of these 
two chips, even though the 188 would have been a natural for the PCjr and 
the 186 would have been perfect for the Compaq DeskPro. The reason why 
is very simple: when the 18x's were the hottest thing around, they weren't 
available in large enough quantities to safely design a best-selling computer 
around. By the time they were plentiful, there was something much more 
exciting to design a computer around. 

While the 18x's were an important (if little-used) extension to the 8086 
family, they didn't really add dramatically to the capabilities of the chips 
that went before them. To do that, Intel labored mightily and came up with 
its proudest achievement to date, the 80286 (or 286 for short). 

The 286 goes enormously beyond the capabilities of its predecessors in 
three main ways. First, it can accommodate much more working memory 
than the previous chips; the others were limited to a million bytes, or 
characters, of memory. The 286 can have up to 16 million bytes-a major 
addition. Second, the 286 can perform an important computer trick known 
as virtual memory, which allows it to appear to have even more memory 
than it actually does. Both of these memory extensions greatly increase the 
scale of the work that the 286 can undertake. The third new feature of the 

10 



SOME THINGS TO TRY 

286 is something known as hardware multitasking.. this feature lets the 
computer work on more than one problem at a time in a safe and reliable 
way. (The previous chips could attempt multitasking, but without hardware 
support, it isn't completely reliable and it's subject to unexpected 
breakdowns. ) 

IBM introduced the 286 to the PC family with the appearance of the 
AT model in the summer of 1984. This was followed by a number of 
AT-clones, most notably the Compaq Deskpro-286 and the Compaq Porta
ble-286. Like the Compaq models before them, these 286 models matched 
IBM's machines and added some small but important extras. The most 
interesting is a "power switch" that allows the Compaq-286s to either run 
at the same speed as an AT (for pure speed compatibility) or one-third 
faster for greater computing power. 

Like the 18x's before it, the 286 features the integration of support 
chips and faster speeds than previous chips. Initially the 286-based 
machines didn't take significant advantage of the powerful new capabilities 
that were inherent in them. Instead they were treated simply as faster PCs, 
very much as if they had been designed around the 186 instead of the 286. 

Needless to say, the Intel 8086 family doesn't end with the 286. By 
the time the 286 saw commercial success in the AT, Intel was busy plan
ning the next major extension of the family, the 386. Among the new skills 
that the 386 will bring to the 8086 family, and our PC family, is the ability 
to work with data 32 bits at a time. 

However the 8086 family evolves, you can be sure that our PC family 
will also evolve to take advantage of the additional power that any new 
chips provide. 

Some Things to Try 

1. 	 Do you see any gaps in the PC family tree? Discuss what you 
think might be the most sensible spectrum of computers in this 
family. 

2. 	 Does adding a hard disk to a PC-making it an XT-actually add 
to the computer's ability to work for us? What sort of computer 
work would be easier to perform on an XT than a PC? What sort 
of work can an XT perform that a PC cannot? 

3. 	 Is computing speed important all the time? Is there computing 
work for which the AT's speed is no advantage over the PC, or 
even the PCjr? 

11 





2 
Fundamentals: 

What a Computer Is 


T oday, computers are something familiar to everyone, since they 
are used so much in our lives. Increasingly those computers are 
personal computers, like our IBM PC. Having them as an every
day thing in our lives makes them something we're comfortable 

with, and that's very good; but it doesn't mean that we understand them, or 
know how they work. 

This book is written to make it easy for you to understand the ins and 
outs of the IBM PC. But before we get into the PC specifics, we need to 
make sure that we understand the basic ideas that underlie all computers, so 
that we know what a computer is and isn't, and we know in a general sort 
of way how computers work. That's what this chapter is for: to explain the 
basic, fundamental ideas about computers. 

2.1 My Computer, the Model 

Computers are based on the simple idea of modeling or imitation. 
Radios and phonographs work that way too, and if we pause to think about 
them we'll understand our computers more easily. 

When we playa record on a phonograph, we hear music-but there 
isn't a musician inside the phonograph. Instead, the phonograph contains 
an electronic model or imitation of what sound is like. Our radios and 
phonographs are possible because we discovered a way to capture the 
essence of sound, to create a mechanical or electronic imitation of sound, 
and to build machines that will reproduce the sounds we want. The same 
sort of thing goes on with the visual images provided by television and 
motion pictures. 

Our computers do essentially the same thing, but they do it with num
bers and arithmetic. The most fundamental thing that goes on within a 

13 



INSIDE THE IBM PC 

computer is that electronically the computer imitates and creates a working 
model of numbers and arithmetic. 

If we set out to invent a machine that can do arithmetic, we need to 
find a way to match what machines can do with whatever the essence of 
arithmetic is. Needless to say, accomplishing this calls for a great deal of 
intellectual creativity and some heavy-duty theory in mathematics. Essen
tially a meeting ground had to be found where math and machines could 
merge, and it was found in the idea of binary arithmetic. 

The numbers that you and I work with are based on the number ten: 
we use the decimal number system, which works with ten symbols, 0,1, 2, 
and so on through 9, and builds all our numbers using those ten symbols. 
However, there is nothing fundamental about the decimal system; we can 
base our numbers on eight symbols, or three, or two. Math theory, and 
some simple exercises demonstrate that you can write the same numbers 
and do the same arithmetic operations in any number system, whether it's 
based on ten, three, or two. The mathematical theory of information, how
ever, has proven that you can't go smaller than tw(}-the binary, or base 2, 
number system captures the smallest essence of what information funda
mentally is. 

That's something of a lucky break. It is very easy to make a 
machine, particularly an electronic machine, that represents, or models, 
binary numbers. A binary number is written with two symbols, 0 and 1 
Gust like our decimal numbers are written with ten symbols 0-9) and 
electric parts-such as switches-naturally have two states: a switch 
can be either on or off. Once we see that, it's easy for us to make the 
leap of imagination to see that an On-Off switch can represent, model, 
or imitate a binary 0 or 1. In fact, it's such a natural connection, that 
you'll see the power switches on many appliances and machines labeled 
o and 1 meaning off and on. 

Of course it's a giant step between seeing that a switch or an electric 
current on or off can represent a number 1 or 0 and having a computer that 
can perform marvels of calculation. It's a very big step indeed. But it 
shouldn't be too hard for us to see how this electronic model of a simple 
binary number can be elaborated, or built up into something much larger. 
It's like knowing that once children have learned to write simple sentences, 
they can grow up to write essays, term papers, and books. There's a lot of 
work in between and a lot of complicated steps involved, but the idea, the 
basic principle, is clear enough. 

That's the foundation on which our computers are built. Information, 
including numbers and arithmetic, can be represented in a binary form; 
electronic parts, such as switches that are turned on and off, are binary at 

14 



2.2 AN OUTLINE OF THE COMPUTER 

heart. Using switches and other parts, an electronic machine can imitate, or 
model, numbers and all other forms of information. 

What we've discussed so far is good enough to give us an idea of how 
it's at all possible to make such a thing as a computer. But that hasn't yet 
told us a great deal about computers. So that you can understand a building 
made of bricks, we've talked about what bricks are. That doesn't tell us 
much about architecture, though, or what a finished building looks like. 
That's what we'll do next. 

2.2 An Outline of the Computer 

There are five key parts to a computer: the processor, the memory, the 
Input/Output (110, as it's almost always called), disk storage, and the pro
grams. We'll take a quick look at each of these key parts here and then in a 
little more detail that will fill up this chapter. The rest of the book will be 
devoted to burrowing into the really fascinating deeper details. 

The processor is the "brains" of the computer, the engine, the main 
working heart of this marvelous machine. It's the processor that has the 
ability to carry out our instructions (our programs) to the computer. The 
processor is the part that knows how to add and subtract and to carry out 
simple logical operations. In a big mainframe computer the processor is 
often called a Central Processing Unit, or CPU. In a miniaturized or 
"micro" computer, like our IBM PC family, the processor is usually called 
a microprocessor. That's the term we'll be using almost exclusively in this 
book. You already know, from our discussion of the PC family history in 
Chapter 1, that our PC family is powered by the 8086 family of microproc
essors. Later in this chapter we'll learn more about what processors do, and 
in Chapter 6 we'll cover the specifics of what the PC's microprocessors can 
do. 

The memory is the computer's work area: its desktop, its playing 
field. A computer's memory is nothing like our own memory, so the term 
can be misleading until you understand what a computer's memory is and 
what it's used for. The memory is the computer's workplace. It's analo
gous to the desktop of an office worker, the workbench of a carpenter, or 
the playing field of a sports team. The computer's memory is where all 
activity takes place. The analogy with a workbench is particularly good, 
because it helps us understand when the amount of memory is important 
and also when it's not. Like the size of a workbench, the size of a 
computer's memory sets a practical limit on the kinds of work that the 
computer can undertake. A handyman's skills and other factors are really 

~ 

15 



INSIDE THE IBM PC 

r Input ""\I: OutputProcessor 
'---______...1. Disks 

t \.._-

( programs) 

Figure 2-1. The five parts of the computer. 

the most important things that determine what the handyman can and 
can't do, but the size of the workplace matters as well. This is true with 
our computers. That's while you'll often hear of computers rated by the 
amount of memory they have, usually in kilobytes (thousands of bytes 
which we'll learn more about in Chapter 3). For example, a fully-loaded 
PC has 640 kilobytes of memory. 

InputlOutput, or 110, are all the means that the computer uses to take 
in or spit out data. It includes input that we type in on the keyboard and 
output that the computer shows on the video display screen or prints on the 
printer. Every time the computer is taking in or putting out data, it's doing 
110 using 110 devices, which are also called peripheral devices in computer 
jargon. Among the many kinds of 110 devices is one that's so important and 
critical to the successful operation of the computer that we single it out as 
the next of the five key parts of a computer. 

Disk storage is a very important kind of IIO-it's the computer's 
reference library, filing cabinet, and tool box all rolled into one. Disk 
storage is where the computer keeps its data when it's not in use inside the 
computer's memory. Data can be stored in other ways besides disk, but 
disks are the most practical and most important way of storing data. In fact, 
as we saw in the outline of the PC family in Chapter 1, a big increase in 
disk storage is enough to mark the difference between a member of the 
family that's considered high-powered (the XT) and one that's not (the 
original PC). 

Programs are the last of the five key parts of a computer-they are 
what makes the computer go, what brings it to life, what turns it from a 

16 



2.2 AN OUTLINE OF THE COMPUTER 

heap of fancy parts into a powerful working tool. Programs are the instruc
tions that tell the computer what to do. 

With that simple summary out of the way, let's take a slightly more 
detailed look at each of these key parts, bearing in mind that we're still 
providing brief descriptions. The real details will come in the following 
chapters. 

The microprocessor is the part of our computer designed to carry out 
or execute our programs. The whole point of the entire computer is to make 
a machine that can perform, execute, or carry out the series of steps that we 
call a program. So both the purpose and the internal organization of the 
computer come together in this one key component, the microprocessor. In 
order to be able to perform this ingenious miracle, the microprocessor has 
to have some particular skills that it calls on to perform its work. The first 
skill is the ability to read and write information in the computer's memory. 
This is a critical skill, because both the program instructions that the micro
processor is to carry out and the data that the microprocessor is to work on 
are temporarily stored in the computer's memory. The next skill is the 
ability to recognize and perform a series of very simple commands or 
instructions so that our programs are carried out. The last skill is for the 
microprocessor to know how to tell the other parts of the computer what to 
do, so that the microprocessor can orchestrate the entire operation of the 
computer. 

As you might imagine, there is a lot to how a microprocessor can carry 
out its assigned task, and how it gets these skills that we've been mention
ing. Later we'll get into the details of the microprocessor. Chapter 6 is 
devoted to telling you how the microprocessor performs its magic. 

Throughout this book we'll be talking constantly about programs and 
data: programs that the microprocessor carries out and data that the pro
grams act on. To the microprocessor, the distinction between programs and 
data is vital--one indicates what the microprocessor is to do, and the other 
is what the doing is done to. Not every part of our computer makes this 
distinction, which we' II see shortly. 

The memory, as we've already seen, is where the computer's micro
processor finds its programs and data, when the microprocessor is actually 
doing its assigned task. As we've mentioned, the memory is the activity 
center, the place where everything is kept when it's being worked on. For 
us to understand our computers it's important to understand that the com
puter's memory is just a temporary space, a scratch pad, a workbench, a 
black board where the computer scribbles while work is being done. The 
computer's memory is not a permanent repository of anything, unlike the 
memory inside our own brains. Instead, the computer's memory simply 

17 



INSIDE THE IBM PC 

provides a place where computing can happen. It's the playing field where 
the game of computing is played. After each game, the memory playing 
field is relinquished to the next team and the next game. 

While the computer's microprocessor makes a vital distinction 
between program and data, the computer's memory does not. To the com
puter's memory (and to many other parts of the computer) there is no 
difference between programs and data-both are just information that can 
be recorded, temporarily, in the memory. A piece of paper neither knows 
nor cares what we write on it-whether it's a love poem, the figures from 
our bank balance, or instructions to a friend. So it is with the computer's 
memory. Only the microprocessor knows--or has the ability to tell the 
difference-between programs and data. To the computer's memory and 
also to the 110 devices and disk storage, a program is just some more data, 
some more information that can be stored. 

The computer's memory is more like a chalkboard than a piece of 
paper in that nothing is permanently recorded on it. Anything can be writ
ten on any part of the memory, and the writing can be changed in a wink by 
writing over it. Unlike a chalkboard, the computer's memory doesn't have 
to be erased before anything new can be written down; the mere act of 
writing information into the computer's memory automatically erases what 
was there before. Reading information out of the memory is as simple and 
as straightforward as reading anything written on paper or a chalkboard. 
Both the microprocessor and all the computer's 110 devices have the natural 
ability to read (and write) data from or to the memory. 

Together the microprocessor and the memory are the actors and the 
stage on which the drama of computing is performed. But by themselves 
they make up a closed world. Input/output devices open up that world and 
allow it to communicate with us. An input/output device is anything that 
the computer communicates with other than its memory. As we've men
tion, these devices include the keyboard that we type on, the display screen 
that we stare at, the printer, a telephone line that's connected to the com
puter, and any other channel of communications into or out of the com
puter. Taken together the 110 is the computer's window on the world
what keeps the microprocessor and memory from being a closed and use
less circle. We devote plenty of time and effort to understanding the PC's 
various 110 devices in later chapters of the book. 

In· general we can say that all the 110 devices that the computer can 
work with have us as their real target. One way or another, everything that 
the computer takes in (particularly from the keyboard) comes from us. And 
everything that the computer puts out on the screen, on the printer, or 
wherever, is intended to be seen by us. But there is one special category of 

18 



2.2 AN OUTLINE OF THE COMPUTER 

110 that is intended only for the computer's private use: the disk storage 
devices. 

Disk storage, as we've said, is only one kind of 110, one type of 
device that the computer can use to read data into its memory or write data 
out of its memory. There is one key difference, though, between disk 
storage devices and essentially all other devices-the information on the 
disk storage can't be read or written by us, and it's not for our use; it can 
only be read or written by the computer itself. The other 110 devices are an 
interface between us and the computer. The computer "sees" what we type 
on the keyboard, we see what the computer writes on the printer or display 
screen. This is true with the disk storage devices. Instead, the disk storage 
is the computer's library, toolbox, and lumberyard. It's where the computer 
keeps its instruction manuals (our programs), its raw materials (our data), 
and any other information that it needs to have on tap. We'll be covering 
the PC's disk storage in lots of detail, so that you can understand how it 
works, what it does for the computer, and how we can help safeguard the 
information stored on our computer disks. 

Finally, we have to consider programs. Programs tell the computer 
what to do. Programs are the hardest part of computing because com
puters "consume" programs, using them as fuel. That's not exactly true, 
because unlike an engine that bums fuel it can't use again, a computer can 
use a program over and over again. But even if a computer doesn't con
sume or bum up programs, our computers do have an endless appetite for 
programs, the way we have an endless appetite for newspapers, maga
zines, and books. Once a book is written, any number of people can read 
and enjoy them, endlessly. So it is with programs for computers. But we 
also have an unending need for new books, new magazines and new 
newspapers; so it goes with programs for computers. There is always 
something new that we want to do with our computers, so there is always 
a need for new programs. 

As it turns out, there are two very different kinds of programs, and we 
need to learn about the difference right from the start. These two kinds of 
programs are called systems programs and applications programs. All pro
grams do something, accomplish some kind of work. Systems programs 
work to help operate the computer; in fact, the inner workings of a com
puter are so complex that we cannot get them to work without the help of 
programs. Applications programs carry out the tasks that we want done, 
whether it's adding up a column of numbers or checking the spelling of 
something we've written on the computer. In summary, applications pro
grams get our work done and systems programs help the computer manage 
itself (and carry out our work). 

19 



INSIDE THE IBM PC 

Some of the systems programs that the IBM PC needs to manage its 
operations are permanently built into it. This is a part of the computer 
called the ROM programs, because they are permanently stored in 
Read-Only Memory (unlike the reusable main memory that we've been 
talking about). These kinds of systems programs do the most fundamentcil 
kind of supervisory and support work, which include providing essential 
services that all the application programs use. These service programs are 
called the Basic InputlOutput Services, or BIOS for short. You'll often hear 
them referred to as the BIOS, or as the ROM-BIOS, since they reside in 
ready-only memory, or ROM. 

Other systems programs build on the foundation of the ROM-BIOS 
programs, and provide a higher level of support services. Operating sys
tems, such as the PC's familiar DOS (Disk Operating System), are exam
ples of these higher-level systems programs, which aren't built into the 
computer. Systems programs are one of the major topics that we discuss in 
the rest of this book. Although applications programs are very important, 
and we'll discuss them and learn how they are put together, systems pro
grams are a more important topic for us. That's because our goal is to 
understand the workings and the potential of the PC-and both are closely 
tied to the PC's systems programs. 

The outline of the computer that we've been looking at here gives us a 
good basis to start with, a springboard for diving into the details of comput
ing power. Before we proceed, though, we ought to pause to consider just 
what it is that the computer-particularly the computer's microprocessor
can do for us and what it can't. 

Some Things to Try 

1. 	 We've said computers "model" arithmetic just as radios or pho
nographs "model" sound. Are there other machines that work by 
"modeling?" We could say that television models both sight and 
sound. Do our computers model more than numbers? 

2. 	 Suppose that electrical switches were somehow completely differ
ent than they are. Instead of having two settings or states (On and 
Off) they always had three states. Would it still be possible to 
make a calculating machine out of them? Would anything be fun
damentally different, or would the details just change, but the 
principles stay the same? 

20 



SOME THINGS TO TRY 

3. 	 List any computer programs that you're familiar with. Which ones 
would you categorize as systems programs and which as applica
tions programs? Do you think that there is a strict dividing line 
between the two groups? Are there programs that have both 
characteristics? 

21 





3 
Data! 

I 
n this chapter we're going to introduce ourselves to the basics of 
computer data and the main data formats that the PC uses. When 
we're done, we'll have a clear foundation for understanding what 
the PC really works with: data! 

3.1 Bits, Bytes, and Characters 
The starting point of computer data-the smallest, most fundamental 

unit-is called the bit. The word "bit" is a charming contraction for a 
longer and clumsier expression, binary digit. We're all familiar with the ten 
decimal digits, 0 through 9, that are used to express the numbers that we 
work with. Binary digits, bits, are similar, but while there are ten distinct 
decimal digits, there are only two different bit values, zero and one, which 
are written, naturally enough, as 0 and 1. 

The bits 0 and 1 represent Off and On, False and True, No and Yes. 
They have the obvious numerical meaning that you'd assume they do: the 
bit value 0 really does mean zero, or nothing, and 1 does mean one. As we 
mentioned in Chapter 2, it is the concept of the bit that makes informa
tion-handling machines--computers-possible. Because it's practical to 
make electronic machines that work with On/Off signals at great speed, it's 
possible to make machines that actually work with information, that actu
ally process data. It all depends, however, on our ability to match informa
tion that's meaningful to us with the "model" of information that the 
computer can work with-and that depends on our ability to construct real 
information out of the simple bits of 0 and 1. 

Common sense and some heavy mathematical theory both tell us that a 
bit is the smallest possible chunk of information. Bits serve as building 
blocks with which we can construct and work with larger and more mean
ingful amounts of information. By themselves bits usually aren't of much 
interest and only on occasion will we be talking about bits, individual bits, 

23 



INSIDE THE IBM PC 

in the course of this book. It's when we string bits together, into larger 
patterns, that we get something more useful and interesting. 

The most important and the most interesting collection of bits is the 
byte. A byte is eight bits, taken together as a single unit. Bytes are impor
tant to us because they are the main practical unit of computer data. You're 
undoubtedly used to hearing of the memory capacity of a computer or the 
storage capacity of a disk measured in bytes (or in kilobytes, which we'll be 
discussing shortly). That's because the byte is really the main unit of data; a 
bit may be the atom, the smallest grain of sand of computer data, but the 
byte is the brick, the real building block of data. 

Our computers work mostly with bytes. They can work with larger 
aggregates of bytes, and they can get into the bits inside a byte. but our 
computers are designed mostly to manipulate and work with bytes. 

As we mentioned, there are eight bits in a byte. That means that there 
are eight individual 0 or 1, Off or On, settings inside a byte. The math of 
combinations tells us that if we've got eight things (these bits) and each one 
can be one of two ways (0 or 1) then the number of possible distinct 
combinations of bit settings in a byte is 2 to the eighth power, which is 256. 
So there are 256 different values, or bit combinations, that a byte can take 
on. This number will be important to us as we go on; we'll see it cropping 
up again and again, so we need to remember it. 

Most of the time we won't be interested in anything smaller than a 
byte, but there will be times when we need to refer to the individual bits 
inside of a byte-particularly when we get into some of the more technical 
matters. To learn about how we refer to individual bits, see The Bits Inside 
Bytes and Words sidebar. 

TECHNICAL BACKGROUND I I I •• • __________ 

The Bits Inside Bytes and Words 

When we want to look at the bits inside a byte, we need a way of 
referring to them. This is done by numbering them from the 
right-most (or least significant byte) starting with the number zero, as 
shown in the table at the end of this sidebar. 

It may seem screwy to number the bits from the right and to start 
numbering them from zero, but there is a fundamental reason for 
doing it this way. The identifying bit number is also the power of 2 
that represents the numeric value of the bit in that place (when we 
interpret the byte, and the bits in it, as a number). For example, bit 3 
has a numeric value of 8, and 2 to the third power is 8. 

24 



3.1 BITS, BYTES, AND CHARACTERS 

A similar scheme applies when we're looking at two bytes together 
as a word. Instead of numbering the bits in the individual bytes 
separately, we number them all together, from 0 through 15. But this 
is only done when we're looking at a pair of bytes and treating them 
as a single unit, a 16-bit word. 

Bi t number Numeric value 
76543210 

· ...... 1 1 
· ..... 1. 2 
· .... 1 .. 4 
· ... 1 .. . 8 
· .. 1 ... . 16 
· .1 .... . 32 
.1 ..... . 64 
1 ...... . 128 

A byte inside our computer is raw data, which can be used for any
thing. Two of the most important things that we do with our computers is to 
work with numbers and to manipulate written text (such as the words you 
are reading here). Bytes are used as the building blocks of both numbers 
and text (character) data. 

There is nothing fundamental about a byte, or any other collection of 
data, that makes it either numeric or text. Instead, it is simply a matter of 
what we want to do with our computers. If we're working with numbers, 
then the bytes in our computer are treated as numbers, and the bit patterns 
inside the bytes are given a numerical interpretation. On the other hand, 
when we want to work with character text information, the bytes are inter
preted as characters that make up the written text information. Each byte 
represents one character of text. 

Basically, we (through the programs we use) put bytes to work as 
either numbers or characters, depending on what we need them for at the 
time. In effect, bytes are raw clay that we can mold into numbers or text 
characters to suit our purposes. To do this, a meaning is assigned to each 
pattern of bits in our bytes. The patterns aren't unique, though, and there is 
nothing intrinsic about the meaning that we give to these patterns. The 
same pattern of bits could be, for example, the letter A or the number 65, 
depending upon what we were using them for. 

We'll be seeing how bytes can be used as numbers and characters, and 
how several bytes taken together can be treated as more complicated num

25 



INSIDE THE IBM PC 

bers or strings of text characters. That will occupy us for most of the rest of 
this chapter. The business of how bytes are interpreted as individual charac
ters, and all the fascinating characters that our PCs can work with, will be 
covered separately in Chapter 4. It's such an interesting and rich topic that 
we need to give it a chapter of its own. 

Before we go on to more details about interpreting data, we need to 
discuss a special term that will be cropping up now and again-that term is 
word. While the byte is the most basic and convenient unit of our com
puter's data, sometimes our computers need to work with bytes in pairs, so 
that they're handling not eight bits but 16 bits at a time. We need a name 
for a pair of bytes that are handled together as a single unit, and that name, 
in computer terminology, is word. "Word," as we're using it here, is a 
technical term, meaning 16 bits of data, two bytes, taken all together. It 
doesn't have anything to do with the common everyday meaning of the 
word "word," so be careful not to be confused by it. We won't be talking 
about words a lot in the course of this book, but when we do, take care that 
you understand them correctly. 

By the way, if you have ever heard of computers being referred to as 
being so-many-bit computers-8-bit, 16-bit, or even 32-bit-that's talking 
about how much data they can deal with in one gulp. Our PC family 
members are all 16-bit computers, because they can, in many of the things 
that they do, process data 16 bits at a time; 16 bits is the "word size" of 
our computers-that's what makes them 16-bit computers. Despite this, 
most of the time our computers and the programs that make them go will be 
handling data in individual bytes, one at a time. 

Finally, there is one more piece of basic terminology concerning com
puter data that we need to cover-the kilobyte, commonly called a K. 

It's always handy to be able to talk about things in round numbers, 
particularly when we're dealing with large quantities. Our computers deal 
with large numbers of bytes, and so people have become accustomed to 
handy ways of dealing with computer data in round numbers. But, com
puters being what they are-binary critters-the round number that's used 
is a round number in binary, and only roughly a round number in our 
familiar decimal numbers. This mysterious round number is 1024; that 
happens to be 2 raised to the tenth power, so it actually is a round number 
in binary. It's also reasonably close to a round number, 1000, in decimal, 
which is one reason why it's used so much. 

This number, 1024, is called a K, or sometimes kilo (borrowing the 
metric term for one thousand). So 1024 bytes are referred to as a kilobyte, 
or lKb, or sometimes just lK. When you hear people talking about 64K, 
they mean 64 times 1024, or exactly 65,536. 

26 



3.2 LEARNING ABOUT HEXADECIMAL 

Be aware that the term K is sometimes used loosely and sometimes 
precisely. The precise meaning of K is exactly 1024; the looser sense is 
1000 or anything near it. 

There's a related term that we also need to know about-meg or mega. 
This refers to a K of K, 1024 times 1024, or exactly 1,048,576. That's 
roughly one million, and that's what a megabyte refers to-roughly one 
million bytes of storage. We call this a meg when we're being casual about 
it. "My AT has a 32-meg disk in it"; that's how people use this term. 

With that fun taken care of, we're ready to move on to learn more 
about our computer's data. We can learn about the fearsome hexadecimal, 
and we'll go on to explore more about numeric data. 

TECHNICAL BACKGROUND I I I ••• _________ 

3.2 Learning About Hexadecimal 

If you want to really understand the inner workings of the PC or any 
other computer, you need to have a good working grasp of the com
puter-oriented number system known as hexadecimal, or hex for short. 
Understanding hex certainly isn't necessary to be a masterful user of the 
PC, but if you want to comprehend the machine and be able to use some of 
the more sophisticated tools for the PC-including the DEBUG program 
which is a part of DOS-then you have to have a working knowledge of 
hex, which is what we'll be covering in this section. As you can see, we've 
marked this section with the Technical Background head to indicate the 
more technical and arcane parts of our material. 

Hex, simply put, is a practical solution to a tedious problem: express
ing the exact data that's coded inside our computers. 

As we've already discussed, the smallest building blocks of computer 
data are bits that individually represent the values 0 and 1. If we write down 
computer data in its binary, or bit, form, we get a rather long string of zeros 
and ones. Just writing out a single byte in binary form is rather lengthy; for 
example, 01010101. It takes 80 bits to write out the bits that represent the 
word "hexadecimal"; a typical diskette has a total of about three million 
bits recorded on it. When we want to write out the exact data in our 
computers, we need a way to represent all the bits, but we also need a way 
that isn't as long and tedious as binary, which is where hexadecimal comes 
in. 

Hex is simply, a short hand for binary notation, where one hexa
decimal digit represents four binary digits (bits). If we look at bits individu

27 



INSIDE THE IBM PC 

ally, they have two values, 0 and 1. If we grouped them in pairs, there 
would be four different possible combinations of bit values in the pair: 00 to 
start with, 01, 10, and finally 11. Taking that idea two steps further, if we 
lump bits into groups of four, we'd find that there are 16 possible patterns 
of four bits: starting with 0000 and ending with 1111. (The math of it, of 
course, is that the number of distinct combinations of the two bit values 
taken four at a time is 2 to the fourth power, or 16.) 

In the decimal numbering system that we use every day, we use ten 
different symbols, 0 through 9, to represent ten digit values. We then 
combine these decimal digits to make larger numbers, like 100. The same 
principle applies with binary notation, where we can use the two bit sym
bols, 0 and 1, and combine them to make larger numbers. This same idea 
applies to hex, but instead of the two binary digits or the ten decimal digits, 
hex uses 16 distinct hexadecimal digits to represent 16 distinct values. The 
16 hex digits are 0 through 9 (which have the same numerical meaning as 
our decimal digits 0-9) then come six more hex digits, to indicate the six 
additional hex values. They are written using the letters A, B, C, D, E, and 
F. These last six hex digits, A through F, represent the six values after the 
value nine: A is ten, B is 11, and so forth, to F, which has a value of 
fifteen. 

Each of the 16 hex digits 0-9, A -F, represents a value of 0 through 15, 
and it also represents a pattern of four bits. For example, the hex digit A 
represents the bit pattern 1010, F represents the bits 1111. Table 3-1 shows 
a list of the 16 hex digits, their decimal equivalents and the binary values, 
or 4-bit patterns, that they represent. 

There are two ways to view these hex digits (and the four bits that each 
of them represents), and it's important to understand the distinction. It's a 
distinction that applies to all the computer data that we look at, something 
that we covered in different ways in Section 3.1 and Chapter 2. When we 
consider a hex digit, say B, we might be interested in the numerical value 
that it represents (which is 11) or we might be interested in the pattern bits 
that it represents (lOll) without it having any numerical meaning. Bear in 
mind that whether we're talking about hex, bits, or any other computer 
data, the same data takes on different meanings, depending upon how we 
are looking at it. 

One question that might come to mind is, "Why hex?" It's easy to 
understand that bit notation is too long and clumsy, and that something 
more compact is needed to express bits several at a time. But why hex? 
Why four bits at a time, when that leads us to using digits as unfamiliar as 
A through F? The answer is that hex is a reasonable compromise between 
what's closest to the machine, and what's practical for you and I to work 

28 



3.2 LEARNING ABOUT HEXADECIMAL 

with. Since the most common unit of computer data is the byte, hex can 
conveniently represent all the bits in a byte with two hex digits, each one 
representing four of the byte's eight bits. Hex fits neatly into the fundamen
tal scheme of our computer's data. 

So far we've talked about individual hex digits, but we also need to 
work with larger numbers expressed in hex. Particularly, later in the book, 
we'll be talking about the memory addresses used in the PC family that take 
us into four-, and even five-digit hex numbers. Therefore, we need to have 
a sense of the size of larger hex numbers and we need to be able to do some 
arithmetic with them. 

Hex arithmetic, of course, works just like decimal arithmetic, but the 
value of the numbers is different. The largest decimal number is 9 (nine) 
and the number after it is ten, which is written, in decimal, as 10. The same 
principle applies in hex (or any other number base): the largest hex digit is 
F (which has a value of 15) and the number after it is written 10, which has 
a value of 16; next comes 11 (which is 17) and so on. 

Two hex digits are all we need to express all the possible bit combina
tions in a byte. With eight bits in a byte, there are two to the eighth power 
different combinations, or 256 different bit patterns to a byte from 
00000000 to 11111111. In hex, 00000000 is 00 and 11111111 is FF. The 

29 



INSIDE THE IBM PC 

first four bits are represented by the first hex digit, the last four by the 
second hex digit. 

We can use Table 3-2 to translate between any pattern of bits and their 
hex equivalents. That's what we do when we're just looking at hex and bits 
as arbitrary data. When we want to interpret some hex digits as a number 
(which we'll be doing from time to time in this book) we need to know how 
to convert between hex and decimal, and we need to know how to do 
simple arithmetic in hex. 

First let's see how to evaluate a hex number. It helps to pause and 
think of how we evaluate decimal numbers, say the number 123. 123 really 
means 100 plus 20 plus 3. Each position over to the left has a value that's 
ten times higher than the place just to the right. The same principle works 
in hex, but the multiplier is 16, not ten. So, if we interpret "123" as a hex 
number, it's 3 + 2 times 16 + 1 times 16 squared (which is 256): that 
totals up to 291 in decimal. In Table 3-2 the value of hex digits is in the 
first five places. 

If you want to manually convert between decimal and hex, you can 
use the numbers in Table 3-2 to look up the equivalents. For example, to 
convert the hex number F3A into decimal, we'll look up the value of A in 
the first column (it's decimal 10), 30 in the second column (48), and FOO in 
the third column (3,840). Totaling them up, we get 3,898 as the decimal 
equivalent of hex F3A. 

Hex ~•. 

4.0% .. , 65t536 
;~ 1~~I;!i,·.F 1 

1.OZ4 4000 16:3s4;~' 
1,280. 5000 20,480 
1,S3~ 6000 24,576 

7000 
$000 

28,614 
32··.· . 

9000' 
AOOO 
BOOO 45. 
COOO 49,15Z 
DOOO 53,~8. 
EOOO 57,344: 
Foro 61,4:4:Q •.. 

""<' cI;f'~y"", 

30 



3.3 STANDARD NUMBERS 

To convert decimal into hex, we work the other way, subtracting as 
we go. For example, to convert the decimal number 1,000,000 we look up 
the largest entry in the hex table that's not over our decimal number. In this 
case, it's FOOOO at the end of the last column. We subtract its decimal value 
(983,040) from our starting number and continue the process until there's 
nothing left-then the series of hex numbers we subtracted out combine to 
make the hex equivalent of our decimal number. In this case it is hex 
F4240. 

Fortunately, there are some tools that do the work of hex-decimal 
conversion for us, so we don't have to resort to this manual process. One of 
them is the Sidekick program, by Borland International, which includes a 
calculator that converts from hex to decimal and does arithmetic in either 
form. Another is BASIC. Here are two little programs that demonstrate 
BASIC's ability to easily convert numbers between hex and decimal: 

10 Convert hex to decimalI 

20 I 

30 INPUT "Enter a hex number ", X$ 

40 PRINT "The decimal equivalent is "; VAL("&H"+X$) 

50 GOTO 30 


10 Convert decimal to hexI 

20 I 

30 INPUT "Enter a decimal number " X 
40 PRINT "The hex equivalent is "; HEX$(X) 
50 GOTO 30 

If you ever need to do any arithmetic on hex numbers you can use 
Sidekick's calculator feature, or use BASIC's ability both to do arithmetic 
and, as illustrated in the short programs above, convert between decimal 
and hex. If you're forced to do hex arithmetic the hard way, or just want to 
try your hand at it, you'll find tables to do hex addition or subtraction and 
multiplication in Appendix B. The HEXTABLE program in Appendix A 
generates these tables.) 

3.3 Standard Numbers 

Since numbers are so important to computers, we're going to look here 
at the kinds of numbers our PCs can work with. We're going to start this 
section with the simple number formats that are part of the PC's basic 

31 



INSIDE THE IBM PC 

repertoire of numbers-the numbers that the PC has a native ability to work 
with. Later, in the next section, we'll look at some more exotic types of 
numbers that the PC can use when we stretch its skills in a couple of ways. 
But for now, we'll just look at the kinds of numbers that come most natu
rally to the PC. 

You might be surprised to realize that the PC's natural skills only 
allow it to work with whole numbers-called integers in the terminology of 
math-and with rather small numbers at that. 

There are basically only two varieties of numbers that the PC has an 
inherent, built-in ability to work with-integers that are one byte in size, 
and integers that are two bytes, or a word, in size. 

The PC, as you may already be aware, is called a 16-bit computer. 
What that means in practical terms is that the fundamental design of the PC 
(and of the microprocessor that provides the brain or working engine of the 
PC) is structured to work with information up to 16 bits (two bytes) at a 
time. All of the PC's inherent skills at doing arithmetic can only be applied 
to either single 8-bit bytes or to 16-bit (two-byte) words. With the assist
ance of clever programs, the PC can work with larger numbers; for exam
ple, by combining two 16-bit words into a larger 32-bit number. But this 
can only be done with special software. When we're talking about the PC's 
natural skills, we're talking about only 8- and 16- bit arithmetic. 

Just how big can 8- and 16-bit numbers be? Not very big really. As we 
already know from looking at 8-bit bytes, there are only 256 distinct values 
that an 8-bit byte can have-2 raised to the eighth power, which is 256. A 
16-bit, two-byte word can have 2 distinct values of sixteenth power: 65,536 
in all. That sets a rather small limit on the range of numbers that we can 
work with using bytes and words. (If you want to explore 2-byte words or 
other longer integer formats inside your computers, you need to know about 
"back-words" storage-see the How Words are Stored sidebar in Chapter 
7.) 

Each of these two sizes of integer can be interpreted in two ways, 
which doubles the number of different numeric formats that we can have. 
The two interpretations depend upon whether we want to allow for negative 
numbers or not. If we don't need to work with negative numbers, then the 
entire range of values of each of these two sizes of integers can be devoted 
to positive numbers. For a byte-sized integer, the range of numbers can run 
from 0 up to 255, using all the 256 distinct bit patterns in a byte; for a 
2-byte word, the range of positive integers is 0 through 65,535. 

On the other hand, if we need to have negative numbers as well, half 
the range of values is devoted to negatives, and we can only have numbers 
half as large. In the case of bytes, the range of values is from -128 through 

32 



3.3 STANDARD NUMBERS 

oto + 127; for words the range is from -32,768 through 0 to + 32,767. We 
don't get to choose the range, so we can't get a wider range of positive 
numbers by giving up some of the negative range. For more on negative 
numbers, see the How Negatives are Represented sidebar. You'll notice 
that the range of negative numbers is one greater than the range of posi
tives: there is a -128, but there isn't a + 128; that's just an odd byproduct of 
the way negative numbers are handled. 

Table 3-3 summarizes the range of numbers handled by the four inte
ger formats. 

As I mentioned before, the microprocessor inside our PCs can do all of 
its standard arithmetic-add, subtract, multiply, and divide-on these four 
integer formats, but that is the extent of all the basic calculating that the PC 
can do. 

As you might imagine, most programs can't get along with just those 
four simple integer formats for their numbers. For example, BASIC uses 
three kinds of numbers. Only one of them, called integer in BASIC's 
terminology, is one of these four formats (it's our signed 2-byte word 
format). The other two, which BASIC calls single- and double-precision 
have to be created by going beyond the PC's ordinary skills. We discuss 
this in Section 3.4. 

How Negatives are Represented 

Negative integers are represented inside the PC in a fonn known as 
two's-complement. It's a commonly-used scheme in computers and 
closely related to the borrow-and-carry tricks we were taught when 
we first learned to add and subtract. It's easiest to explain with an 
example done with decimal numbers that we'll make three digits 
long; that's analogous to the fixed length one- or two-byte binary 
numbers that the PC calculates with. 

In our 3-digit decimal numbers, zero is written 000 and one as 001. 
If we subtract 001 from 001, we get 000. How can we subtract 001 
again to get minus one? We can do it by borrowing from an 

33 



INSIDE THE IBM PC 

imaginary 1 in the fourth place. We think of 000 (and all other 
positive numbers) as having a 1 in front that can be borrowed from 
like this: 

(1)000 zero 

001 subtract one 


gives us 

999 minus one 


So minus one is represented as 999; minus two is 998, and so on. 

The positive numbers start at 000,001,002 and go on up to 499. 
The negatives go 999 (that's -1), 998 (-2), and so on down to 500 
which really means minus five hundred. The same trick works with 
the binary numbers inside our computer. 

Notice that the value of a number can depend on whether we 
interpret it as signed or unsigned. As a signed number 999 means 
minus one; as an unsigned number it means nine hundred and ninety 
nine. 

3.4 Hot Numbers 

Most of our computing needs go beyond the simple integers that are 
native to the Pc. Whether we're doing financial planning with a spread
sheet program, performing engineering calculations, or just balancing our 
checkbooks, we need numbers more powerful than the integers we've 
looked at so far. Just dealing with money, the integers we've discussed so 
far couldn't handle anything more than $655.35, when we figure down to 
the penny. So we need some hotter numbers. 

There are two ways that the PC can give us a wider range of numbers, 
and two ways to calculate with those numbers. Let's look at the kinds of 
numbers first, and then how those numbers can be calculated. 

The first way to extend the range of numbers that our PCs can deal 
with is to simply make longer integers. We've already seen one- and 
two-byte integers. We can press on with that idea and use integers of three, 
four, or more bytes. Anything is possible, but the most practical extra 
length of integer is four bytes, and that gives us a much wider range of 
numbers, to over plus or minus 2,000,000,000. That does a lot for us, but it 
doesn't do everything. 

To handle fractional amounts, and to handle extremely long numbers, 
our computers use a concept known as floating point. Floating point works 

34 



3.4 HOT NUMBERS 

in a way similar to something you may have learned about in school called 
scientific or engineering notation. In this scheme, numbers are represented 
in two parts--one part represents the digits that make up the number; the 
other part indicates where the decimal point is located. Since the decimal 
point can be moved around freely, floating-point numbers can become 
very, very large-astronomical, as they say--or very small fractions. No 
matter how large or small the number becomes, it is just as accurate, 
because the digits that determine the number's accuracy, or precision, are 
independent of the numbers that specify where the decimal point is. 

In the BASIC programming language, the style of numbers known as 
single- and double-precision are both floating-point formats. The difference 
between them is that double-precision has more digits of accuracy. Other 
programming languages make use of floating point, too. 

Spreadsheet programs, like Lotus 1-2-3, also use floating point to 
represent their numbers, because it gives them greater flexibility and 
greater precision in the calculations that they perform. 

These are the two ways that the PC's number scheme can be 
extended-longer integers and floating point. But, as we mentioned, the 
PC's microprocessor, the PC's "brain," only has the natural ability to 
work with the four simple integer formats we covered in Section 3.3. How 
do we get any arithmetic done in these extended formats? There are two 
ways, through software and through hardware. 

Software is the most common solution. Every programming language, 
including BASIC, and nearly every calculating program, including 1-2-3, 
contains program routines that can do the work of performing calculations 
on floating-point numbers or long integer formats. These subroutines use 
the PC's basic arithmetic and logic skills as building blocks to perform the 
more complex calculations necessary to work with these other number for
mats. This goes on at a cost, though. While the PC can perform its own 
integer calculations very fast-typically in a few millionths of a second-a 
floating-point subroutine takes perhaps a hundred times as long to do an 
equivalent calculation, simply because the subroutine has to perform its 
work using a hundred elementary steps. 

For many purposes the speed of these software-based calculations is 
still fast enough, but it isn't as fast as it could be. To get more speed there 
is another way, a hardware solution. 

As we'll learn more about in following chapters, the microprocessor 
inside our PC has a companion designed for one task alone: fast floating
point calculations. These companion chips are called numeric coproces
sors. There are two of them for different models of PC: one is known as the 
8087 chip, and the other is the 80287-for simplicity, most people simply 

35 



INSIDE THE IBM PC 

call them the 87s. Most models in the PC family are designed to use an 87. 
When an 87 is installed, and when a program knows how to make use of it 
(which isn't often), the speed and accuracy of floating-point calculations 
can be enormously improved. 

It's worth bearing in mind that many programs just don't do any float
ing-point calculations. Word processing programs, for example, have no 
use for floating-point numbers. These programs aren't slowed down by 
floating-point subroutines, or sped up by the presence of an 87 coprocessor. 
Even programs that do perform floating point don't all take advantage of an 
87. For example, BASIC ignores any 87 that might be present; 1-2-3, on 
the other hand, uses the 87 whenever it would help. 

Unlike the integer formats that we discussed before, and unlike the PC 
character set that we'll explore in Chapter 4, there aren't universal stan
dards for what kinds of longer integers and floating-point numbers might be 
used by a program. We can't come up with a short summary of all of the 
extended number formats, but we can take a look at the most common 
ones. 

First, let's look at longer integers. Our programs could work with any 
number of bytes to make a long integer, but one size is by far the most 
common-four-byte signed integers. These numbers can range to slightly 
over plus or minus two billion. The 87s are designed to work with four-byte 
integers and eight-byte integers as well; they get as large as nine billion 
billion. The 87s can also work with a special decimal integer format that 
holds 18 decimal digits, which is also in the billion billion range. This 
special decimal format that the 87s use is a unique example of a decimal 
orientation; everything else that our computers do is essentially binary in 
nature and not decimal. 

Next, let's look at what floating point can do for us. The two most 
common sizes of floating-point numbers occupy four or eight bytes of 
storage, like BASIC's single and double precision formats. Four-byte float
ing-point formats give us the equivalent of about six decimal digits of 
accuracy, and eight-byte formats give us about 16 digits of accuracy. The 
range-how large numbers can get-is in the neighborhood of 10 to the 
38th power. Because there are several different ways to code a float
ing-point number, there is some variety in the amount of precision and 
range that we can get in the same general size of floating-point numbers, so 
the figures that I've given you here are only rough ones. The 87s can also 
work with a slightly larger format that occupies ten bytes; it gives about 18 
digits of accuracy. 

The kind of numbers that we can work with depends on the kind of 
program that we are using. What we've described here applies to most 

36 



3.5 STRINGING ALONG 

programming languages, but specialty programs may have their own unique 
number formats. For example, it's common for spreadsheet programs to 
use their own variations on the idea of floating-point numbers. But what 
we've talked about here gives you a clear idea of the kinds of hot numbers 
that can be at our disposal when we work with our computers. 

3.5 Stringing Along 

Character or text data-letters of the alphabet and so forth-are very 
important in our use of the computer. In fact, our computers are used more 
for working with text data than with numeric data, which is ironic because 
computers are first and foremost fancy calculators. But we've learned how 
to make these fancy calculators do lots of useful work for us in manipulat
ing written text, like the very words you are reading (which of course have 
been handled by a computer from the moment they were written). It's 
important to understand some of the fundamentals of how computers handle 
text data. 

Text data is made up of individual characters, like the letter A. As we 
saw earlier in this chapter, each letter is represented by a particular pattern 
of bits and occupies a byte of storage. The ASCII coding scheme is used to 
define the standard way, common to most computers, of determining which 
pattern of bits represents which letter. In Chapter 4, we'll take a more 
detailed look at all of the individual characters that our pes can work with. 
What we want to talk about now is how we work with more than one 
character at a time. 

By themselves characters aren't of a great deal to use, until we put 
them together to form words and sentences. Similarly, inside our com
puter's groups of character bytes are more significant than individual bytes 
by themselves. There is a technical term in computing used to describe a 
bunch of characters handled as a single entity, and that term is string. A 
string is a group of bytes, one right after another, that are treated as a 
combined unit. 

All of our computer's programming languages, and many of the most 
important kinds of software-such as spreadsheet programs like Lotus 
1-2-3-work with strings of character data. Word processing programs
such as WordStar, Volkswriter, Multimate, Microsoft Word-are primarily 
designed to work with character strings. Strings are a very important part of 
the computer data that we need to understand, which is why we're devoting 
this section of the book to making you aware of strings. 

37 



INSIDE THE IBM PC 

Even though strings are important there isn't a great deal to say about 
them. But there are a few key things that you ought to know, particularly 
about how they are stored and the limitations that are sometimes placed on 
what sort of string data we can use. 

Inside the computer's memory and on the computer's disks, strings are 
stored in just the way common sense would have it: the character bytes are 
recorded one right after another. That's nothing special. However, what is 
special about strings is that something has to tie them together. When we 
discussed numerical data earlier in this chapter, every kind of data had its 
own specific format that rigidly defined how big the data was, how many 
bytes it occupied. Strings, however, are special because they don't have 
any fixed length-some are long, some are short. And something has to 
define that length, to tie together the characters that make up a string. 

As it turns out, there isn't anyone, universal way that it's done. 
Different programs use their own methods and rules to define what a string 
is and what holds it together. We can't layout any universal rules that say 
exactly how strings are defined-but we can look at some of the most 
common methods, and that will give us some insight into how our pro
grams work with strings and how the limitations on strings come about. 

There are two main ways used by programs to define how big a string 
is, where its end is. One is to simply keep track of the length of the string as 
a number that's recorded separately from the string (usually this 
length-of-string number is placed just before the beginning of the string). 
Here's a hypothetical example: 

4This2is 1 a6string20fSwords 

As you can see, each word in the example is a separate string, and the 
number of character bytes in each word is recorded just before it. This is a 
very common technique for dealing with strings and determining how long 
they are. If you think about it, you'll realize that this method places an 
inherent limit on how big any individual string can be. The number that 
represents the length of the string is recorded in some numerical format, 
such as the ones we've discussed. The maximum number which that format 
allows sets a limit on how long the string can be. 

It's very common for the length of a string to be recorded as a single 
unsigned byte-which can't be larger than 255. So many programs that 
work with strings have a limit of 255 as the longest string they can work 
with. (Sometimes the limit is a few less than 255, because a byte or two 
may be needed for some overhead requirement.) The ordinary BASIC in 

38 



SOME THINGS TO TRY 

our computers works this way, so strings in BASIC can't be over 255 
characters; but compiled BASIC happens to record its string lengths as 
2-byte words, so the string length for compiled BASIC can be over 32,000. 
Many word processing programs hold each line as a separate string and use 
a I-byte string length counter; that's why so many of them have the limita
tion that a line can't be over 255 characters. 

There is another way to determine the size of a string that doesn't 
place any arbitrary limit on how long a string can be. With this technique 
the length of the string isn't recorded, but instead the end of the string is 
marked off with some sort of delimiter. Here's another hypothetical exam
ple, using asterisks as delimiters: 

This*is*a*string*of*words* 

The delimiter is used to mark the end of the string, but it's not consid
ered part of the string itself. There are two delimiters that are widely used: 
one is a O-byte, a byte with all the bits off. (As you'll see in Chapter 4, a 
O-byte isn't a bad choice of delimiter, since a O-byte is normally never used 
as an ordinary text character.) The other commonly used delimiter is a byte 
with a numeric code of 13. Thirteen is the code for a carriage-return charac
ter, which is normally used to mark the end of a line of text. Since it's 
common to treat each line of text as a separate string, it makes sense to use 
the same byte code to mean both end-of-line and end-of-string. (We'll learn 
more about this when we cover text file formats in Chapter 9.) 

There is one obvious disadvantage to using a special end-of-string 
delimiter code-it means that the string can't include that code value inside 
the string. This may not be a major problem in most circumstances, but still 
it is a disadvantage and a limitation that we need to be aware of. 

Some Things to Try 

1. 	 BASIC can easily convert numbers between hex and decimal as 
long as the numbers aren't any bigger than the equivalent of four 
hex digits. Try writing a program that works with larger numbers, 
converting between hex and decimal. 

2. 	 Try your hand at some hex arithmetic. Add 1234 to ABCD. Sub
tract lA2B from AIB2. Multiply 2A by 2 and by 3. 

3. 	 Can you figure out a way to test either the accuracy or range of 
numbers that a program can handle? Try writing a BASIC pro

39 



INSIDE THE IBM PC 

gram that tests how large a number can become, or how precisely 
a number is represented. 

4. 	 Analyze the problems inherent in the two ways of defining a 
string. Think of practical situations where the limitations might 
matter. Can you think of a scheme that would place no limit on 
the length or contents of a string? Are there any disadvantages to 
your scheme? Write a program in BASIC (or any other program
mable software, such as 1-2-3) that finds out how long a string 
can be by increasing a string character by character. 

40 



4 
The PC Character Set 

I n Chapter 3, we took an overall look at the form data takes inside 
our PCs, and what different kinds of data we can have. But we only 
looked briefly at the PC's character set. That was because there is so 
much that's interesting to know about the PC character set that 

we've set aside this chapter to take a deeper look at these characters. We'll 
get an overview of the whole character set, see how the PC's characters 
relate to a widespread standard known as ASCII, and we'll particularly dig 
into and analyze the PC's full set of special characters. 

4.1 A Character Set Overview 

Characters in the PC, as in most modern computers, occupy an 8-bit 
byte, so that there can be as many as 2 to the eighth power, or 256, distinct 
characters. We begin by looking at them all (see Figure 4-1). 

There are two easy ways for you to see all the characters on the screen 
of your own computer. One is to use the simple BASIC program called 
ALL-CHAR found in Appendix A; this ALL-CHAR program was used to 
create Figure 4-1. The other way is to use the popular program called 
Sidekick. One of Sidekick's many features is a quick and handy display of 
the PC's full character set. When you use ALL-CHAR, or Sidekick, you'll 
see the PC character set in exactly the way your computer's screen shows 
them, which can vary somewhat depending on the type of display screen 
you have (we'Bleam more about that when we come to the chapters on the 
video display). Figure 4-1 shows the characters in more-or -less their ideal 
form (as printed by IBM's Quietwriter printer) and gives you a quick and 
accurate way of seeing just what each character is like for close comparison 
to all the other characters. 

For reference, we need another chart of the PC character set that 
shows each character's appearance together with the numeric character 
codes in decimal and hex. You'll find that in Figure 4-2. We'll be refer
ring to this figure a lot through the rest of this chapter. If you want to see 

41 



INSIDE THE IBM PC 

the information from Figure 4-2 on your own computer's screen, you can 
use either the REF-CHAR program that's listed in Appendix A or the 
Sidekick program. 

Figure 4-2 lists each of the 256 characters and their decimal character 
codes, followed by the same code in hex (it's the same code because the 
two codes have the same numerical value, they're just being expressed two 
different ways) followed by a picture of what the character looks like. As 
you'll notice, Figures 4-1 and 4-2 are laid out in the same order, in columns 
reading top to bottom, so it'll be easy to match them up for comparison 
whenever you want to. 

Surprisingly, there is an awful lot to say about these characters, 
because they are designed to do so many things and because some of them 
take on a different quality, depending upon how they are being used. We 
will discuss that in this chapter. We'll begin with a quick overview. 

If you glance at Figure 4-1, you'll see that it begins with two columns 
of very curious characters (the first 32 characters, with decimal codes 0 
through 31) followed by six columns of the characters we're most familiar 
with: the digits 0-9, the letters of the alphabet in upper- and lowercase, and 
a lot of punctuation characters. These eight columns are the first half of the 
PC's character set, and they are called the ASCII characters, because they 
follow a widespread standard that is used in most computers called 
ASCII-the American Standard Code for Information Interchange. 

~ a @ p p C E a L JL a 
.L@ ... 1 A Q a q U 	 CE i ~ ± 

@) ~ 2 B R b r e 	 IE 6 ~ T r ~ 

• " 
!! # 3 C S c s a 6 	 u 1 1I Tt s

• 1l $ 4 D T d t a 0 Ii - b E 
+ § % 5 E U e u a 0 N F 0 f .. & 6 F V f v a 0 Q ~ 1-1. .....r i ::::• 	 1 7 G W g w <;;: U Q 11 "t 

y 4} 0a t 8 H X h x e l 
a ~ 9 I Y i Y e 0 ... ~ e 
~ ~ J Z j z e ij ., H Q ~ 

1r! +- + 
* 

K [ k { Y 	 ¢ '2 II 0 .j 
~ < L \ 1 I i 	 £ ! 

4 ~ ~ r 00 nI 
.11 2Jl ~ = M ] m } i 	 ¥ = <P 

J.l ... > n A 	 Pts « d JL e: •N 	 I 
~ ... / ? 0 0 a A f » , ~ • n 

Figure 4-1. The full PC character set. 

42 



4.2 THE ORDINARY ASCII CHARACTERS 

ASCII proper has only 128 characters in it, the characters with decimal 
codes 0-127. Our PC character set has twice as many entries, including the 
codes that go from 128 through 255. These higher codes, which make up 
the other half of the PC character set, are usually called the extended ASCII 
characters. Strictly speaking, only the fIrst half, the codes 0-127, are ASCII 
characters, but you'll often fInd people using the term ASCII to mean just 
any character or to mean the coding scheme that defInes how characters are 
represented in patterns of bits. There's no harm in that, but you ought to be 
aware that, depending on how it's used, the term ASCII can have a precise 
technical meaning or a broader meaning. 

The ASCII half of our character set has an official meaning and defmition 
that ranges far beyond our PC family-it's a universal code used by many 
computers and other electronic equipment as well. The extended ASCII char
acters, however, are another story. There is no universal convention for what 
these character codes 128-255 will be used for, and these characters were 
specially designed for the PC. Because of the importance and popularity of the 
PC, these particular extended ASCII characters have been used not only by the 
entire PC family, but have also been adopted into the character set of many 
computers that are only very distant relatives of the PC. 

This particular group of characters is on its way to becoming something 
of an unofficial standard; but it's only that, unofficial. Because of that, you'll 
find that there are many computers and lots of computer equipment-particu
larly printers-that know nothing about our PC's extended ASCII characters. 
In fact, one of the reasons why some of the illustrations for this book have 
been prepared using the IBM Quietwriter is that it is one of the few printers 
that can display almost the entire PC character set; that's something you'll 
want to keep in mind. After all, one of the main reasons why we're poring 
over the PC character set in detail is so you will know how to use this rich 
collection to your full advantage-and that includes knowing that some parts 
of the character set can't be used as easily and as widely as other parts. 

Now it's time for us to dig into the details of our PC's character set. 
We'll do it in three parts-two covering the ASCn characters (fIrst the 
most ordinary ASCII characters and then some special ASCII control char
acters), and finally a section discussing the extended ASCII characters and 
some other unique characteristics of the PC character set. 

4.2 The Ordinary ASCII Characters 

The ASCn character set, character codes 0-127, breaks into two very 
different parts that can be readily seen by a glance at Figures 4-1 and 4-2. 

43 



-t z 
Vl 

8 
tTl ..., 
::t 
tTl-o 00 16 10 • 32 20 48 30 0 64 40 @ 80 50 P 96 60 112 70 p 1:0 
~ 

1 01 e 
2 02 • 

17 
18 

11 
12 

... 
¢ 

33 21 
34 22 " 

49 
50 

31 
32 

1 
2 

65 
66 

41 A 
42 B 

81 
82 

51 Q 
52 R 

97 
98 

61 
62 

a 
b 

113 71 
114 72 

q 
r 

f5 
3 03 • 19 13 !! 35 23 II 51 33 3 67 43 C 83 53 S 99 63 c 115 73 s 
4 04 • 20 14 '1 36 24 $ 52 34 4 68 44 D 84 54 T 100 64 d 116 74 t 
5 05 ... 
6 06 • 

21 
22 

15 
16 

§ 
_ 

37 
38 

25 % 
26 & 

53 
54 

35 5 
36 6 

69 
70 

A5 
46 

E 
F 

85 
86 

55 U 
56 V 

101 65 
102 66 

e 
f 

117 75 
118 76 

u 
v 

7 07 • 23 17 ~ 39 27 ' 55 37 7 71 47 G 87 57 W 103 67 g 119 77 w 
8 08 a 24 18 l' 40 28 ( 56 38 8 72 48 H 88 58 X 104 68 h 120 78 x 
9 09 0 25 19 -l 41 29 ) 57 39 9 73 49 I 89 59 Y 105 69 i 121 79 Y 

10 OA ttl 26 1A ~ 42 2A 1c 58 3A : 74 4A J 90 SA Z 106 6A j 122 7A z 
11 DB d 27 1B ~ 43 2B + 59 3B ; 75 4B K 91 5B [ 107 6B k 123 7B { 
12 DC ~ 28 1C ~ 44 2C , 60 3C < 76 4C L 92 5C \ 108 6C 1 124 7C : 
13 OD J'l 29 1D e 45 2D - 61 3D = 77 4D M 93 5D ] 109 6D m 125 7D } 
14 DE Jl 30 IE ... 46 2E • 62 3E > 78 4E N 94 5E l10 6E n 126 7E 
15 OF ~ 31 IF ... 47 2F / 63 3F ? 79 4F 0 95 SF l11 6F 0 127 7F 0 

Figure 4-2. The PC character set with decimal and hex codes. 



128 80 C 144 90 E 160 AO a 176 BO ~~ 192 CO L 208 DO lL 224 EO a 240 FO 
129 81 ti 145 91 a! 161 Al i 177 B1 H 193 C1 J. 209 D1 ;: 225 E1 a 241 F1 ± 
130 82 e 146 92 Ji.. 162 A26 178 B2 §~ 194 C2 1 210 D2 II 226 E2 r 242 F2 ~ 

131 83 a 147 93 0 163 A3 11 211 D3 227 E3 1T 243 F3 ~ 
179 B3 i 195 C3 

132 84 a 148 94 0 164 A4 fi 180 B4 196 C4 - 212 D4 b 228 E4 E 244 F4 J 
133 85 a 149 95 0 165 A5 N 181 B5 213 D5 F 229 E5 a 245 F5197 cs ~ 134 86 a 150 96 U 166 A6 ~ 182 B6 ~ 198 C6 214 D6 H 230 E6 IJ 246 F6 
135 87 ~ 151 97 U 167 A7 Q 183 B7 11 199 C7 ~ 215 D7 231 E7 -c 247 F7 :::. 
136 88 e 152 98 Y 168 A8 l. 200 C8 216 D8 t 232 E8 ~ 248 F8 0184 B8 ~ 

r- N 

138 8A e 154 9A ti 170 AA .. 250 FA >-l 
137 89 e 153 99 0 169 A9 185 B9 1 201 C9 H 217 D9 233 E9 e 249 F9 ""'" 

186 BA 202 CA - 218 DA. 234 EA Q ::r: 
tIl139 8B :.: 155 9B ¢ 171 AB ~ 187 BB D 203 CB ¥ 219 DB 235 EB 0 251 FB ./ 
:;:Q140 8C i 156 9C £ 172 AC ! 188 BC 204 CC r 220 DC ~ 236 EC ~ 252 FC n 
0 

141 8D i 157 9D ¥ 173 AD 189 BD JJ 205 CD = 221 DD 237 ED ~ 253 FD 2 
0 
Z 
;I>142 8E A 158 9E Pts 174 AE « 190 BE ~ 206 CE uJL 222 DE 238 EE 8 254 FE • :;:Q 

143 8F A 159 9F J 175 AF » 191 BF 1 207 CF ::!: 223 DF 239 EF n 255 FF -< 
;I> 
CIl 
n--n::r: 
;I> 
:;:Q 
;I> 
n 
>-l 
tIl~ :;:QVI Figure 4·2. The PC character set with decimal and hex codes (continned). CIl 



INSIDE THE IBM PC 

The first part, which we'll discuss separately in Section 4.3, are the first 32 
characters, codes 0-31. These are called the ASCII control characters and 
they are something quite different from what they appear to be in Figures 
4-1 and 4-2. We'll come back to them after we've talked about the more 
conventional characters, codes 32-127. 

If you look at the third through eighth columns of Figures 4-1 and 4-2, 
you'll see what we usually think about when we think of characters: they 
are the everyday letters of the alphabet, digits, and punctuation. Although it 
might seem that there's little to discuss in these ordinary characters, there 
are actually quite a few subtle details that we ought to run through, if you 
really want to understand the ins and outs and tricks of these characters. 

It seems all too obvious to point out that there are separate characters 
for upper- and lowercase, that A isn't the same thing as a, but there is 
something here you shouldn't miss. Whenever you're using any program 
that arranges data into alphabetical order (sorts data) or that searches for 
data, this will matter, unless the program takes special pains to treat upper
and lowercase the same (some programs do, some don't, and some let us 
choose). This means that a search for the letter a may not match the letter 
A; and it means that, in alphabetical order, a comes after A and after Z as 
well. We also should note that the number-digits come before the alphabet. 

The next thing we need to consider are the punctuation and other 
special symbols. There are lots of little points to see about these characters. 
One thing to note is that they are scattered all around the digits and upper
and lowercase letters: before, after, and in between. This means that the 
punctuation characters as a group won't sort into anyone place relative to 
the alphabet and digits. Some will come before, some after; sometimes 
that's important to know. There are some interesting and useful details 
about these punctuation characters that you need to know. 

The blank-space character has a decimal character code of 32-the 
lowest of all the punctuation characters, so it appears at the beginning of 
any alphabetic sort. (In the character charts in Figures 4-1 and 4-2 you'll 
see three different characters that appear to be a blank space-see the 
sidebar Spaces and Nulls for more about that.) You'll notice that besides 
parentheses ( ), there are also two other pairs of characters that can be used 
to enclose things: the brackets [] and the braces {}; people also use the 
greater-than and less-than characters, <>, as a way of enclosing things, like 
(this}. It's good to know about all four of these embracing pairs, because 
they can come in handy at times. 

Let's consider quotes. In the type styles used in a book you'll find that 
there are left and right quote marks, but ordinary typewriters don't have 
them; neither does our PC character set. Our PC set has only one dou

46 



4.2 THE ORDINARY ASCII CHARACTERS 

ble-quote mark and one single-quote mark that are used on both the left and 
the right hand side of a quotation. But there is also a curious character 
known as a reverse-quote-it's the one just before the lowercase a, with a 
decimal character code of 96. But you shouldn't think of it as something to 
be paired with the ordinary single-quote character. It's used to produce 
foreign (that is, non-English) characters. It's used in combination with 
letters of the alphabet to form a letter with a diacritical mark. There are 
several other characters that are used this way: the carat, ~,code 94; the 
tilde, -, code 126; the single-quote, " code 39; and the comma, code 44. 
This idea of combining characters only works when you can overstrike one 
character on top of another-which you can do on a computer printer or on 
a typewriter, but not on the computer's display screen. To properly handle 
these non-English characters of the alphabet the PC has them incorporated 
into the extended ASCII characters, as you'll see by a glance at the latter 
half of the character tables. We'll talk more about them in Section 4.4. 

There are other characters that call for a brief mention. Besides the 
regular slash character, /, code 47, there is a reverse slash, \, code 92. As 
far as I know this has no ordinary use, but only some special uses in 
computing. For example, in the BASIC programming language it indicates 
whole-number division (the slash indicates regular division, which includes 
a fractional result) and when working with DOS, it indicates directory paths 
(which we'll be discussing in a later chapter). Also take care not to confuse 
the hyphen character, -, code 45, with the underscore character, _, code 95. 
Finally, the carat character, ~,code 94, is sometimes used to indicate 
special "control characters" (which we'll cover in Section 4.3) rather than 
being an independent character in itself. This can cause confusion so when 
you see a carat, check carefully to see if it indicates the carat character is 
meant or these special control characters. 

TECHNICAL BACKGROUND I I I ••• _________ 

Spaces and Nulls 

In the character tables in Figures 4-1 and 4-2 you'll find three or four 
characters that appear to be blank. Only one of them actually is the 
proper blank character-the one with character code 32. Character 
codes 0 and 255 are called "nulls" or null characters. They aren't 
supposed to be treated as true characters at all, but as inactive 
nothings. For example, if we send code 32 (the true space character) 
to a computer printer, it prints a space and moves on to the next 
location. But the null characters are supposed to be ignored, so that a 
printer won't move to the next location, leaving a blank space. 

47 



INSIDE THE IBM PC 

In the proper ASCII character set, there are two nulls---codes 0 and 
127. In our PC character set, code 127 is a real, visible character 
with an appearance something like a little house. To substitute for the 
ASCII null-127, our PC character set treats code 255 as a null. 

Null characters don't have any everyday use-they are mostly used 
in communications, to mark time: transmitting nulls is a way of 
keeping a line active while not actually sending any real data. 

4.3 The ASCII Control Characters 

The first 32 places in the ASCII character set, codes 0 through 31, 
have a very special use that has nothing to do with the appearance of these 
characters as they look in Figures 4-1 and 4-2. For the moment, ignore 
what appears in those two illustrations, because in this section we'll be 
looking at these characters from an entirely different perspective. 

When a computer "talks" to a printer, it needs to tell the printer what 
to print and also how to print it-it has to indicate, for example, where the 
ends of the lines are, and when to skip to the top of a new page. The 
ordinary ASCII characters, which we discussed in Section 4.2, are the 
"what to print" part of the ASCII character set. The "how to print it" part 
is the subject of this section-the ASCII control characters. 

The first 32 codes in the ASCII character set are reserved to pass 
special information to a printer, or to another computer through a telephone 
line, and so forth. These codes aren't used to pass information or data 
itself, but to provide action commands, formatting signals, and communi
cation control codes. There is a wide variety of different things that these 
32 codes are used for, and the uses can vary in different circumstances. 
We'll cover the main items here, to give you a broad perspective on what 
these characters are for. 

First off, I need to tell you that these 32 codes have special names 
when they are used (as we're discussing here) as ASCII control characters, 
and not as the pretty picture characters that you see in Figures 4-1 and 4-2. 
Table 4-1 gives you a summary of these codes, and the names that they 
have. 

Before we go into any explanations of the details of these control 
characters, there are a few things about Table 4-1 that should be mentioned. 
The first two columns of Table 4-1 are, of course, the numeric character 
codes in decimal and in hex. The third column shows some special control 
key codes that are used in connection with these characters. Each of these 

48 



4.3 THE ASCII CONTROL CHARACTERS 

characters can be keyed in directly on our keyboards by simply holding 
down the "etrl" control shift key and pressing A (for code 1) or B (for 
code 2) and so on. There is a conventional way of indicating these con
trol-shift codes, by writing a carat, A, before the name of the key we press, 
and that's what is shown in the third column of this table. When we write 

A )A we don't mean the carat character ( A followed by the character A

49 



INSIDE THE IBM PC 

we mean Control-A-the character that is keyed in on the keyboard by 
holding down the control key and pressing the A key. 

It's worth remembering that this "carat notation" is used quite often. 
In your reading you might run across Z or C, which we know mean A A 

Control-Z or Control-C: two special codes that have a real meaning to the 
PC, as we'll see shortly. 

In the last column of Table 4-1 is a descriptive name for each of these 
32 special codes, and in the fourth column just before the description you'll 
find a two- or three-letter code, which is a standard abbreviation for the full 
descriptive name of the control code character. You'll find these short 
codes sometimes used in writing about computers and communications. 

Some of these ASCII control characters are very interesting and useful 
to us, and others are rather obscure and technical in their use. Instead of 
discussing them from first to last, let me cover them in a way that's closer 
to how important they are to us. 

First let's talk about the ones that are on our keyboard. As we men
tioned, any of these characters can be keyed in with a Control-and-key 
combination. But some of these characters actually have regular keys dedi
cated to them so that we don't have to use the control combination for 
them. These are characters that are definitely important to our use of the 
computer. There are four of them: backspace (BS, code 8), tab (HT, 9), the 
Enter key or carriage return (CR, 13), and the escape key (ESC, 27). 
(Don't think that the Del key on your keyboard keys in the ASCII DEL, 16, 
code: it doesn't.) 

A whole group of these control codes is used to indicate the basic 
formatting of written material. These codes function as both logical format
ting codes (which help our programs make sense out of our data) and 
printer control codes (which tell our printers just what to do). The most 
common ones are some we've already discussed, such as backspace (BS), 
tab (HT) , and carriage return (CR). Others are line-feed (LF, code 10), 
which is used in conjunction with carriage return, form feed (FF, 12) which 
skips to a new page, and vertical tab (VT, 11). 

There are more characters that are of general interest and use. The bell 
character (BEL, 7) sounds a warning bell or beep. If we send this character 
to a printer or to our computer's display screen, we'll get an audible signal 
as a result. The Control-C character (ETX, 3) is also known as the break 
character, and keying Control-C on the keyboard usually has the same 
effect as pressing the BREAK key. The Control-S and Control-Q characters 
(DC3, 19 and DC1, 17) can often be used as a pause command and a restart 
command, particularly when we're working with a communications service 
(such as The Source, CompuServe, or MCI Mail)--it can be handy to know 

50 



4.3 THE ASCII CONTROL CHARACTERS 

about them. The Control-S "pause" command is not, however, the same as 
the PAUSE key on our computer (which we'll learn more about in Chapter 
14). (If you don't find the PAUSE key on your keyboard, that's because it's 
not marked, but it's there; it's Control-NumLock, just as BREAK is Con
trol-ScrollLock.) The PAUSE key actually stops our computer, while this 
Control-S "pause" command just asks the program we're working with to 
pause (but our PC computer keeps right on working). 

Then there is the Control-Z key combination (SUB, 26). This control 
code is used to mark the end of text files stored on our computer's disks. 
We'll learn more about this code, and the carriage return and line feed 
codes in Chapter 9, when we discuss file formats. 

Those are the ASCII control characters that are of the widest interest. 
We'll finish this section with an overview of some of the more techni
cally-oriented control characters. You can skip over the following 
paragraphs if you're not interested. 

TECHNICAL BACKGROUND I I I •• • _________ 

The rest of the ASCII control characters are used for a variety of 
purposes that assist in communications, data formatting, and the control of 
printers (and other devices). We can't really cover this topic exhaustively 
here, but we can give you an idea of what some of the details are like. 

Codes 1-4 (SOH, STX, ETX, EOT) are used in communications trans
missions to indicate the boundaries of header (descriptive) information and 
actual text data and the end of an entire transmission. Those codes are 
oriented particularly to text data. Other codes, such as 28-31 (FS, GS, RS, 
US) are used as punctuation marks in other forms of data, to mark the 
boundaries of files-"groups , " records, and "units"-which take on dif
ferent meanings depending upon the type of data that is being transmitted. 

Other codes are used for the control of communications-for example, 
acknowledge (ACK, 6) and negative-acknowledge (NAK, 21) are used to 
indicate if data is passing successfully. ENQ, SYN, ETB, CAN, and other 
codes are also used in the control of communications (which is much too 
deep and specialized a subject for us to get into here). At least you might 
want to know what these control codes are used for in general. 

A number of our ASCII control codes are used to control printers and 
other devices. Although the exact control codes vary widely from printer to 
printer, there are some commonly used codes which are worth mentioning. 
The shift-out and shift-in codes (SO, 14 and SI, 15) are commonly used to 
instruct a printer to print double-wide or compressed-width characters. The 

51 



INSIDE THE IBM PC 

four device control codes, DCI-4, 17-20) are set aside for uses such as 
controlling printers, and many printers use them for such commands as 
turning off double-width printing. 

However, because most printers have more formatting and control 
commands than there are ASCII control characters available, it is normal 
for the escape character (ESC, 27) to be used as a catch-all command 
prefix. When a printer receives an escape character from our computers, it 
knows that a special command follows, and instead of printing the next few 
characters, the printer interprets them as a control command; for example, a 
command to set the location of the tab stops, or a command to tum on 
underscoring of all the characters that follow. 

If you want to learn more about these control characters, see Commu
nications and Networking with the IBM PC (Brady Communications, 
1983). For details of printer control codes, you'll need to tum to the refer
ence manual that comes with the printer you are interested in. 

4.4 A Cast of Odd Characters 

Now it's time for us to look at all of the PC's special characters
that's the entire second half of the character set: the extended ASCII charac
ters with character codes 128 through 255, plus the PC-specific character 
pictures for the first 32 ASCII characters. We'll be discussing them in 
groups, pausing to make comments and point out interesting highlights as 
they appear. 

Before we proceed, I need to discuss again a major source of confu
sion, the first 32 characters, codes 0-31. There are two completely different 
ways of viewing these characters. We discussed one way in Section 4.3
interpreting them as ASCII control characters. When these characters are 
interpreted as ASCII control characters, they do not have any appearance. 
There is no picture of them-because they are not characters that look like 
something (the wayan A looks like an A), they are basically commands. 
That's the interpretation of these characters which we discussed in Section 
4.3. In this section, we'll be looking at the other interpretation of these 
character codes: as characters, like any other, that have an appearance (an 
appearance shown in Figures 4-1 and 4-2). 

What determines whether the same character code is interpreted as an 
ASCII control command or as one of these visible characters? Basically it all 
depends on how the code is used. In most circumstances these codes are treated 

52 



4.4 A CAST OF ODD CHARACTERS 

as ASCII control characters. But if we manage-byone means or another-to 
get them to appear on our PC's display screen, then they take on their other 
interpretation, which is as part of the PC's very special character set. 

If you look at the pictures of the first 32 characters (in Figures 4-1 and 
4-2) you'll see that they form a fascinating hodge-podge of graphic charac
ters that can be used for a variety of purposes, none of them really essen
tial. Since the use of these character codes is relatively restricted (they are 
usually interpreted as control characters, and so won't be shown as we see 
them in Figure 4-1), IBM decided to put the most important special charac
ters into the extended ASCII area, and use this section of characters for 
some of the more amusing and dispensable characters. 

Nevertheless, you will find some worthwhile and useful characters 
here, such as the card-suit group (codes 3-6), the paragraph and section 
marks (codes 20 and 21), the arrow group (16-31) and the "have a nice 
day" group (1 and 2). There are real uses for these characters, but they are 
mostly frivolous. It's nice that something as serious as the IBM Personal 
Computer family has a frivolous element to it. 

When we move on to the extended ASCII characters, codes 128-255, 
we find more serious special characters. They are organized into three main 
groups: the foreign characters, the drawing characters, and the scientific 
characters. 

The foreign characters use codes 128 through 175, and they include 
essentially everything that is needed to accommodate all of the major Euro
pean languages other than English. (ASCII, as the American Standard Code, is 
oriented to the needs of the English language and American punctuation 
symbols.) 

There are three main subparts to this foreign character group. One part, 
using codes 128-154 and 160-167, provides the special alphabetic characters 
(with diacritical marks) that are used in various European languages. We 
mentioned earlier that the regular ASCII character set contains most (but not 
all) of the diacritical marks needed for European languages. They can only be 
used, as on a printer, when you can backspace and overstrike them onto letters 
of the alphabet. That doesn't work on the PC's display screen. These Euro
pean characters solve that problem in an attractive way. 

The second part of the European set provides currency symbols: the 
cent sign (code 155), the pound sign (156), the Japanese Yen (157), the 
Spanish peseta (158), and the franc (159). (The dollar sign (36) is part of 
the regular ASCII set.) 

The third part of the European set provides some special punctuation: 
Spanish inverted question marks and exclamation point (codes 168 and 
173) and French-style quotation marks (codes 174 and 175). These French 

53 



INSIDE THE IBM PC 

quotes are worth noting, for they can be used for many graphic purposes as 
well as for their intended use. 

Buried among the European characters are four symbols that have 
general use: the Yz and IJ4 symbols (codes 171 and 172) and two angle marks 
(169 and 170). Look them up in case you might have any use for them. 

The next major section of the extended ASCII characters are the draw
ing or graphics characters. These are characters that are designed to make it 
possible for our programs to produce drawings just using the PC's character 
set. There are three subgroups of drawing characters. 

The most interesting and most widely-used part of the drawing characters 
are what I call the box-drawing characters. These characters allow us to draw 
precise rectangular outlines--boxes-on the computer's display screen. These 
box-drawing characters are sophisticated enough to allow us to draw vertical 
and horizontal dividing lines within an outline, and they allow us to draw with 
either single or double lines. There are actually four sets of characters for box 
drawing: a set for double lines, another for single lines, and then two mixed 
sets, for double-horizontal single-vertical lines, and vice versa. Figure 4-3 
illustrates all four sets and shows the character codes that are used as well. If 
you want to see the boxes in action on the screen of your computer, the 
program called BOXES, listed in Appendix A, reproduces Figure 4-3. 

Practically every important and impressive program for the PC makes 
heavy use of these box-drawing characters, because they look so good on 
the computer's display screen. That's why I've taken the trouble to produce 
Figure 4-3 and the program that draws it, to make it as easy as possible to 
look up the codes for these box-drawing characters and use them in your 
own work. 

The next group of drawing characters is used to provide shaded areas 
of varying degrees of "solidness." Code 176 is ¥4 dense, filling the entire 
character space (so that two next to each other blend together); code 177 is 
Yz dense; code 178 is %dense; and code 219 is completely solid. Together 
with the blank character, they provide a range of four or five "shades of 
grey" that can be used either to fill an area on the screen or to produce 
bar-charts of distinctly different appearance. 

The final group of drawing characters consists of codes 220-223. Each 
of them is half of the all-solid character (219) that we just mentioned. One 
is the top half, another the bottom, the right, and the left. They can be used 
to draw solid, filled-in shapes that are twice as fine-grained as could be 
drawn with the all-solid character alone. For example, they can be used to 
make bar graphs that are detailed to half a character length instead of full 
character size. 

54 



4.4 A CAST OF ODD CHARACTERS 

All 	Double Line: All Single Line:

DD
DD 

Double-Vertical: 	 Double-Horizontal: 

All 	Double Line: All Single Line: 
Ii' = if = 11 r T ,

201 205 203 205 187 	 218 196 194 196 191 
II II II 	 I I I 

186 186 186 	 179 179 179 
JL 	 ~ + ~I~ 	 = lr = ~I 

204 205 206 205 185 	 195 196 197 196 180 
II II 	 I I I 

186 186 186 	 179 179 179" l!: !! = :!J L J. J 
200 205 202 205 188 192 196 193 196 217 

= 

Double-Vertical: Double-Horizontal: 
rr IT 11 F = T = ~ 

214 196 210 196 183 	 213 205 209 205 184 
\I 	 I I I

186 186 186 	 179 179 179" 	 ="I~ # ~I ~ = + ~ 
199 196 215 196 182 198 205 216 205 181 

I I I 
186 186 186 179 179 179 

IL " JJ. " .u " b = ::!: = :I 
211 196 208 196 189 212 205 207 205 190 

Figure 4-3. The box-drawing characters. 

55 



INSIDE THE IBM PC 

There are incredibly many amazing drawings that can be produced on 
the screen of the PC using just the PC's standard characters-including all 
the drawing characters that I've mentioned and also using some of the 
regular characters as well (for example, using the lowercase 0 for the 
wheels of a train). With some imagination you can do wonders this way. 

The final part of the PC's extended ASCII special character set con
sists of the scientific character group, in codes 224-254. These include 
Greek letters commonly used in math and science, the infinity knot (code 
236), various special mathematical symbols, including two (244 and 245) 
which, when stacked together, form a large integral sign. There is even a 
square and square-root symbol (253 and 251). While these symbols don't 
cover everything that might be needed for mathematics, science, and engi
neering, they do take care of some of the greatest needs. 

Some Things to Try 

1. 	 Experiment to find out how your computer's screen and printer 
respond to the 32 ASCII control characters. Write a program in 
BASIC, or use any other handy means, to send these characters 
one-by-one to the computer's screen and printer. (Hint: if you 
precede and follow each control character by an X, you can get a 
clearer idea of what the response is to each control character.) 

2. 	 Do your computer's printer and display screen respond differently 
to the same control characters? Try to explain Why. 

3. 	 Look at the BASIC programs called ALL-CHAR and REF-CHAR 
in Appendix A that generate Figures 4-1 and 4-2 on your com
puter's screen. Find how they write the characters onto the screen. 
Why don't they use the ordinary PRINT command? 

4. 	 If a program sorts data treating upper- and lowercase letters alike 
(which is often what we want) it will either treat both as uppercase 
or both as lowercase. Does it matter which way it's done? What 
effect does that have on punctuation? 

5. 	 The design of the PC's drawing characters was limited by the 
number of character codes available. Suppose there were another 
50 or more codes available. What sort of additional drawing capa
bilities might have been added? Try to produce your own exten
sions to the PC's set of drawing characters. 

56 



5 
Hardware: 

The Parts of the pes 


I t's time to start looking at the guts of the PC family, the hardware 
parts that make up our computers. We'll be looking at the PC's 
hardware from three angles: first we'll go through a basic break
down of how the PC is organized into mechanical and electrical 

modules, each a major component of our PC. Next, we'll look at some of 
those components to see how they present us with options to assemble 
different kinds of PCs. Finally, on a more technical level, we'll look at the 
specific circuit chips that make the PC work. 

5.1 The Breakdown 

When we look at our PCs, we see three physical parts. First, there is 
the main box, called the system unit, that holds most of the computer. In 
front of it is the keyboard that we type on. And finally, there's the display 
screen, usually perched on top of the system unit. That's what the PC looks 
like from the outside. But when we dig inside the PC, we see that it's built 
around a modular design, that breaks the computer down into electronic 
components. You can see a logical diagram of these components in Figure 
5-1. 

The dotted line in Figure 5-1 represents the case that encloses the PC's 
system unit, and you'll see that just about everything is inside it. For 
portable members of the PC family, such as the Compaq and the Portable 
PC, the system unit also embraces the display screen; that only changes a 
detail of how the computer is physically built, but it doesn't change any
thing fundamental in the design. 

To learn the basics of the design of the PC and how the parts fit 
together, we're going to talk our way through Figure 5-1. To help make 
things more concrete, we'll be describing where each of the components 
that we talk about is physically located, which is the same for most of the 

57 



INSIDE THE IBM PC 

main models of the PC family. While the physical layout may vary (partic
ularly for some of the more remote relatives of the family), the logical 
organization, and the function of each of the components that we talk about 
is the same for every member of the PC family. You can also match the 
parts we'll be discussing with the actual PC shown in Figure 5-2. Better 
yet, if you take the cover off a PC's system unit, you can follow along by 
matching what we discuss with your computer's own parts. 

At the right rear of the system unit is the power supply. The power 
supply uses alternating current (AC) and converts it into the direct current 
(DC) voltages that the computer's parts need. The power unit supplies four 
different DC voltages: + 12 volts, -12 volts, +5, and -5 volts. Besides 
converting the electricity from high-voltage alternating current to 
low-voltage direct current, the power supply also grooms the power, 
smoothing out unevenness in the electricity. The capacity of the power 
supply sets a limit on how many options can be installed in the computer. 
The original PC model supplied about 65 watts of power, not really a 
generous amount. Later models have more, for example, the XT provides 
about 130 watts, and the AT about 200 watts of power. 

/' 

I Screen r--- Printer 

Memory 
------ -- ..,r  Modem 

... ~I CD 0 
E 0 I... CD Other CD ~ Video 

c E "0 (1.1"0I 'I: CD 0 options Ic11. ~ :> Disk~I I 

I I I I I I I I
I I

Option Slots
I I 

PowerI ISystem
I Board I 

DisksI I 

L -~-- -- -- - -' 


I Keyboard 

Figure 5-1. Components of the PC, 

58 



5.1 THE BREAKDOWN 

The first and primary part of a PC is the system board. This is a large 
printed circuit board that holds most of the main electronic parts, the key 
silicon chips that make the PC go. These include the computer's micropro
cessor and also the supporting chips that the microprocessor needs to help it 
perform its tasks, such as the "clock" chip that acts as a metronome setting 
the pace of work for the whole computer. Also on the system board is the 
computer's basic complement of working memory and the special read-only 
memory chips that hold the computer's complement of built-in programs. 
The system board is also sometimes called the mother board-you'll find 
both terms used. 

The system board is the largest single electronic component of the 
whole computer and by far the largest of all the printed circuit boards in the 
machine. It fills practically the whole bottom of the system unit box. The 
space above the system board is where all the other components inside the 
system unit are placed. 

If you pick up a PC system unit, you'll discover that it's heaviest at the 
right rear comer, where the power supply is. That's because the power 
supply includes a heavy transformer, which is used to lower the voltage 
level. In the PCjr, the transformer part of the power supply is in a separate 

Figure 5-2. Inside the system unit. 

59 



INSIDE THE IBM PC 

external case; this reduces the weight of the jr's system unit and ensures 
that there's only low voltage inside it. 

Besides supplying converted power to the rest of the computer's com
ponents, the power supply also provides an external power socket that we 
can plug a display screen into, and it contains a fan that provides a cooling 
air flow for all the parts inside the system unit. 

At the right front of the system unit are the disk drives, nestled next to 
the power supply. Different members of the PC family feature different 
sizes and types of disk storage drives, as we'll see in Section 5.2 where we 
discuss various options in the PC. Part of the reason why the disk drives are 
placed here, in the right front comer, is to provide a short, easy connection 
to the power supply. The disk drives are the only mechanical part inside the 
system unit. They use more power than most of the electronic parts so they 
have their own direct connections to the power supply. All of the other 
components inside the system unit get their power indirectly from the 
power supply, passed through the system board. 

The power supply and the disk drives take up the righthand side of the 
computer. The lefthand side, over the system board, is set aside for a 
number of optional parts known as option boards. These plug into a row of 
sockets at the left rear of the system board. The sockets are called option 
slots, or bus connectors, and they represent one of the most important 
things about the PC, its open design. 

The designers of the PC had to allow a way to connect various optional 
parts such as printers, telephone modems, and so forth. They could have 
made special-purpose connections for each option, but if they had, they 
would have reduced the flexibility of the PC and restricted the variety of 
things that we can add to our PCs. That would have made the PC something 
of a closed system, with only predefined possibilities. Instead, the connec
tions inside the PC-like many aspects of the PC's overall design-are 
"open," meaning that their use isn't defined and limited in advance. What 
makes this possible is an engineering concept known as a bus, and it's 
important enough to discuss here. 

The various silicon chips and other parts of the computer have to be 
connected to one another so that they can pass signals back and forth, or 
"talk" to each other. If the connections are made with individual wires, going 
from part to part as needed, then only those parts that have been wired to each 
other can communicate. There is another way to make these connections, that 
allows any part-particularly new parts that are added to the computer-to talk 
to any other part. This is done by setting up a common communication chan
nel, a set of wires that act as a common carrier for signals passing from any 
part to any other. It's called a bus since all the signals ride on it. 

60 



5.1 THE BREAKDOWN 

The sockets at the back of the PC's system board are connected to all 
the lines of the PC's bus, so that anything we plug into these option slots 
can talk to every part of the PC that uses the bus, including the memory and 
the microprocessor. These option slots, or bus connectors, give us a way to 
plug in optional, additional equipment freely. This allows us to plug in 
practically any combination of equipment we want, plugging them in wher
ever we want. (You need to know that, for obscure technical reasons, some 
option boards work best in particular slots; in theory, all slots are equally 
good connections to the bus.) For some technical information on the bus, 
see the sidebar What's in a Bus. 

TECHNICAL BACKGROUND I I I •• • __________ 

What's in a Bus 

The bus used by the PC has a total of 62 separate lines, or wires, to 
it. They are identified by the codes Al through A31 and Bl through 
B31; the numbering scheme corresponds to the physical layout of the 
lines on the option boards: the A side is on the right, the B on left, 
with the numbers running from back to front. 

There is quite a variety of signals that are passed in all these lines. 
Five of them are used to pass the four different power voltages, with 
one voltage duplicated. Another three are used as ground lines to be 
used along with the power lines. 

Eight of the lines are used to pass the eight bits of data in a byte, so 
that the PC bus can transfer data a byte at a time. Twenty of the 
lines are used for addressing, to indicate what part of the computer is 
being talked to. The addressing is used two ways: one is as a 
memory address and the other is as an 110 port address (which we'll 
discuss in Chapter 6). Whichever mode is being used, the address is 
signaled on these lines, while data passes on the eight data lines. 

The remaining lines of the PC bus are used for a variety of control 
purposes. One indicates whether the bus is busy or free for use. 
Another set of lines handles interrupt requests, which are basically 
hardware signals indicating that one part of the computer or another 
needs attention. A pair of these interrupt lines, for example, are set 
aside to indicate activity on the first and second serial ports, known 
as COMI and COM2. 

The AT bus uses the standard PC bus and adds another 36 lines. The 
physical and electrical layout of the AT bus is designed to be 
compatible with the PC bus, so that the AT-class of machines can 
use as many PC option boards as possible. The 36 new lines are 
numbered C 1 through C 18 and D 1 through D 18, similar to the PC 

61 



INSIDE THE IBM PC 

bus numbers. These extra lines provide more of what we've already 
seen: eight more data lines (since the AT has a 16-bit data path, over 
the PC's 8-bit data path), eight more address lines to extend the 
range of addressing, and five more interrupt request lines. 

As you might imagine, there are many more technical details of the 
buses than we've covered here, but we've seen the essential parts. 

Among the various models of PC there are some differences in the 
number and size of the slots and also the type of bus. There are actually 
three different buses used in the PC family. The main, or PC, bus is the bus 
used in the original PC, the XT, the Compaq, and most other models. The 
AT bus is an extension of the PC bus; it contains exactly the same connec
tion lines as the PC bus plus some additional ones that are needed for the 
AT's 286 microprocessor. As an extension, the AT bus is a "superset" of 
the PC bus, and it can accommodate most option boards that were designed 
for the PC bus. 

The third bus is peculiar to the PCjr. It's equivalent to the PC bus, 
with the addition of some jr-specific features such as a sound channel. The 
physical shape of the jr bus is different, and so is its location: the jr bus 
connection is out the right side of the system unit, instead of inside as it is 
for other PC models. 

Option boards for the PC plug into the option bus connector slots and 
extend forward over the system board. The amount of space available 
inside the system unit determines how many slots there can be and how 
long each one is. The original PC had five slots, all the standard full-length 
(about l3 inches, 33 cm). The XT model increased the number of slots to 
eight, partly by squeezing them more closely together, and partly by tuck
ing another slot next to the power supply. Because the disk drive sticks out 
in the way of this slot, only half-length short option cards can be fitted into 
this slot space. Some other models, such as the Portable PC, also have 
some slots that are too short to accommodate a full-length option card. 

The next thing we come to in our logical diagram of the PC are the 
option boards, which we'll cover in Section 5.2. 

Before we look at the variety of options that can be installed in our 
computers, I want to say one more thing about our diagram in Figure 5-1 to 
help you have a concrete sense of how a PC is constructed. The diagram in 
Figure 5-1 is a logical schematic that portrays in a block diagram the main 
parts of a PC; it isn't a true picture of what a PC is physically like. But I did 
draw this diagram so that it's not too much different from the actual layout 

62 



5.2 OPTIONS AND ADAPTERS 

of a Pc. If you compare the diagram in Figure 5-1 with Figure 5-2, you'll 
easily see the correspondence between the logical parts of a PC and the 
actual physical form of a PC. 

5.2 Options and Adapters 

The option and adapter boards that can be plugged into the option slots 
in the PC allow us to create a wide variety of differently configured PCs. 
They give us great flexibility in creating just the kind of PC that we need. 
In this section we'll cover both the various option boards that we can use in 
the PC and also other optional equipment that goes along with them, such 
as different types of disk drives and display screens. 

When we're talking about the option boards that are plugged into the 
expansion slots, it sounds as though we're only talking about extra features 
that we might or might not install in our PCs. That creates a false impres
sion. Actually there are two standard option boards that normally are 
plugged into every PC: a disk drive adapter and a display screen adapter. 
Except under usual circumstances every PC has both of those. The disk 
drive adapter and the display screen adapter are key parts of a PC, and 
you'll find them both inside your PC. 

Let's consider them separately, starting with the display adapter. The 
display adapter provides all the control circuitry necessary to convert the 
computer's commands to "show this" as a visible picture on the display 
screen. In essence the display adapter acts as a translator, converting com
puter-signals into video-signals. 

The display adapter has two key components to it: one is a special 
silicon chip called a video controller, which has the special command skills 
needed to regulate a display screen. The other component is memory. As 
we'll see in more detail in later chapters, the information that appears on 
our display screens needs to be recorded in memory that's set aside just for 
that purpose. Although this memory operates like the computer's main 
working memory, the amount (and addressing) of the memory depends on 
the type of display adapter, so the display memory is made an integral part 
of the adapter. 

There are many kinds of display adapters that can be used with the PC 
family. We'll summarize the five main ones, and then we'll leave more 
detail for later chapters that are devoted to video information. 

The two dominant video adapters are the two that were introduced 
with the original PC: the monochrome adapter and the color-graphics 
adapter (CGA). The monochrome adapter is the most popular, even though 

63 



INSIDE THE IBM PC 

it has the most limited capabilities. It can only show text characters (the full 
PC character set we covered in Chapter 4) and only in one color (although it 
provides some variety in how those characters are shown: it can display 
bright or dim characters, underlined, or in reverse image). The mono
chrome adapter has been the most popular because it creates much more 
legible characters on the screen than the color-graphics adapter. There is 
only one choice of display screen for the monochrome adapter, the mono
chrome display that was specially designed for use with the monochrome 
adapter. 

The color graphics adapter is the second of the original two display 
adapters. It is designed to show both text characters and pictures (graphics) 
drawn from a series of fine dots. The color graphics adapter is able to show 
as many as 16 colors and it has several display modes (which we'll cover in 
later chapters) that provide a variety of combinations of color and screen 
resolution (which is how finely or crudely the picture is drawn). Although 
the CGA has a wider variety of skills than the monochrome adapter, it can't 
show ordinary text characters as clearly as the monochrome. The CGA can 
work with quite a few different display screens, including ordinary TV sets. 
Usually it's connected to a special-purpose color computer display known 
as an RGB monitor. 

The portable versions of the PC have built-in display screens, so we 
don't have a choice of display adapters or screens for them. The IBM 
Portable PC comes with the color graphics adapter, and a single-color 
graphics screen. The Compaq comes with a similar single-color graphics 
screen, but its display adapter can simulate both the CGA and the mono
chrome adapter, giving it most of the best of both worlds. 

After the original two video adapters, others were developed that pro
vided better features, particularly higher resolution. The most popular one, 
by far, is the Hercules Graphics Adapter, made by Hercules Computer 
Technologies; it's popularly called "the Herc card." The Herc card con
nects only to a monochrome display screen, and it provides both the 
high-quality monochrome text image, and also a very high-resolution 
one-color graphics mode. The result is similar to what the Compaq pro
vides, but with better quality graphics. 

The other two display adapters that we need to mention are two 
advanced ones from IBM. The first is called the Enhanced Graphics 
Adapter (EGA for short). This is a do-anything board, which can be con
nected to a monochrome display, an RGB color display, or a special 
Enhanced Color Display (ECD). The EGA can act as either a monochrome 
adapter, or simulate the color graphics adapter, or it can perform its own 
special magic, which includes monochrome graphics (similar to the Herc 

64 



5.2 OPTIONS AND ADAPTERS 

card) and 64-color high-resolution text and graphics when it's used with the 
ECD. The other special display adapter is the high quality and very high 
priced Professional Graphics Adapter, which connects to an equally pricey 
Professional Graphics Display; this combination is intended for spe
cial-purpose graphics work that needs very high resolution and hundreds of 
colors. 

That's the situation with the PC family's display adapters, which are 
the most complicated part of the options. The next standard part, which is 
also complex, is the disk drive adapter. 

Disk drive adapters provide the same kind of service for disk drives 
that display adapters do for the display screen-they provide a control 
service, translating between the worlds of the disk drives and the rest of the 
computer. Like the display adapters, the complex circuitry in the disk 
adapter is based around one special chip, a special-purpose disk controller 
chip. Unlike the display adapters, the disk adapter does not have or need 
any special memory built into it. 

There are two main types of disk drives-floppy disks and hard 
disks-and there are three kinds of drive adapters for them: adapters that 
handle one type or the other, and adapters that handle both. Unlike the 
display adapters, there's not much of interest to discuss about the disk 
adapters-but there are interesting things to know about the varieties of 
disk drives. 

There are many, many kinds of disk drives. The best way to consider 
them is to divide them into simple categories. First, there are diskette drives 
that use the most common and standard 5lh-inch flexible ("floppy") disk
ettes. (There are other sizes of floppies, larger and smaller, but they are 
rarely used with our PC family.) These are the standard diskette drives that 
nearly every member of the PC family includes. Even for these common 
drives there are two varieties: the now-obsolete single-sided drives (which 
only record on one side of a diskette) and double-sided drives. Next, there 
are high-capacity diskette drives, introduced with the AT, which can work 
with standard diskettes or special high-capacity (hi-cap) diskettes that hold 
over three times as much data. The final category of diskettes are 31J2-inch 
micro diskettes; these are smaller and have more capacity than regular 
diskettes, and they come in a rigid (non-floppy) case, that protects them 
better. 

The storage capacity of diskettes ranges from a low of 160K for sin
gle-sided diskettes to 1,200K, for high-capacity diskettes. 

The next major type of disk is a hard disk, called afued disk by IBM. 
Hard disks have rigid, nonflexible magnetic platters, and they are able to 
store much more data and work much faster than a diskette. Unlike floppy 

65 



INSIDE THE IBM PC 

diskettes, which can be taken in and out of their diskette drives, hard disks 
are permanently installed, which is why IBM calls them "fixed" disks. 
Hard disks have a capacity that ranges from a low of 5 or 10 megabytes up 
to hundreds of megabytes. The most common sizes are 10, 20, and 32 
megabytes. The XT features a lO-meg disk, and the AT a 20-meg disk. 

There is also a hybrid type of disk that you ought to know about, 
called a disk cartridge. This is a disk that can be removed like a floppy 
diskette, but it has most of the speed and capacity of a hard disk. 

All these kinds of disks are so important to understanding and using 
our computers that we'll be devoting several chapters to them, digging into 
all their fascinating details. 

The display and disk adapters that we've covered so far are only the 
beginning of the options that can be attached to our PCs. Now we'll start 
looking at the other main kinds of option boards. 

One important kind is memory boards. While the computer's system 
board holds the computer's basic complement of memory, it doesn't hold 
all the memory that the computer can use. The amount of memory that can 
be placed on the system board varies from model to model-it might be as 
little as 64K or as much as SI2K. Additional memory is added on with 
memory expansion boards. Most PCs will have a memory expansion board 
in them. 

The next type of option boards are a pair called parallel and serial 
ports. A parallel port is designed specifically to work with a printer. A 
serial port is normally used to connect to either a telephone line (through a 
modem) or to a printer. Most computer printers are set up either to be 
connected to a serial port or to a parallel port. The parallel port is special
ized for controlling a printer, but a serial port is more generalized and it can 
be used for a variety of purposes (though printers and telephones are the 
most common things to connect to it). 

The options we've seen so far are the most common and the most 
important types of option boards. But there are many others that can be 
used as well. Among them are light pens, game adapters (which work with 
joystick controls for video games), mice (which are small hand controls 
used to provide a precise way of pointing on the display screen), and 
modems. Modems deserve a special mention. 

For our computers to work with most devices (disks, printers, display 
screens), only one kind of translating circuit is needed. To connect a com
puter to a telephone, we need two; one is a serial port (which we've already 
mentioned) and the other is a modem. The job of a modem is to translate 
computer signals into telephone signals. Our computers can use an external 
modem connected to a serial port adapter card, or they can have an internal 

66 



5.3 KEY CHIPS 

modem. An internal modem-such as the popular Hayes 1200B modem
combines a serial port and a modem translator into a single option board 
that can be plugged right into one of the computer's option slots. 

The final kind of option board we need to mention is a kind that's 
suggested by the internal modem (which really combines a serial port and a 
modem), and that's a multi-function board. It's quite efficient to combine 
several option features into a single board; that's quite efficient-it uses one 
of the option slots, and typically it's much cheaper than separate sin
gle-purpose boards. There are many kinds of multi-function boards. Some 
combine a display adapter with a single parallel port; others provide several 
ports, serial and parallel. The most popular kind, though, are what I call 
kitchen-sink boards: they provide memory, serial ports, parallel ports, per
manent clocks, game adapters, and perhaps even a comb and a shoe-shine 
rag. 

This quick overview of the options that can be installed in a PC's bus 
connector slots should give you some idea of the range of possibilities that a 
PC can provide with the right equipment installed. In later chapters we'll 
cover the many features of the PC so we'll get a better understanding of 
how each of these optional parts works, and what they can do for us. 
Before we continue, we'll finish this discussion of the PC's hardware parts 
with some technical discussion of the chips that are the key working parts 
of the system board (and some of the option boards). 

TECHNICAL BACKGROUND I I I ••• __________ 

5.3 Key Chips 

If you're interested in the details of electronic circuit design, or if 
you're just hungry for more of the fascinating details about the inner work
ings of the PC, you'l1 want to know about some of the key chips used in the 
design of the PC family. 

One of the first things that you need to know is that there are very few 
custom chips in the PC: that was one of the biggest surprises that electron
ics experts and microcomputer buffs discovered when IBM first unveiled 
the original PC. Essentially, the entire design of the PC was accomplished 
using industry-standard circuit chips. Not just the microprocessor "brain" 
in the PC, but the entire PC was made from readily-available chips that had 
been used in other computer designs. That was quite a radical change for an 
IBM product. IBM usually goes its own way in the internal design of its 
computers. But the PC was a very different product for IBM, a product that 

67 



INSIDE THE IBM PC 

ended up changing many things about the way IBM did business. A full 
discussion of that is a story for another time, but one aspect of it is a key 
part of our story here: all the parts that we discuss here are microcomputer 
parts that are familiar to circuit designers everywhere. 

We'll concentrate on the two central models of the PC family, the 
original PC, the father of the PC wing of the family, and the original AT, 
the first of the AT-series. We'll begin with the main chips on the system 
boards of these two machines, which are outlined in Figures 5-3 and 5-4. 

The primary chip is the microprocessor itself, which is an Intel 8088 in 
the PC (and the XT, the Portable PC, the Compaq and Compaq-Plus, and 
nearly all others in the PC branch of the family), and an Intel 80286 in the 
AT (and all the other members of the AT-branch). Other microprocessors 
are used in other family members: the 8086, the 80188, and the 80186. 

Nestled next to the microprocessor is a socket space for an 87 chip, the 
numerical coprocessor, or Numeric Data Processor (NDP), with its special 
abilities to perform very fast and extra-accurate floating-point calculations. 
Relatively few PCs have the numeric coprocessor installed, but almost all 
members of the family have a socket to accommodate them. 

The frrst pair of chips we're interested in has to do with the internal 
timing operations of the computer. One of them is called the clock genera
tor, and it's primarily used to create the metronome beat that drives the 
basic operating cycle of the computer. In a PC the 10 number of this chip is 
the 8284; in an AT it's the 88284. In either case, this chip provides the 
timing signal used by the rest of the computer to set the fundamental work
ing pace. The clock generator chip uses a quartz crystal, like those in 
"quartz" watches, as the accurate basis for its timing. Our clock generator 
subdivides the crystal's ultra-fast beat into the fast beat needed by the 
computer, and puts it out in a form that other parts of the circuitry can use. 

Closely related to the clock generator is the programmable timer yhip, 
identified by the number 8253. The programmable timer is able to produce 
other timing signals that occur every so many clock cycles. The rate can be 
changed, which is what makes this chip "programmable." If the com
puter's main clock runs at six million beats a second (which is the AT's 
actual clock rate), and we want something else to happen at six thousand 
times a second, we can program the timer chip with a count of 1000. This 
means that every thousand clock cycles, the programmable timer will put 
out a signal that will tum out to be six million divided by a thousand, or six 
thousand times a second. This facility of the timer chip can be used to 
produce regular timing signals for many purposes, including generating 
sounds on the speaker, as we'll see in a later chapter. 

68 



5.3 KEY CHIPS 

DO 0 

D o 0 

o00000 DOD 

o 0000000010000000 

o OOOOOOOO! 0000000 

o 00000000\0000000 

o 00000000 \DO DODD 0 

Figure 5-3. The PC system board. 

We've mentioned how information signals flow among parts of the PC 
through a bus, and we looked at what the main bus channels are. To act as a 
traffic cop on the bus, to regulate the flow of information, our computers 
have a bus controller chip. On a PC this chip is known as the 8288; on an 
AT it's a 82288. The bus controller's job is to make sure the operation of 
the bus goes smoothly. 

As we'll learn in more detail later in the book, some parts of the 
computer-particularly the disk drives---can exchange data directly with 
the computer's memory, without the data having to pass through the micro
processor. This helps keep the microprocessor free to get more work done. 
This process is called Direct Memory Access, or DMA. There is a special 
chip to facilitate this, called the DMA controller; its chip number is 8237. 

Similarly, interrupts-which are a key feature of the PCs that we'll 
be discussing in Chapter 6-are supervised by a special circuit chip, the 
8259. In computers, as in real life, interruptions come in varying 
degrees of importance, and one of the tasks of the 8259 interrupt con

69 



INSIDE THE IBM PC 

Figure 5-4. The AT system board. 

troller is to keep them in priority order, and to hold any pending 
interrupts. 

Another key chip is the Programmable Peripheral Interface, or PPI, 
the 8255 chip. The PPI supervises the operation of some of the computer's 
simpler peripheral devices, such as the PC's cassette tape port. Most com
puter peripheral devices, however, are much too complex to be regulated 
with a simple, common circuit. 

Among them are the diskette drives. A key chip to facilitate the com
puter's working with diskette drives is the PD765 Floppy Disk Controller, 
commonly called the FOC. For the display screens, there is a commonly 
used chip called the 6845 CRT (cathode ray tube) controller. Both the 
standard monochrome display adapter and the original color graphics 

70 



SOME THINGS TO TRY 

adapter (CGA) contain a 6845 as their key component. Later, more 
advanced display adapters usually have more custom components. 

There are, of course, a great many other important chips used in the 
PC family, on the system boards, on the option boards, and also inside the 
peripheral parts (such as disk drives) themselves. But the chips we've 
briefly discussed are the most important ones, and the ones that you are 
most likely to read about if you dig into any of the technical publications 
for the PC family. 

Some Things to Try 

1. 	 Why is the PC divided into three main parts,-the system unit, 
the keyboard, and the display screen? Some computers have the 
keyboard rigidly attached to the system unit. What are the advan
tages and disadvantages of building a computer this way? Some 
computers- including the portable members of our family, such 
as the Compaq and the Portable PC-have the display screen 
integral with the system unit. What are the advantages and disad
vantages of building a computer this way? 

2. 	 The main family members have bus connectors for options located 
inside the computer's case. The PCjr has it coming out the right 
side, so that options are plugged in externally. For more than one 
option on a jr, they are plugged into each other, serially. How 
does that make things different for the jr? What are the advantages 
and disadvantages of the two ways of connecting options? 

3. 	 Several of the key chips mentioned in Section 5.3 are referred to 
as "programmable." What does this mean? What makes any
thing-one of these circuit chips, your TV set, or anything else
"programmable?" What might be the benefits of having some 
parts of the PC's circuits programmable? Are there any 
disadvantages? 

71 





6 
Brains: 

Our Microprocessors 


Since the microprocessor is the key working part of a personal 
computer, if we want to understand our PCs, we need to under
stand the capabilities of the microprocessors that power them. As 
we saw in Chapter 1, the PC computer family is based on the 

Intel 8086 microprocessor family, and most members of the PC family 
specifically use the 8088 chip-so that's the microprocessor that we'll be 
talking the most about. 

What we'll learn about the 8088, though, is pretty much universal to 
the whole 8086 family of microprocessors. In Section 6.5 we'll look into 
the special powers of the 286 microprocessor, which powers the AT branch 
of the PC family. 

If you're deeply interested in the inner workings of your computer, or 
if you expect to be working at all with the PC's intimate assembly language 
instruction set, you already realize that you need to know the details of the 
PC's microprocessor that we'll be discussing here. If not, you might be 
wondering if it's worthwhile learning about such technical information. 
Frankly, for the day-to-day PC user who'll never even glance at any assem
bly language program code, there's no real need to learn what we'll be 
covering here. This chapter is for those who have an intellectual hunger to 
comprehend what's going on inside their PCs. The benefit from this chap
ter-besides the pure satisfaction of it-is that you'll have a better grasp of 
what the PC's powers are, including the important matter of understanding 
the limitations on that power. 

6.1 What the Microprocessor Can Do 

The best place for us to start is to take a look at what our microproces
sor can do, its fundamental instruction set. 

73 



INSIDE THE IBM PC 

When we ask our computers to do anything, no matter what it is, it's 
a complex task from the computer's viewpoint. What the computer actu
ally does is perform a series of steps built out of the computer's own 
instruction set. These basic instructions are called machine language or 
assembly language. (When it's in the form that programmers write it, it's 
called assembly language, and when it's in the form that the computer 
works with it's called machine language; either way, we're talking about 
the same thing.) One of the best ways to grasp the power of a computer is 
to see what its basic machine language instructions can do (and how 
quickly they can do them). 

If we tried to look at them in depth, we'd get bogged down in lots of 
tedious details, the details that assembly language programmers have to 
work with. That isn't what we're after here; what we want to do is get a 
good working idea of what the computer's skills are. We'll start with sim
ple arithmetic since arithmetic forms the basis for a great deal of what the 
computer does for us. 

Our PC's microprocessors can perform the four basic operations of 
arithmetic: add, subtract, multiply, and divide. Addition and subtraction 
are the simplest operations, and by far the most common, particularly 
since they are used for many purposes besides the obvious ones (as we'll 
see shortly). Since our microprocessors are what's called 16-bit proces
sors, we know that they can do their adding and subtracting on 16-bit 
numbers; but they can also perform arithmetic on individual 8-bit bytes. 
You might wonder why our computers can do both 8-bit and 16-bit opera
tions. Since 16-bit operations are inherently more powerful, why bother 
with 8-bit numbers? 

There are at least three good reasons for using 8-bit arithmetic instead 
of 16-bit. One is that if we know we'll be working with numbers that aren't 
any bigger than can be accommodated in an 8-bit byte, why use twice as 
much storage as is really needed? When we're working with lots and lots of 
numbers that could be stored in 8-bit bytes, the added efficiency of only 
using single bytes can be very worthwhile. Another reason for using 8-bit 
arithmetic appears when we want to work on individual bytes. 

Here's an example. Sometimes we need to convert alphabetic charac
ter data to all uppercase; this is something that's needed more often than 
you might imagine inside the program we use. You'll recall from our dis
cussion of the PC's character set in Chapter 4 that the lowercase letters are 
each 32 places above the uppercase letters in the ASCII coding scheme. A 
program can convert a lowercase letter into uppercase simply by subtracting 
32 from the byte that holds the lowercase letter-and that's done with an 

74 



6.1 WHAT THE MICROPROCESSOR CAN DO 

8-bit subtraction command. You can demonstrate this for yourself, by try
ing this simple command in BASIC: 

PRINT "a", ASC ("a") , ASC ("a") - 32, CHR$( ASC ("a") - 32 ) 

Finally, there's a third good reason why our computers can do 8-bit 
arithmetic in addition to 16-bit arithmetic: it can be easily used as the 
building blocks of more powerful operations. For example, suppose we 
want to add and subtract numbers that are larger than 16 bits can handle. 
Say we need to work with numbers that are as large as 24 bits, or three 
bytes. We can see how the computer can do this by looking at how we 
ourselves add numbers together, say by adding 123 to 456. When we add 
numbers like that, we do it digit by digit, starting on the righthand side: so 
we add 3 to 6, getting 9, and then move left to the next place. If any pair of 
digits gives us a sum over 10, we carry 1 to the next place. Our computers 
can do the same thing using 8-bit arithmetic. With 8-bit addition and sub
traction operations, our microprocessors can work with numbers of any 
size, byte-by-byte. Carries from one byte position to the next are handled 
by a special feature (which we'll hear of from time to time) called a carry 
flag. (For more on flags, see the sidebar The PC's Flags in Section 6.3.) 

When we discussed data formats in Chapter 3, we mentioned that our 
8- and 16-bit numbers can be treated as signed or unsigned; the signed 
formats allow for negative numbers, and the unsigned formats allow for 
bigger numbers. Our microprocessors have variations on the basic addition 
and subtraction operations that allow our programs to choose between 8
and 16-bit size, signed or unsigned values, and using or ignoring carries 
from previous operations. All of these operations concern the computer's 
basic binary number system. There are also some auxiliary instructions that 
make it practical for the computer to work with decimal numbers. 

While our microprocessors handle just about every possible variation 
on addition and subtraction, they take a slightly less complicated approach 
to multiplication and division. We can multiply 8- or 16-bit (byte or word) 
numbers, and treat them as signed or unsigned. For division, we always 
divide a 32-bit (or double-word) dividend by an 8- or 16-bit dividend, 
signed or unsigned. 

That's the basic arithmetic that our computers can do. If we need 
anything richer-such as larger numbers or floating-point format-then the 
arithmetic is usually handled by special-purpose subroutines that build a 
larger operation out of simple arithmetic building-blocks. The math 
coprocessors, the 87s, can also be used for some sorts of special arithmetic, 
as we'll see in Section 6.2. 

75 



INSIDE THE IBM PC 

Snooping at Code 

If you want to learn more about the power and features of the PC's 
instruction set, there are several ways you can do it without having to 
go through the often difficult and tedious details of learning assembly 
language programming. It will require some cleverness on your part 
in deciphering some of the cryptic codes used in assembly language, 
but the effort can be richly rewarded in the satisfaction of knowing 
some of the most intimate details of how the PC works. 

The trick is to get your hands on some assembly language programs 
that you can read and inspect to see just how things are done directly 
with the PC's instruction set. The best of all is to see some assembly 
language programming complete with the programmer's comments 
that explain a great deal about what is going on. 

As it happens, we have available a fully annotated listing of the 
intimate ROM-BIOS programs that are built into the PCs. You'll find 
these listings in the Technical Reference manuals that IBM publishes 
for each model in the PC family. 

If you can't get your hands on IBM's Technical Reference manuals, 
there is another way to see how some skilled programs were written: 
that's by decoding them (from their unintelligible machine language 
into the slightly more readable assembly language) using an 
"unassembler." One crude but usable unassembler is available to us 
as a part of DOS. It's included in the DEBUG program. 

You can use DEBUG to "unassemble" any programs that you have 
access to, including the PC's built-in ROM programs. You'll find an 
example of how to do this later in this chapter in the sidebar Looking 
at an Interrupt Handler. 

Our computer's microprocessors can do more than arithmetic, though 
arithmetic forms a great deal of the important core of the computer's opera
tions. If all the computer could do was arithmetic (and other straightforward 
manipUlation of data, such as just moving it around) then our computers 
would be nothing more than glorified adding machines. What makes our 
computers much more powerful than simple calculators is a variety of 
instructions known as computer logic. 

The computer's logic operations allow it to adjust what's being done to 
the situation at hand. There are three main kinds of logic operations that our 
computer has in its repertoire: tests, conditional branches, and repeats. As 
an example, I'll let our computer play the role of a parking lot attendant. 

If a parking lot charges, say, $1 an hour with a $5 maximum, the 
parking lot attendant has to calculate our hourly charge and then check to 
see if it's over the maximum. The attendant multiplies $1 times the number 

76 



6.1 WHAT THE MICROPROCESSOR CAN DO 

of hours we were parked and then compares the amount to $5. In computer 
logic, that comparison is the test, and the result of the test is noted in some 
special-purpose flags, like the carry flag that we've already mentioned. 
Generally the test is some form of arithmetic (such as comparing two num
bers, which is the equivalent of subtracting one from the other to see which 
is bigger or if they are equal), and the flags that are used have an arithme
tic-style meaning: the zero flag means the result of an arithmetic operation 
was zero, or that a comparison of two numbers found them equal. Simi
larly, the sign flag means the result was negative. These flags, which are 
the result of any general arithmetic operation, or any test comparison opera
tion, set the stage for the second part of computer logic: conditional 
branches. 

Conditional branches let the computer adjust its operation to the situa
tion. A "branch" means a change in the sequence of steps the computer is 
carrying out. A conditional branch skips from one set of commands to 
another based on a "condition," such as how the flags are set. Our parking 
lot attendant computer, after comparing our hourly parking charge to the $5 
maximum, charges us only $5 if the hourly charge was higher. 

Conditional branches are used in computer programs in two quite dif
ferent ways; the instruction, the conditional branch, can be the same, but 
the use it's put to is quite different. One use, which we've already seen, is 
simply to select between two courses of operation, such as charging the 
hourly rate or the maximum limit. The other way to use a conditional 
branch instruction is to control looping, or the repetition of a series of 
instructions. Our parking lot attendant computer, for example, will repeat
edly perform the operation of parking a car, as long there are parking 
spaces available and customers waiting to leave their cars. The parking 
attendant will "loop" through, or repeat, the process of parking a car, as 
long as the test and conditional branch instructions show that there are cars 
to park and places to put them. 

A regular conditional branch instruction can be used for either pur
pose-selecting between two courses, or controlling a loop--in a computer 
program, but because loops are so important to computer work, there are 
also special-purpose instructions that are custom made for the needs of 
looping: these are the repeat instructions. Some of them are designed to 
repeat a series of instructions, and some repeat just a single instruction, a 
tightly-coupled operation that can be executed with amazing speed and 
efficiency. 

What we've seen so far of the instructions that our computer's micro
processors can perform is really just a short sampler of their full repertoire 
of commands-but it is a summary of the most important things that the 

77 



INSIDE THE IBM PC 

computer can do, and it should give you some feeling for the basic building 
blocks that our programs are constructed out of. We should also get some 
sense of just how quickly our computers can carry out these instructions. 

Here's a sampler of the speed it takes our computers to perfonn some 
basic instructions. For a standard PC, using the 8088 microprocessor, to 
add two numbers together can be done about one million times in a second; 
to mUltiply two numbers can be done about 40,000 times a second; a 
conditional branch can be done about a half-million times a second. On the 
average, a standard PC can perfonn perhaps a quarter-million instructions 
each second. For the much faster AT, using the 286 microprocessor, adding 
two numbers can be done two million times a second, or roughly twice as 
fast as in a PC; multiplying can be done about 300,000 times a second, or 
over seven times faster than a PC; a conditional branch can be done about 
600,000 times a second. On the average, an AT knocks down perhaps one 
and a half million instructions a second, about five or six times the power 
of a standard PC. 

Whether we're looking at a PC or an AT, that's an impressive amount 
of computing that can be dispatched in a second. However, we need to be 
aware that even the simplest thing that we ask our computers to do involves 
hundreds and thousands of individual detailed instructions to be perfonned. 
Since the computer can perfonn millions of instructions in seconds, our 
work should get done pretty quickly. 

6.2 Math Auxiliary: the 87s 

The PC family's microprocessors are designed in a way that lets their 
computing power be augmented with other processors, in two key ways. 
One-which we haven't yet seen in the PC family-allows several of the 
microprocessors (say two or more 8088s) to be tied together and work on 
the computing in cooperation. The other adds specialized "coprocessors" 
or auxiliary processors to perfonn work that the main microprocessor can't 
do well. There are actually two different types of coprocessors available for 
use with our PC's microprocessors. One type is specialized to take on much 
of the burden of I/O processing, and it isn't used in the PC family. The 
other type is specialized to perfonn extra-fast, extra high-precision float
ing-point arithmetic. These are the "87" chips-the 8087 for the regular 
PC branch of the PC family and the 80287 for the AT branch of the fam
ily-the Numeric Data Processor (NDP) or math coprocessor chips. 

The 87 chips allow the main microprocessor to off-load appropriate 
number-crunching onto the 87's specialty circuits. But it can only happen, 

78 



6.2 MATH AUXILIARY: THE 87s 

as we noted in Chapter 3, when there is an 87 installed in the PC, when 
we're using software that knows how to take advantage of the 87, and when 
there is suitable work for the 87 to do. 

Nearly all members of the PC family are designed to accommodate an 
87, but not many PCs have them installed. Usually they're installed only 
when there is a particular need for them: when there's a combination of 
heavy computational work to be done, and computer software that can take 
advantage of the 87. 

On the subject of programs that know how to use the 87, it's worth 
knowing that there are two general categories of programs that use the 87: 
one is programs that require the 87 in order to be used, such as IBM's 
version of the APL programming language. Generally programs that 
require the 87 are oriented to engineering and scientific work. The other is 
programs that can take advantage of the 87 if one's installed. Many spread
sheet programs, such as 1-2-3 and Framework, are like this. Because more 
and more compilers for programming languages contain the ability to detect 
and use an 87-without any special effort needed on the part of the 
programmer-we're seeing an increase in the number of programs that 
benefit from an 87. 

You should not expect, though, that installing an 87 in your computer 
will automatically accelerate the speed of the programs that you use. First, 
many programs simply have no use for an 87-for example, word process
ing programs. Second, even programs that we think could use the 87 heav
ily, don't. For example, Framework knows how to use an 87, but doesn't 
use it for routine spreadsheet calculations, rather only for exotic things like 
exponentiation. 

What can an 87 math coprocessor, or Numeric Data Processor, do for 
us? Basically it can add both speed and accuracy to our calculations. The 
speed comes from the fact that the 87s produce their results roughly 50 to a 
100 times faster than software subroutines can build the same calculation 
out of the regular microprocessor's conventional arithmetic commands. 
(That spectacular speed improvement is for the pure calculation itself. 
When you combine it with a program's routine operations, and some over
head that comes with using the 87, the advantage drops down to something 
in the five to twenty times range--Iess, but still very impressive.) 

The added accuracy comes from the fact that the 87s do all their 
calculations with the lO-byte format that we briefly mentioned in Chapter 
3. The main microprocessor can present data to the 87 in a variety of 
formats that we've mentioned-long and short integer, three sizes of float
ing point, and even a decimal format. The 87s actually do all their work in 
the longest lO-byte floating-point format (called, in computer jargon, 

79 



INSIDE THE IBM PC 

temporary real), which means that any calculations done with the 87s are 
performed in the highest possible precision. Often that won't matter in the 
least, but in involved lengthy calculations, with demanding requirements 
for high precision, the 87 can add a great deal of accuracy to the results. 

The 87s have one additional and curious benefit besides those we've 
mentioned. They offer some special features that go beyond the ordinary 
bounds of floating-point arithmetic in two ways. One is that the 87 has 
seven special constant values built into it, values such as pi that are com
monly used in scientific calculations. Those built-in values are a conven
ience for programmers, and they provide a way to make sure that a 
standard, highly-accurate value is used to represent these seven mathemati
cal quantities. The other special feature of the 87s is that besides the stan
dard four arithmetic operations (add, subtract, multiply, and divide) the 87s 
have five other so-called transcendental operations, which are essential for 
performing trigonometric and logarithmic calculations. For scientific and 
engineering calculations, these special instructions reduce the burden of 
programming, and ensure that these calculations are performed in a stan
dard way. 

The 87s are called coprocessors, which means that they work as an 
auxiliary to the main microprocessor. It's interesting to know how this is 
done. The 87s act as a subsidiary of the microprocessor, and they only 
spring into action when the microprocessor generates a special signal for 
them. A special instruction, called ESCAPE, is used for the main micropro
cessor to pass a command to the 87 coprocessor. (By the way, don't con
fuse this special ESCAPE command with the escape character, decimal 
code 27, that we discussed in Chapter 4 as part of the PC's character set.) 
The main microprocessor's ESCAPE instruction includes in it the instruc
tion code for whichever 87 instruction is to be performed. When the 87 
receives its instruction, it begins performing independently of the main 
microprocessor (which is then free either to wait for the result from the 87 
or to go on performing other tasks.) The sequence of steps involves a little 
dance of cooperation between the two chips, which is shown here in outline 
form: 

the microprocessor sets the 87 into action with an ESCAPE 
instruction 

• 	 the 87 swings into action leaving the main microprocessor free 

• 	 the microprocessor proceeds with other work (say preparing data 
for the next 87 instruction) if it has anything useful to do; other
wise, it proceeds to the next step 

80 



6.2 MATH AUXILIARY: THE 87s 

• 	 when the microprocessor is ready for the results from the 87, it 
performs an FW AIT instruction, which waits for the completion of 
the 87's instruction (in case it's not yet done) 

• 	 after the FW AIT, the microprocessor can safely use the results of 
the 87's calculation 

This sequence seems cumbersome, but it's easier than it looks. The 
only thing special about writing assembly language programs like this is 
that ESCAPE instructions are used instead of regular arithmetic instruc
tions, and FW AIT instructions are added before using the results of the 
calculations. Of course only assembly language programmers have to 
bother with these details, anyway. For those of us who use programs that 
take advantage of the 87, all the fuss and bother is taken care of for us-we 
just get to enjoy the benefits the 87s provide. 

TECHNICAL BACKGROUND I I I •• • _________ 

The 87's Constants and Special Ops 

As we mentioned, the 87s have built into them something more than 
just high-powered floating-point arithmetic: they also have a set of 
special constant values and transcendental operations that are 
especially useful for mathematics and engineering use. Here is what 
they are. 

There are seven special constants. Two are quite ordinary: 0 and 1; 
they save us the trouble (and space) of storing these values in our 
program's data. One is familiar to everybody: pi, the ratio of the 
diameter to the circumference of a circle. The other four provide the 
basic values needed to work with logarithms, either in base 10 or the 
"natural" base mathematicians call e: log2 10 (the logarithm to the 
base 2 of 10); log2 e; 10gIO 2; and loge 2. 

The 87's special transcendental operations are needed to calculate 
functions that can't be built from ordinary, four-function arithmetic. 
Transcendental functions are usually calculated by approximate 
formulas, but these five built-in functions provide the basis for 
performing many different transcendental functions, without having 
to grind through an approximation formula (the standard 
approximations are built into the 87s). These are the five functions: 

1. partial tangent 

2. partial arctangent 

81 



INSIDE THE IBM PC 

3. 2' - I (2 raised to a power, minus one) 

4. Y * log2 X 

5. Y * log2 (X + 1 ) 

These five functions may seem obscure to most readers---even those 
with vivid memories of mathematics classes-but we can rest assured 
that they do indeed provide the core of what is needed to calculate 
the most common transcendental functions. 

6.3 Tools at Hand: Memory and Ports, 
Registers and Stacks 

So far, we've talked about the kinds of operations our microprocessors 
can perform, by themselves and with the help of the 87 numeric coproces
sors. Now it's time for us to take a look at the tools that the microprocessor 
has at its disposal to help it carry out these instructions and get useful work 
done. What we'll be looking at are how the microprocessor uses memory 
and ports, registers and stacks. 

The computer's microprocessor has only three ways of talking to the 
world of circuitry outside of itself. One of the three is the special communi
cation that it has with the 87 coprocessors through the ESCAPE command 
discussed in Section 6.2. The other two are much more ordinary, and they 
have a key role in the core of the computer's operation; these are the 
computer's memory, and the use of ports. 

In Chapter 2 we saw that memory acts as the computer's desktop, its 
playing field, and workplace. The memory is the place where the micropro
cessor finds its program instructions, and where the microprocessor also 
finds its data. Both data and instructions are stored in memory, and the 
microprocessor picks them up from there. The memory is internal to the 
computer, and it's essential function is to provide a work space for the 
microprocessor. Since memory is so important, we'll take a deeper look at 
it in Chapter 7. 

If memory is essential for the microprocessor's internal use, there 
has to be a way for the microprocessor to communicate with the world 
outside of it and its memory, and that is what ports are for. A port is 
something like a telephone line that the computer can call up on. Any part 
of the computer's circuitry that the microprocessor needs to talk to is 
given a port number, and the microprocessor uses that number like a 
telephone number to call up the particular part. For example, one port 

82 



6.3 TOOLS AT HAND: MEMORY AND PORTS, REGISTERS AND STACKS 

number is used to talk to the keyboard; another is used for the program
mable timer mentioned in Section 5.3. Controlling the disk drives and 
transferring data back and forth is also done through ports. The display 
screen is also controlled by using ports, but the data that appears on the 
display screen happens to be handled through memory, and not ports, as 
we'll see in Chapter 11. 

The microprocessor has 65,536 port "telephone" numbers available 
for it to use. Not all of them are connected. The designers of any micro
computer, like our PC family, decide which port numbers to use for various 
purposes, and the circuit elements of the computer are wired up to respond 
to those port numbers. The computer's bus (which we covered in Chapter 
5) is used something like a telephone party line, used in common by every 
part of the computer that is assigned a port number. When the microproces
sor needs to talk to one circuit part or another, it signals the port number on 
the bus, and the appropriate part responds. 

The microprocessor has two special assembly language commands that 
are used to communicate with ports: the OUT command sends data to a port 
number, and the IN command requests data from a port number. Usually 
when we talk about assembly language instructions, such as these IN and 
OUT commands, there is nothing we can do to experiment with them 
unless we work directly with assembly language; but in the case of these 
two instructions, BASIC gives us two commands, called INP (not IN, but 
INP) and OUT, which do exactly what the assembly language instructions 
do. We can use them to experiment with our computer's ports, although it's 
very tricky to do. To give you a quick example, here is a short program that 
turns the PC's sound on and off, simply by using the ports (we'll learn 
more about how this works in a later chapter): 

10 SOUND 500,1 
20 X = (INP (97) \ 4) * 4 
30 PRINT "Press any key to stop this infernal noise! " 
40 OUT 97, X + 3 turn sound onI 

50 FOR I = 1 TO 250 : NEXT I kill timeI 

I60 OUT 97, X turn sound off 
70 FOR I = 1 TO 250 : NEXT I I kill time 
80 IF INKEY$ = "" THEN GOTO 40 

Give this program a try, and you'll have some firsthand experience in 
toying with the PC's ports! 

Unless we're doing some very special and unusual kinds of program
ming, we'll never have any reason to do anything directly with ports. Ports 
are almost exclusively reserved for use by the computer's most intimate 

83 



INSIDE THE IBM PC 

controlling programs, the BIOS. Our main interest in ports is to understand 
that they are the mechanism the microprocessor uses to talk with other parts 
of the computer's circuitry. 

Here we'll discuss registers and stacks, the tools available to our 
computer's microprocessor to carry out its work. We'll start with the 
registers. 

Registers are basically a small special-purpose kind of memory that 
the microprocessor has available for some particular uses. Registers are 
similar to the computer's main memory in one way: they are a set of places 
where data can be stored while the microprocessor is working on it. But the 
computer's main memory is large; it's located outside the microprocessor. 
It can be used for just about anything, and it's referred to through memory 
addresses; the registers are different in each of these respects. 

Flags 

AX AH AL 
BX BH BL 
CX CH CL 
OX OH OL 

SP 
BP 
SI 

01 

PC 

CS 
OS 
SS 
ES 

Figure 6-1. The PC's registers. 

The registers are a series of fourteen small 16-bit places where num
bers can be stored. They are each an integral, internal part of the micropro

84 



6.3 TOOLS AT HAND: MEMORY AND PORTS, REGISTERS AND STACKS 

cessor. In effect, each of them is a small scratchpad that the microprocessor 
uses for calculations and record keeping. Some of them are dedicated to 
one special use, while others have a broad, general use. We'll take a quick 
overview of them all, so that you're familiar with them, and so you'll know 
what they are when you see them referred to. Their actual use, however, 
really only matters to assembly language programmers. 

The first group of registers is called the general-purpose registers, and 
they are truly used as scratchpads for calculations. There are four of them, 
known as AX, BX, CX, and DX. Each of them can be used by our pro
grams as a temporary storage area and scratchpad for calculations. Each of 
these registers is 16 bits in size. If we want to work with just half of any of 
these registers, we can easily do so, because they are divided into high- and 
low-order halves, called AH and AL, BH and BL, and so forth. A great 
deal of the work that goes on inside our computers takes place in these 
general-purpose registers. 

The next group of four registers is used to assist the microprocessor in 
finding its way through the computer's memory. These are called the seg
ment registers. Each one is used to help gain access to a section, or segment 
of memory, 64K bytes big. The Code Segment, or CS register, indicates 
where in memory a program is located. The Data Segment, or DS register, 
locates data that a program is using; the Extra Segment, or ES register, 
supplements the data segment. The Stack Segment, or SS register, locates 
the computer's stack, which we'll discuss shortly. We'll get a clearer idea 
of the use of these registers in Chapter 7 when we take a closer look at 
memory. 

While the segment registers are used to gain general access to large 
64K chunks of memory, the last group of registers is used to help find our 
way to specific bytes in memory. They are used, in conjunction with a 
segment register, to point to an exact place in memory. There are five of 
these registers, each used for a particular purpose. The Instruction Pointer, 
IP, also called the Program Counter, PC, tells the microprocessor just 
where its place is in the program being executed. The Stack Pointer, SP, 
and the Base Pointer, BP, are used to help keep track of work in progress 
that's stored on the stack (coming shortly). The Source Index, SI, and 
Destination Index, DI, are used to help our programs move large amounts 
of data from one place to another. 

Finally there is one remaining register, called the Flag Register, that is 
used to hold the condition flags that we talked about earlier. The various 
flags tell our programs just what state the computer is in: the results of 
arithmetic operations, whether interruptions are allowed, and similar status 
conditions. 

85 



INSIDE THE IBM PC 

TECHNICAL BACKGROUND I I I ••• _________ 


The PC's Flags 

The PC's microprocessors are largely controlled through a series of 
I-bit flags, each of which signals or sets a particular state in the 
computer. The flags operate independently of each other, but they 
are, for convenience, gathered together into the Flag Register. 
Individual flags can be tested and set with special-purpose 
instructions, and the entire group of flags can be read out or set with 
a pair of instructions that read or set the entire flag register. 

Here is what the individual flags are used for: There are nine 
standard flags in all. Six are used to indicate the results of arithmetic 
and similar operations: the Zero Flag, ZF, indicates a zero result (or 
equal comparison); the Sign Flag, SF, indicates a negative result; the 
Carry Flag, CF, indicates a carry out to the next position; the 
Auxiliary Carry Flag, AF, indicates a carry from the first four bits 
(which is needed for simulating decimal operations); the Overflow 
Flag, OF, indicates a too-large result; and finally, the Parity Flag, 
PF, indicates the odd or even parity of the result. 

The three other flags are used for control purposes. The Direction 
Flag, DF, controls which way repeated operations (such as a 
byte-by-byte data move) go, right to left or left to right. The 
Interrupt Flag, IF, controls whether or not interrupts are allowed or 
temporarily suspended. The Trap Flag, TF, causes the computer to 
generate a special "trap" interrupt after executing a single 
instruction. This makes it possible to single-step through a program, 
tracing the results of each individual instruction. 

In addition to these nine flags, the advanced 286 microprocessor used 
in the AT branch of the PC family adds two more special flags. One, 
called NT, is used for nested tasks, and the other, a two-bit flag 
called IOPL, controls the 110 privilege level. 

You can see and tinker with the flags, and all the other registers, by 
using the R command of DOS's DEBUG program. For example, if 
you activate DEBUG, then press R and (enter), DEBUG displays the 
current register contents and the setting of all the flags. 

There is one remaining tool at the command of the microprocessor 
which allows it to perform the complicated juggling act needed for the 
computer to do all the things that we want it to do. As the computer is 
working, it gets buried in an increasingly complicated stack of work, and it 
needs a way to keep track of where it is and what it's doing. To switch from 

86 



6.4 INTERRUPTS: THE DRIVING FORCE 

one part of the computer's work to another, the computer needs a way to 
put work on hold, not lose sight of it. The stack serves as a computerized 
holding area that records all the information that's current about what the 
computer has been doing. When the computer passes into a subroutine, or 
temporarily interrupts one task to look after another, the stack is used to 
take note of "where was I and what was I doing" so that the computer can 
return to it with no difficulty. As the computer switches to something new, 
information about it is placed on top of the stack, indicating what's current. 
Later, when the computer returns to prior work, the other information is 
removed from the stack, and the prior work now reappears as the first thing 
on the stack. 

We've looked at what our microprocessors can do--the general power 
and features of their instruction set-and some of the tools that they have to 
help them do it-the memory and the stacks and so forth-but we have 
barely mentioned a key driving force to make our computers work: inter
rupts. That's what we'll look at next. 

6.4 Interrupts: The Driving Force 

One of the key things that makes a computer different from any other 
kind of machine that mankind has built, is that computers have the ability to 
respond to an unpredictable variety of work that comes to them. The key to 
this ability is a feature known as interrupts. 

The interrupt feature allows the computer to suspend whatever it is 
doing, and switch to something else, based on something that causes the 
interruption-such as our pressing a key on the computer's keyboard. 

The ability to be interrupted solves what would otherwise be a very 
difficult problem in getting the computer to work effectively for us. On the 
one hand, we'd like the computer to be busy doing whatever work we've 
given it; on the other hand, we'd like it to instantly respond to any request 
for its attention, such as our pressing keys on the keyboard. If the computer 
could only slog along doing just what it's been told to do in advance, it 
couldn't respond promptly to our keystrokes unless it was constantly check
ing the keyboard for activity. Interrupts, however, make it possible for the 
microprocessor to respond to keystroke~r anything else that needs atten
tion--even though it's busy working on something else. 

The computer's microprocessor has built into it the ability to be inter
rupted, combined with a convenient way of putting the work that's been 
interrupted on hold while the interrupt is being processed. The micropro
cessor's stack, which we looked at in Section 6.3, is used for this: when an 

87 



INSIDE THE IBM PC 

interruption occurs, a record of what the microprocessor was doing at the 
time is stored on the stack, so that when the interruption is finished work 
can resume exactly where it left off. This is one of several uses the stack is 
put to, and it's a very key one. Without the stack as a place to put work on 
hold, the whole idea of interrupts couldn't work. 

Every part of the computer which might need to request the micropro
cessor's attention is given its own special interrupt number to use. The 
keyboard has its own interrupt, so that every time we press a key on the 
keyboard (or, interestingly enough, release a key we've pressed), the 
microprocessor finds out about it, thanks to the keyboard interrupt. The 
PC's internal clock also has its own interrupt to let the computer's 
time-keeping program know each time the clock has ticked-which is about 
18 times each second. That sounds like a lot of interruptions, and we'd be 
inclined to think that being interrupted 18 times a second would harass the 
computer to death. However, the microprocessor can perform tens of 
thousands of instructions between each clock tick, the clock interrupts don't 
take up much of the microprocessor's time. Our computer's disk drives and 
printers have their own dedicated interrupt numbers, too. The disks use 
theirs to signal that they have finished some work the program asked to be 
done; the printers use theirs to signal when they are out of paper. 

It's an interesting and curious fact about the history of computers that 
interrupts were not part of the original concept of a computer. In fact 
computers had been used for decades before the interrupt feature came into 
widespread use. Today it's hard to imagine a computer doing much of 
anything useful without the interrupts that make it possible for the computer 
to respond to demands for its attention. 

Although interrupts are used to make the microprocessor respond to 
outside events-such as the printer running out of paper-that isn't the only 
thing that they are used for. The concept of an interrupt has turned out to be 
so useful that it has been adapted to serve a variety of purposes inside the 
computer. There are essentially three different kinds of interrupts that are 
used in our PC computers. The first is the kind we've already discussed: an 
interrupt that comes from another part of the computer's circuitry reporting 
something that needs attention. This is called a hardware interrupt. But 
there are two other kinds of interrupts relating to software programming. 

Sometimes, while the computer is running one of our programs, some
thing goes wrong with either the program itself or with the program's data. 
It's as if you were just reading along on this sentence then suddenly you 
found yourself reading glepty murph bofa-some jibberish that didn't make 
any sense. That can happen to the computer too, although it's not supposed 
to. The microprocessor might run into some instructions that don't make 

88 



6.4 INTERRUPTS: THE DRIVING FORCE 

any sense, or some data that drives it wild (such as trying to divide a 
number by zero). When this happens, the microprocessor generates what I 
call an exception interrupt. 

The last category of interrupt, unlike the others, doesn't occur unex
pectedly. The whole idea of interrupts is so powerful, that they have been 
put to use as a way of letting programs signal that they want some service to 
be performed by another part of the computer's programs. This type is 
called a software interrupt. We've mentioned before that our pes come 
equipped with built-in service programs called the ROM-BIOS. Our com
puter's application programs need a way to request the services that the 
BIOS provides, and software interrupts are the means that are used. Soft
ware interrupts function in exactly the same way as the other kinds of 
interrupts. The only thing that's different about them is what causes the 
interrupt. In this case, instead of happening unexpectedly, software inter
rupts are intentionally generated by our programs. There is a special assem
bly language instruction, called INT, that is used by our programs to 
request an interrupt. (To learn more about the surprisingly wide variety of 
uses for interrupts, see the sidebar Another Look at Types of Interrupts.) 

Another Look at Types of Interrupts 

There is a wider variety of types and uses for interrupts than you 
might imagine. In the text I outline three categories of interrupt: 
hardware, exception, and software. But there is another way of 
looking at interrupts that cuts closer to the way they are used in the 
PC family. By this analysis, there are six different kinds of 
interrupts. 

First, there are the Intel hardware interrupts. These are the interrupts 
that are defined into the microprocessor by its designer, Intel. These 
interrupts include the divide-by-zero interrupt we mentioned before, a 
power-failure interrupt, and others. These interrupts are universal to 
any computer using the Intel 8088 microprocessor, no matter how 
unlike the PC family the computer might be. 

Next are the IBM-defined PC hardware interrupts. These are 
interrupts that report hardware events (e.g., "printer out of paper" or 
"disk action completed") to the microprocessor. The PC hardware 
interrupts are essentially universal to the PC family. 

Then there are the PC software interrupts. These are also defined by 
IBM and universal to the whole PC family. They are used to activate 
parts of the PC's built-in ROM-BIOS software, for example, to 
display a message on the computer's screen. 

89 



INSIDE THE IBM PC 

Then there are DOS software interrupts. Unlike the previous three 
types, these interrupts aren't built into the computer, they are added 
on by software: in this case by the DOS operating system. Since 
we normally use the same operating system all the time, these 
interrupts are, in reality, there all the time, even though they aren't 
fundamental to the computer's operation. These interrupts are defined 
and handled by routines internal to DOS (or any other operating 
system that we might be using.) 

Next are the application software interrupts, which are established 
temporarily by the program we run (including BASIC, which uses 
quite a few of its own special interrupts). These interrupts are defined 
(and handled) by the application program that we use. 

The sixth and final category is an odd one, because it doesn't truly 
involve interrupts at all. These are the so-called table interrupts. As 
we'll see in Chapter 7, part of the interrupt mechanism involves a 
"vector table" which holds the memory addresses of the interrupt 
handlers. There are some addresses in this table, however, that have 
nothing to do with interrupts. Instead, the address table is used as a 
convenient place to store some important addresses which actually 
have nothing to do with interrupts. For each of these, there's a 
corresponding interrupt number, but one that can never be used, 
since there's no interrupt handling routine for it. 

Just how does an interrupt work?,Let's take a look, in outline form, to 
see what the interrupt mechanism does. Each distinct interrupt is identified 
by an interrupt number, which identifies the type of interrupt. For example, 
one interrupt number is used for the disk drives (all the drives share the 
same interrupt). The clock, the keyboard, and the printers each have their 
own. For the BIOS services, they are grouped by category; for example, 
there are over a dozen different BIOS services for different operations on 
the display screen, but they all share one interrupt number. 

For each different interrupt number that's been established for the 
computer there is a special program, called an interrupt handler, that per
forms whatever work the interrupt requires. A special table is kept at the 
very beginning of the computer's memory that records the location of each 
interrupt handler. When an interrupt occurs, the interrupt number is used to 
look up the proper interrupt-handling program. Before the interrupt handler 
begins work, however, the microprocessor's interrupt-processing mechan
ism saves a record (on the stack) of what work was in progress. After that is 
done, control of the microprocessor switches over to the interrupt-handling 
routine. 

The interrupt handler begins its operation temporarily protected from 
further interruptions, in case it has to perform any critical or delicate opera

90 



6.4 INTERRUPTS: THE DRIVING FORCE 

tions that must not be disrupted. Usually this involves changing the segment 
registers that control memory access, and saving on the stack any further 
status information that's needed besides what is automatically saved when 
the interrupt begins. Once that's done, the interrupt handler can safely 
reactivate further interrupts (of other types) and do whatever work the inter
rupt calls for. When the work is done, the interrupt-handling routine 
restores the status of the machine to what it was before the interrupt 
occurred, and finally the computer carries on with the work it was doing. If 
you'd like to have a look at part of an interrupt handler, see the sidebar 
Looking at an Interrupt Handler. 

TECHNICAL BACKGROUND I I I ••• __________ 

Looking at an Interrupt Handler 

To give you an idea of what some of the program code in an 
interrupt handler looks like, we'll show you some of it here. This 
fragment is "unassembled" from the ROM-BIOS of an AT model. 
The particular code we'll show you is taken from the beginning of 
the routine that handles requests for video (or display screen) 
services. 

We begin by activating the DEBUG program, like this: 

DEBUG 

Then we tell DEBUG to "unassemble" some program code, which 
translates the computer's machine language into the slightly more 
readable assembly language format. I happen to know where to find 
the routine I want to show you, so I tell DEBUG to unassemble it at 
the hex address where I know it is: 

U FOOO:3605 

In response, DEBUG gives us an unassembled listing, which looks 
like this (I'll talk our way through it in a moment): 

FOOO:3605 FB ST1 
FOOO:3606 FC CLD 
FOOO:3607 06 PUSH ES 
FOOO:3608 1E PUSH DS 
FOOO:3609 52 PUSH DX 
FOOO:360A 51 PUSH CX 
FOOO:360B 53 PUSH BX 
FOOO:360C 56 PUSH S1 
FOOO:360D 57 PUSH D1 
FOOO:360E 55 PUSH BP 

91 



INSIDE THE IBM PC 

FOOO:360F 50 PUSH AX 
FOOO:3610 8AC4 MOV AL,AH 
FOOO:3612 32E4 XOR AH,AH 
FOOO:3614 DIEO SHL AX,I 
FOOO:3616 8BFO MOV SI,AX 
FOOO:3618 3D2800 CMP AX,0028 

The very first column (FOOO:3605, etc.) is a set of reference 
addresses, which we can ignore. The next column of information 
(FB FC 06, etc.) is the actual machine language code, in hex. 
Following this is what we're interested in: the assembly language 
equivalent of the program code we've unassembled. I want to give 
you a short running narrative on this, so that you get an idea of what 
assembly language code, particularly the code inside an interrupt 
handler, is like. 

It begins with the instruction STI, which reactivates interrupts. When 
an interrupt occurs, further interrupts are suspended in case the 
handler needs to do anything critical. In this case, there's nothing 
important to do, so the handling of other interrupts is turned on first. 

The next instruction, CLD, sets the direction flag (which we 
discussed in The PC's Flags sidebar) to its normal, forward state. 
This makes sure that any data movement the program performs goes 
forward, not backward. This isn't a particularly important operation 
to us, but it's interesting to see that the programmer took the time to 
make sure the direction flag was set forward before anything else was 
done. 

Following that is something much more interesting to us: a series of 
nine PUSH instructions. The PUSH instruction saves data on the 
computer's stack. You'll see that each of these nine PUSH 
instructions names a register (ES, DS, etc) that is being saved. These 
register values are being saved on the stack, so that this interrupt 
handler can be sure they are safeguarded. When the interrupt handler 
is done, it restores these values from the stack to the registers, so 
that no matter how the registers have been used in the interim, they 
are returned to their former state. 

Following the register-saving PUSH operations, we find four data 
manipulating instructions (MOY, XOR, SHL, MOY) which do one 
simple thing: they grab a number and prepare it for comparison. 
Although it's not easy to tell just by looking at these instructions, 
what is going on here is fairly simple: there are a variety of display 
screen services which this interrupt handler can provide, and they are 
identified by a request code number. Before proceeding, the 
program gets its hands on that code number and puts it into the form 
that this program wants it in. That's what these four instructions do. 

92 



6.4 INTERRUPTS: THE DRIVING FORCE 

Having done that, the interrupt handler needs to make sure that the 
service code requested is a proper one, and that's what oudast 
instruction does. Using the CMP (compare) instruction it compares 
the number with the value 28, which is the highest number 
corresponding to a proper service request. After that, the program 
goes on to branch on the basis of that test, either performing the 
service requested, or rejecting the invalid service number. 

This isn't an in-depth look at assembly language code, but it should 
give you a sampling of what assembly language looks like, and how 
to go about decoding some. You can use the same techniques shown 
here to inspect other parts of your computer's ROM-BIOS or other 
programs. 

Interrupt handlers, for the most part, appear in the computer's built-in 
ROM-BIOS programs or as a part of the operating system, like DOS. But 
they aren't restricted to just those systems programs. Our applications pro
grams-word processors, spreadsheets, and the like--can also have their 
own interrupt-handling routines, if they have a need for them. Any program 
can create an interrupt handler, and use it either to replace a standard 
interrupt handler (so that its interrupts are handled in some special way) or 
to create a new kind of interrupt. 

In the heading of this section, I described interrupts as the driving 
force of the Pc. This is actually a very accurate characterization. Modern 
computers like our PCs, which are designed to use interrupts, are called, in 
the terminology of circuit designers, "interrupt driven." That's because 
interrupts are used as the mechanism that connects the computer to the 
world around it (including us). Interrupts drive the computer, because, one 
way or another, all the work that comes to the computer comes to it in the 
form of interrupts. More importantly, the whole internal organization of the 
computer is designed around interrupts as the controlling factor that deter
mines just where the microprocessor will turn its attention. Since the flow 
of interrupts directs the computer's attention to where it's needed, it's quite 
accurate to think of them as the driving force behind the whole machine. 

Now that we've seen interrupts, we've looked at all the basics that 
concern our PC's microprocessors. We've covered the key things that are 
common to every member of the Intel 8086 microprocessor family, which 
our PC computer family is based on. But, as we've been mentioning, the 
AT branch of the PC family uses the Intel 286 microprocessor, the most 
advanced member of the 8086 family, and the 286 has some special fea
tures that don't come with the standard PC's 8088 microprocessor. To 

93 



INSIDE THE IBM PC 

finish up our discussion of the PC family's microprocessors, we'll see 
what's special about the 286 "super chip." 

6.5 Special Features of the 286 

The Intel 286 microprocessor chip, which powers all the members of 
the AT branch of the PC family-including the IBM AT and the Compaq 
Deskpro-286, among others-has two personalities, and that is the key to 
its special power. One personality makes it act like the 8088 microproces
sor that powers a standard PC; the other personality allows the 286 to take 
on extra powers and features that set it completely apart from anything else. 
These two personalities are known as the real mode and the protected 
mode. 

In its "real" mode, the 286 acts very much like the 8088 micropro
cessor that's inside a standard Pc. (To be more precise, the 286 acts like 
an 8086, since it works with a 16-bit external memory bus, rather than an 
8-bit bus, which is the difference between the PC's 8088 and the Compaq 
Deskpro's 8086. That's a minor point; the key thing about the 286's real 
mode is that it has the same features and carries out programs in the same 
way as the 8088 inside a standard PC.) In real mode, the 286's special 
features and special powers are in disguise, so that a computer with a 286 
running in real mode can be fully compatible with a normal Pc. 

Don't think that the 286 in real mode is nothing to be interested in. 
The 286 in real mode is inherently much more powerful than a 8088 simply 
because it can execute programs much faster. The 286 is faster for a combi
nation of two reasons: First, its internal design is more streamlined, so that 
it performs its instructions in fewer steps, fewer clock cycles. For example, 
a basic multiply operation takes about 120 clock cycles on a 8088, but only 
about 20 cycles for a 286, a very dramatic difference. The 286 is internally 
much more efficient, so it gets its work done faster. The other reason for 
the increased speed is simply that the 286 can run with a faster clock cycle. 
A standard PC uses a 4.77 Mhz clock-in plain English this means that the 
clock that drives the microprocessor like a metronome clicks 4.77 million 
times each second. A 286, on the other hand, can run faster. In the case of 
the IBM AT model, the clock speed is 6 Mhz, a 25 percent faster clock 
speed than the PC's; in the case of the Compaq Deskpro-286, the clock can 
run at 8 Mhz, 67 percent faster than the PC. When we combine the 286's 
greater efficiency in using clock cycles with a faster clock, we get a much 
faster overall speed. In my own experience, using a performance testing 

94 



6.5 SPECIAL FEATURES OF THE 286 

program that is a part of my Norton Utilities program set, a 286-based 
member of the PC family is roughly 5 to 8 times faster than a standard PC. 

So we know that the 286 microprocessor working in real mode is 
nothing to sneer at. But it also doesn't offer anything (other than speed) that 
the standard PC's 8088 offers. For extra features, we have to switch into 
protected mode. 

In protected mode, the 286 adds a series of features that allow it to 
safely and reliably expand the number of programs the computer can be 
working on at one time. This is accomplished through four main facilities: 
protection (which gives protected mode its name), extended memory, vir
tual memory, and multi-tasking. 

Protection allows the operating system (such as DOS) to erect barriers 
to prevent a program from interfering with the operation of other programs 
or of the operating system itself. In a standard PC, or with a 286 running in 
real mode, a rogue program can mess up the workings of the operating 
system or any other program that's using the computer, or it can even lock 
up the computer entirely, halting its operation. The 286's protected mode 
makes it possible for the operating system to prevent any program from 
"crashing" the computer or even tampering with any part of memory that 
doesn't properly belong to it. When we use our computers for just one 
program at a time, it doesn't matter a great deal if a program runs wild and 
locks up the machine. But if we want to have several things going on in the 
computer at one time, it becomes much more important to protect the 
computer's operation from rogue programs. The protection feature makes 
that possible. 

The standard PC-as we'll see in more detail in Chapter 7--can only 
work with a million bytes of memory (and about 40 percent of that is set 
aside for special uses, and not available for general use). A million bytes 
may sound like a lot (and it is), but with computers, people always need 
more. The 286's protected mode provides more memory, in two ways. 
First, with extended memory, the 286 allows up to sixteen million bytes of 
working memory to be installed in the computer. Second, with virtual 
memory, the 286 can simulate--or appear to have-even more memory 
than is actually present. Virtual memory allows the computer to give each 
program as much as one billion bytes (one gigabyte, in computer jargon) to 
work with. That's a lot of memory. 

Finally, with hardware-supported multi-tasking, the 286 can swiftly 
and reliably switch among several programs that are running at the same 
time. Multi-tasking is involved when a computer is working on more than 
one program (task) at a time. In actual fact, in each instant the computer is 
only carrying out the instructions of one program at a time, but with 

95 



INSIDE THE IBM PC 

multi-tasking all the programs are kept in progress, much the same way that 
a juggler can keep many balls in the air at one time. Any computer can 
attempt to do multi-tasking, but it can't be done well without some special 
hardware features (such as memory protection). The protected mode of the 
286 provides a variety of features that make it practical for the computer to 
do multi-tasking work. 

While these special features of the 286 are very important, and repre
sent a real breakthrough in what our PC computers can do, they aren't quite 
as beneficial as they might seem to be. Basically that's because the use of 
protected mode requires that programs work in a fairly cooperative way. 
Because the features of protected mode were not present in the standard 
PC, most of the popular programs for the PC family were designed and 
written without any regard for the ground rules that protected mode 
requires. Many of the most important PC programs assume that they have 
the exclusive use of the computer, and so they do things that can't be done 
when several programs share the computer (as they do with multi-tasking). 
In addition, the main operating system for the PC, DOS, was not designed 
with the 286's protected mode in mind. 

What all of this means is that the popular programs and operating 
systems for the PC aren't really compatible with the 286's protected mode, 
and in many cases it won't be easy to adapt them to work in a protected 
environment. As long as the important majority of programs for the PC 
family aren't compatible with the protected mode, there will be a serious 
obstacle to the widespread use of the protected mode's advantages. 

Some Things to Try 

1. 	 We've discussed how our PC's microprocessors can do both 8
and 16-bit arithmetic. Is it really necessary to have both? What 
might be the benefit and cost of only having one or the other? 
What would be the benefit and cost of adding 24-bit or 32-bit 
arithmetic? 

2. 	 We've seen, in the PC's arithmetic and in its logic looping 
instructions, some duplication: a variety of instructions that could 
be simplified into fewer instructions. What might be the advan
tages and disadvantages-both for the computer's designers and 
programmers-of making a computer with lots of instructions 
(that provide many different ways of doing roughly the same 
thing) or with very few instructions (which allow for just one way 
of doing things)? 

96 



SOME THINGS TO TRY 

3. 	 Few PCs have the 87 numeric coprocessor installed, and few pro
grams can take advantage of the 87. Why do you think that came 
about? What might have made the 87 more popular? 

4. 	 Using BASIC's INP and OUT commands, write a program to 
blindly explore the PC's ports. Do you find anything interesting? 

5. 	 In the Looking at an Interrupt Handler sidebar, we show how to 
use the DEBUG U (unassemble) command. Try using it on the 
PC's built-in BASIC language, which is located at memory 
address F600:0. (Note: this works on IBM models of the PC fam
ily, but not on compatibles.) 

97 





7 
The Memory Workbench 

N OW it's time for us to get to know our computer's memory. In 
this chapter we'll quickly look at what memory is and how 
data is stored in it. Then we'll look into the complex but 
fascinating details of how our programs gain access to the 

memory. We'll see how the PC's designers subdivided the memory into 
different uses, and then we'll take a look at two different kinds of additions 
to the PC's memory. Sounds like a lot-but it's all intriguing. 

7.1 Memory Overview 

We already know, from earlier parts of this book, most of the underly
ing ideas about our PC computer's memory, so we really don't need to 
introduce you to the fundamentals of computer memory. But, to help make 
sure that we're on the right track, let's pause briefly to summarize the key 
things that we know about computer memory. Then we'll be ready to dive 
into the really interesting details of the memory's ins and outs. 

The computer's memory is a scratchpad where working information
which includes both program instructions and data-is kept while it is being 
worked on. For the most part what's in the computer's memory is tempo
rary working information, nothing permanent (for the exception, see the 
discussion of read-only memory later in the chapter). 

Our computer's memory is organized into units of bytes, each made up 
of eight bits. With eight On-Off, Yes-No bits in a byte, each byte can take 
on 256 distinct values. No matter what kind of information we are storing 
in the memory, it is coded in some particular pattern of bits, which are 
interpreted in whatever way is appropriate to the kind of data. The same bit 
pattern can be seen as a number, or a letter of the alphabet, or as a particu
lar machine language instruction, depending upon how we interpret it. The 
same memory bytes are used to record program instruction codes, numeric 
data, or alphabetic data. 

99 



INSIDE THE IBM PC 

While the computer's memory is divided into bytes as its basic unit, 
the bytes can be combined in any way that is needed to create larger aggre
gates of information. One of the most important is called a word, which is 
two bytes taken together to form a single 16-bit number. (For an interesting 
side-light on that, see the sidebar How Words are Stored.) When we inter
pret a series of bytes together as alphabetic text, it's called a character 
string. There are endless ways to combine bytes into meaningful data, but 
these are some of the most important. 

In order to be able to work with the computer's memory, each byte of 
the memory has an address, a number that uniquely identifies it. Most of 
what we'll be concerned with in this chapter is really just one aspect or 
another of the memory's addressing. The memory addresses are numbered 
one by one, beginning with zero as the first address. The same numbers that 
are used as computer data can also be used to specify memory addresses, so 
that the computer can use its ability to do arithmetic to find its way through 
its own memory. This integration of arithmetic, data, and memory address
ing gives the computer an astonishingly compact and flexible power to 
perform work for our benefit. 

That's the essence of the computer's memory. Now, let's uncover the 
amazing workings of our PC family's memory. 

How Words are Stored 

If you plan to do any exploring of the computer's memory, or you're 
going to be workirig with assembly language, or if, like me, you just 
want to know everything about your computer, you need to know 
about what's whimsically called back-words storage. 

When we write down either numbers or names, we write it with 
what's called the most significant part first. That's the part that 
matters the most when we arrange names or numbers in order. In 
the number" 1776", the" 1" is the most significant, or high-order 
part; in the name "California," the "C" is the most significant 
letter. 

In our PC computers, it doesn't go exactly that way. For character 
string data, which is the format we'd use to store names like 
"California"-the most significant letter is stored first, in the 
left-most byte (the byte with the lowest address), just the way we 
write names. However, numbers are stored the other way around. For 
numbers that take up more than one byte (such as a 16-bit, 2-byte 
word number), the least significant byte is stored first. In effect, the 
number we know as 1776 is stored in the computer as "6771." 

100 



7.1 MEMORY OVERVIEW 

(Please don't take that example too literally for reasons we'll see in a 
moment.) 

This way of storing numbers has been called "back-words," to 
indicate that a word (a 16-bit, 2-byte integer) has its bytes stored 
backwards from what we might expect. This doesn't just apply to 
2-byte words; it also applies to longer integer formats, such as 32-bit, 
4-byte "long" integers. And it also applies inside the complex 
bit-coding that's used to represent floating-point numbers. 

While our PCs can work with any numerical format, the one that 
they use the most is the word format that occupies two bytes. That's 
because 16-bit words are used in every aspect of the PC's memory 
addressing (as we'll see in more detail in Section 7.2) and because 
16-bit words are the largest numbers that the PC's instruction set 
handles. 

To explain the idea of back-words storage, I gave the example of the 
(decimal) number 1776 written back-words as 6771. But that doesn't 
exactly tell us what's going on. Back-words storage concerns binary 
integers stored in reverse order byte-by-byte. When we see binary 
integers written down, we see them in hex notation, which uses two 
hex digits for each byte. For example, our decimal number 1776 in 
hex is 06FO, when we write it front-wards. To write the same hex 
number back-words, we don't reverse the order of the individual hex 
digits, we reverse the bytes (which are represented by pairs of 
digits). Hex 06FO back-words is FOO6 with the two hex pairs (06 and 
FO) reversed. 

Knowing about this back-words storage is more that just a matter of 
simple intellectual curiosity. Anytime you may be working with 
computer data represented in hexadecimal, you have to be alert to 
whether you're seeing numbers represented front-wards (the way we 
write them) or back-words (the way they are actually stored). 
Generally speaking, whenever data is formatted for our consumption, 
it will be in front-wards order; but whenever it's being shown as 
stored in the machine, it will be back-words. We have to be careful 
that we don't get confused about which way we're seeing it. 

Here's an example of how we'd be shown a number in both forms. If 
we work with some assembly language, using either DEBUG or the 
Assembler, and we have an instruction to move the hex value 1234 
into the AX register, we'd see something like this: 

B8 3412 MOV AX,1234H 

On the right-hand side we see the number in human-oriented form, 
frontwards (1234); on the left-hand side, we see the number as it's 
actually stored, back-words. 

101 



INSIDE THE IBM PC 

7.2 Getting Into Memory 

There's a messy little problem inside the PC's microprocessors, a prob
lem that makes it complicated for our programs to find their way around the 
computer's memory. The problem centers around 16-bit arithmetic. 

As we've seen, our PC's microprocessor works best with 16-bit num
bers that can range no larger than 65536, or 64K. Since the computer uses 
numeric addresses to find its way through the memory, that suggests that 
the memory can't be bigger than 64K bytes. Experience has shown that 
64K bytes is laughably too little memory for serious computer applications; 
as we know, many of our pes are equipped with ten times that amount, 
640K. So how can we work our way into a bigger memory and still use 
16-bit numbers to access it? 

The solution that Intel designed into the 8086 microprocessor family 
involves what are called segmented addresses. Segmented addresses are 
built with two 16-bit words, combined in a way that allows them to address 
1,048,576 (or roughly a million) bytes of memory. To see how it's done, 
we have to look at two things: the arithmetic that's involved in combining 
the two words of a segmented address, and the way these segmented 
addresses are handled inside the microprocessor. 

The arithmetic involves what we can call "shifted addition," which 
allows us to create a 20-bit binary number (which goes up to 1,048,578) 
from two 16-bit numbers. Suppose we have two 16-bit words, which, in 
hexadecimal, have the values ABCD and 1234. Remember that each hex 
digit represents four bits, so four hex digits (ABCD or 1234) represent 16 
bits altogether. We take one of these two numbers, say ABCD, and put a 0 
on its end, like this: ABCDO. In effect this shifts the number over one hex 
place (or four binary places), or we can say that it has multiplied the value 
of the number by sixteen. The number is now five hex digits (or 20 bits) 
long, which brings it up to the million range that we're after. But, unfortu
nately, it can't serve as a complete 20-bit memory address, because it has a 
oat its end: it can only represent addresses that end in 0, which are only 
every sixteenth byte. 

To complete the segmented addressing scheme, we take the other 16-bit 
number (1234 in our example) and add it to the shifted number, like this: 

ABCDO 

+ 	 1234 

ACF04 


When we combine these two 16-bit numbers like that, we end up with 

102 



7.2 GETIING INTO MEMORY 

a 20-bit number that can take on any value from 0 through 1,048,577. And 
that's the arithmetic scheme that underlies the PC's ability to work with a 
million bytes of memory, using 16-bit numbers. 

The two parts of this addressing scheme are called the segment part 
and the offset part. In our example, ABCD is the segment value, and 1234 
is the offset value. The segment part specifies a memory address that is a 
multiple of 16, an address that has a hex 0 in its last place. These memory 
addresses that are a multiple of 16 are called paragraph boundaries, or 
segment paragraphs. 

The offset part of a segmented address specifies some exact byte loca
tion following the segment paragraph location. Since the 16-bit offset word 
can range from 0 through 65,535 (or 64K), the offset part of the segmented 
address allows us to work with 64K bytes of memory, all based on the same 
segment address. 

There is a standard way of writing down these segmented addresses, 
which you will encounter often when you're dealing with technical material 
about the PC. It's done like this: ABCD: 1234. The segment part appears 
first, then a colon, and then the offset part. If you do anything with assem
bly language, or use the DEBUG program, you'll see plenty of segmented 
addresses written this way. If you look at the DEBUG listing that appears in 
the sidebar The Interrupt Vector Table later in this chapter, you'll find them 
in the right-hand column. 

Almost always when we talk about addresses inside our computer's 
memory, we'll refer to them in their segmented form. But occasionally 
we'll need to see them in their final form, with the two parts of the seg
mented address combined; whenever we need to do that, I'll be careful to 
call them absolute addresses so that there is no confusion about what they 
represent. In our example of combining ABCD and 1234, ACF04 is the 
resulting absolute address. 

That's the arithmetic behind our computer's segmented addressing 
scheme. Now, how does it work inside the computer? 

The segment part of segmented addresses is handled entirely by a set 
of four special segment registers, which we mentioned in Chapter 6. Each 
of the four is dedicated to locating the segment paragraph for a particular 
purpose. The CS code segment register indicates where the program code 
is. The OS data segment register locates the program's main data. The ES 
extra segment register supplements the OS data segment, so that data can 
be shifted between two widely separated parts of memory. And the SS 
stack segment register provides a base address for the computer's stack. 

Most of the time these segment registers are left unchanged, while our 
programs waltz around within the base that's set by the segment paragraph. 

103 



INSIDE THE IBM PC 

Detailed addressing is done by working with the offset part of the address. 
While the segment part of an address can only be used when it's loaded into 
one of the four segment registers, there is much greater flexibility in how 
offsets can be used. Our programs can get their address offsets from a variety 
of registers (such as the general-purpose registers AX, BX, etc, or the index
ing registers SI and DI). Offsets can also be embedded in the program's 
actual machine language instructions; or offsets can be calculated by combin
ing the contents of registers and the machine language instructions. There is 
a great deal of flexibility in the way offsets can be handled. 

The way that our PC's microprocessor uses segmented addresses has 
plenty of practical implications for the way our programs work. For an 
important sidelight on that, see the sidebar Banging into 64K Limits. 

Fortunately, the tedious details of working with segmented addresses 
are kept out of our way as much as possible. For the most part only if we're 
doing assembly language programming will we have to bother ourselves 
with the tricky problems of segmented addressing. However, if we want to 
explore the idea of segmented addressing, BASIC gives us a way to do it. 
The DEF SEG statement in BASIC gives us a way of specifying the seg
ment part of a segmented address, and the number that's used with the 
PEEK and POKE statements provides an offset part that's combined with 
the DEF SEG's segment part. So, if you want to try your hand at tinkering 
with segmented addresses, you can do it with these features of BASIC. For 
some examples of how it's done, see some of the program listings in 
Appendix A, particularly the ALL-CHAR program. 

Banging into 64K Limits 

Now and again you'll encounter what are called 64K limits. For 
example, when we use BASIC, we're limited to a maximum of 64K 
of combined program and data memory. Some other programs that 
we use mention that they can handle no more than 64K of data at 
one time. Some programming languages can't build programs with 
more than 64K of program code. 

We know, of course, where the 64K number comes from: it's the 
maximum amount of memory that can be addressed with one 
unchanging segment register value. The question is, why are we 
restricted to one fixed segment pointer, and why do we encounter 
such different types of 64K limitations? 

The answer lies in something called the memory model, and it's all 
based on the degree of sophistication that a program has in 
manipulating the segment registers. 

104 



7.3 THE PC'S MEMORY ORGANIZATION 

When a program is running in the computer, it has to find its way to 
both parts of the program and to its data. In simplified terms, each 
program uses the CS code segment register to locate parts of the 
program, and uses the DS data segment register to locate the data. 
While the program is running, these registers can be treated as fixed 
or changeable, independently. If either of them is fixed (that is, not 
being changed by the program while it's running), then that 
component (program code, or data) can't be any bigger than the 64K 
that a single segment value can address. But if either can be 
dynamically changed during the program's operation, then there is no 
such limit on the size of that component. If both are fixed, we have 
the small memory model-which limits a program to 64K of code 
and another 64K of data; with both changeable, we have the large 
model, without the limits. In between we have two more models, 
with one segment fixed and the other changeable. 

The advantage of changing the segment registers (no 64K limits) is 
obvious; the price isn't so obvious, but it's quite real. When a 
program undertakes to manipulate the segment registers, it takes on 
both an extra work load (which slows down the operation) and an 
extra degree of memory management (which can complicate the 
program's logic). There is a clear tradeoff to be made between speed, 
size, and simplicity on the one hand, and power on the other. 

As it turns out, the design of our microprocessor's instruction set 
makes it relatively easy and efficient to change the CS register that 
controls the program code, and relatively clumsy to control the data's 
DS register. So we find a fair number of programs that themselves 
are bigger than 64K, but still work with only 64K of data at a time. 

Fortunately for us all, both the art of programming the PC and the 
PC's programming languages are becoming increasingly 
sophisticated, so less and less often do we hit the 64K limit. 

And what about BASIC? Why does it have a single limit of 64K for 
program and data, combined? BASIC is a special case. When we use 
BASIC, the actual program that's running in the computer is the 
BASIC interpreter. To the BASIC interpreter, our BASIC 
"program" and its data are accessed with one 64K data segment. 
That's why BASIC has a quite distinct kind of size limit. 

7.3 The PC's Memory Organization 

One of the most useful things we can learn about the inner workings of 
our Pes is how the memory is organized and used. Knowing this helps us 
understand how the PC works, comprehend what many of the practical 
limits are on the kinds of work the PC can undertake, know how the display 
screens work, and also learn the basis for the often-mentioned but lit

105 



INSIDE THE IBM PC 

tIe-understood 640K memory limit in the PC. All of that, and more, will 
become clear when we take a look at the basic organization of the PC's 
memory space. 

We know, from seeing how the PC addresses memory through its 
segment registers, that there is a fundamental limit on the range of memory 
addresses that the PC can work with: a million different addresses, each 
representing a distinct byte of memory. That means that the PC has an 
address space of a million bytes. 

A computer's address space is its potential for using memory, which 
isn't the same thing as the memory that the computer actually has. How
ever, the basic address space provides a framework for the organization of 
the computer's workings. When the designers of a computer figure out how 
it's going to be laid out, the scheme for the address space is a very impor
tant part of it. So let's see how the PC's designers laid out the use of the 
PC's address space. 

The easiest way to see it is to start by dividing the entire 1 megabyte 
address space into 16 blocks of 64K each. We can identify each of these 
blocks of memory by the high-order hex digit that all addresses in that 
block share. So, the first 64K of memory we can call the 0 block, since all 
addresses in that block are like this Oxxxx (in five-digit absolute address 
notation) or like this Oxxx:xxxx (in segmented address notation). Likewise, 
the second block is the I-block, since all addresses in that 64K begin with 
1. In the 1 meg address space, there are 16 blocks of 64K, which we'll call 
the O-block through the F-block. 

It's very important to note, when we're talking about these blocks, that 
there is not a barrier of any kind between the blocks. Memory addresses 
and data flow in smooth succession through all of memory, and across the 
artificial boundaries that separate these blocks. We refer to them as distinct 
blocks partly for convenience, but mostly because the overall scheme for 
the use of the PC's one megabyte of memory is organized in terms of these 
blocks. 

Low-Memory Goodies 

The very lowest part of our computer's memory is set aside for some 
important uses that are fundamental to the operation of the computer. 
There are three main divisions to this special use of low memory. 

The first is the interrupt vector tables, which define where 
interrupt-handling routines are located. The first 1024 bytes of 
memory is set aside for the interrupt vector tables, with room for 256 
distinct interrupts--quite a few more than are routinely used. This 

106 



7.3 THE PC'S MEMORY ORGANIZATION 

occupies absolute memory addresses 0 to hex 400. (You can leam 
more about this area in The Interrupt Vector Table sidebar later in 
this chapter.) 

The second area is used as a workplace for the ROM-BIOS routines. 
Since the ROM-BIOS supervises the fundamental operation of the 
computer and its parts, it needs some memory area for its own 
record-keeping. This is the ROM-BIOS data area, one of the most 
fascinating parts of the computer's memory. Among the many things 
stored in the ROM-BIOS data area is a buffer that holds keystrokes 
we've typed before our programs are ready to receive them, a note of 
how much memory the computer has, a record of the main 
equipment installed in the computer, and also an indicator of the 
display screen mode, which we'll cover in a later chapter (if you take 
a close look at the ALL-CHAR program in Appendix A, you'll find 
the program inspecting and using the display mode). 

An area of 256 bytes is set aside for the ROM-BIOS data area in 
absolute memory addresses hex 400 to 500. There are amazing things 
to find inside this area. If you want to leam more about them, there 
are three places you can look: one is in the ROM-BIOS listing that's 
a part of IBM's Technical Reference manual for the PCs; another, 
where you'll find a detailed discussion of virtually every byte, is my 
Programmer's Guide to the PC Family; the third is Brett Salter's 
Peeks 'n' Pokes. 

The third part of the special low memory area is the DOS and BASIC 
work area, which extends for 256 bytes from absolute address hex 
500 to 600. This region is shared by both DOS and BASIC as a 
work area, similar to the ROM-BIOS work area that precedes it. 
You'll find some facts about the contents of this area in the same 
three sources I mentioned before, but the information that's available 
is not as complete as it is for the ROM-BIOS. 

This low memory area is just loaded with goodies for the interested 
explorer. Anyone who wants to know a lot about the inner workings 
of the PC can get a graduate education in PC tinkering simply by 
digging deeply into this part of memory. 

The key working area of memory is the part that's used for our pro
grams and their data: that's the area made up of the first ten blocks, the 0
through 9-blocks. This area is often called the user memory area, to distin
guish it from the rest of the address space, which is, one way or another, at 
the service of the computer system itself. When we talk about the amount 
of memory that our PC computers have, what we're really talking about is 
the amount of user memory that's installed in this area. In theory it could be 
as little as just 16K (a quarter of the first 64K block) or as much as 640K 
with all ten blocks of memory installed. Whatever amount of memory is 

107 



INSIDE THE IBM PC 

installed in our computers forms one contiguous chunk, from the O-block to 
wherever the end of the memory is. 

There are actually several different kinds of memory (as we'll learn 
more about later), and the kind that's installed here is regular read/write 
Random Access Memory, which is often called simply RAM. Two things 
characterize RAM memory: first, as read/write memory it can have the data 
in it inspected (read) and changed (written); second, it is volatile, which 
means that the data in it is preserved only as long as the computer is 
running. 

O-block 1st 64K Ordinary user memory to 64K 
I-block 2nd 64K Ordinary user memory to 128K 
2-block 3rd 64K Ordinary user memory to 192K 
3-block 4th 64K Ordinary user memory to 256K 
4-block 5th 64K Ordinary user memory to 320K 
5-block 6th 64K Ordinary user memory to 384K 
6-block 7th 64K Ordinary user memory to 448K 
7-block 8th 64K Ordinary user memory to 512K 
8-block 9th 64K Ordinary user memory to 576K 
9-block 10th 64K Ordinary user memory to 640K 
A-block 11th 64K Extended video memory 
B-block 12th 64K Standard video memory 
C-block 13th 64K ROM expansion (XT, EGA, 3270 PC) 
D-block 14th 64K other use (PCjr cartridges) 
E-block 15th 64K other use (PCjr cartridges) 
F-block 16th 64K System ROM-BIOS and ROM-BASIC 

Figure 7-1. The PC's memory blocks. 

This memory is dedicated to holding our programs and data while the 
computer is working with them. The amount of RAM memory installed 
here in many ways determines the size and scope of the problems that our 
computers can undertake. 

The basic design of the PC family sets aside only ten of the total 
sixteen blocks in the address space for this main working memory area. 
That's just over 60 percent of the total. Today, that 640K area seems much 
too small for the problems we want to hand our PCs, but at the time that the 
PC was being designed it seemed like a very generous amount. At that 
time, typical personal computers were limited to perhaps 64 or 128K total 
memory, and the PC's 640K seemed enormous then. (This is a mistake that 
has occurred over and over again in the history of computing: underesti
mating the need for growth and expansion in the computer.) 

108 



7.3 THE PC'S MEMORY ORGANIZATION 

It is possible to expand the 640K user memory area slightly by 
encroaching on some of the system area that follows, but that isn't really 
wise because the memory blocks that come after the 640K user area are 
reserved for some special uses, which we'll see shortly, that should not be 
sabotaged. 

Not every single bit of the user memory area is actually available for 
our programs to use. The very fIrst part of it, beginning at memory address 
0, is set aside for some essential record-keeping that the computer has to 
have. You fInd a discussion of that in the Low-Memory Goodies sidebar, 
and some deeper technical information about one part of it in The Interrupt 
Vector Table sidebar. But, except for that small (and interesting) part, this 
entire 640K section of memory is set aside for use by our programs-and, 
as such, there's really not much to say about it. On the other hand, the rest 
of the memory blocks have some very fascinating details for us to discuss. 

TECHNICAL BACKGROUND I I I •• • __________ 

The lnte""pt Vector Table 

When we introduced interrupts in Chapter 6, I explained that the 
interrupt mechanism causes the current program to be put on hold, 
while an interrupt-handling program is activated. The microprocessor 
needs a simple and straightforward way to find where the interrupt 
handler is, and that's accomplished using the interrupt vector table. 
It's a very simple table of the addresses of the interrupt-handling 
routines stored beginning with the "vector" for interrupt number 0 at 
memory location O. Each vector address is four bytes long; the vector 
for any interrupt number x is simply found at memory location x 
times 4. 

The "vectors" are simply the complete memory address, in 
segmented form, of the routine to be activated when the interrupt 
occurs. A segmented address is made up of a pair of 2-byte words, 
so we can see why the vectors are four bytes each. 

You can inspect the interrupt vector table in your computer very 
easily by using DEBUG. Use the D-display command to show the 
beginning of memory like this: D 0:0. DEBUG will show you the 
first 128 bytes, or 32 vectors, which look something like this: 

0000:0000 E8 4E 9A 01 00 00 00 00-C3 E2 00 FO 00 00 00 00 
0000:0010 FO 01 70 00 54 FF 00 FO-05 18 00 FO 05 18 00 FO 
0000:0020 2C 08 51 17 DO OA 51 17-AD 08 54 08 E8 05 01 2F 
0000:0030 FA 05 01 2F 05 18 00 FO-57 EF 00 FO FO 01 70 00 
0000:0040 90 13 C7 13 40 F8 00 FO-41 F8 00 FO 3E OA 51 17 

109 



INSIDE THE IBM PC 

0000:0050 5C 00 B7 25 59 F8 00 FO-E2 OA 51 17 9C 00 B7 25 
0000:0060 00 00 00 F6 8E 00 DE 09-6E FE 00 FO F2 00 7B 09 
0000:0070 27 08 51 17 A4 FO 00 FO-22 05 00 00 00 00 00 FO 

The vectors are stored back-words, the offset followed by the 
segment. For example, the first four bytes that DEBUG shows 
above (E8 4E 9A 01) can be translated into the segmented address 
019A:4EE8. 

Generally we'll find three kinds of addresses in the vector table. 
They'll be ones that point to the ROM-BIOS, which we can identify 
by a hex F leading the segment number. They'll be ones that point 
into main memory, like our example of 019A:4EE8. These may be 
pointing to routines in DOS, or in a resident program (e.g., Sidekick 
or Prokey), or they may point into DEBUG itself (because DEBUG 
needs to have temporary control of the interrupt). Finally, the 
vectors may be all 0, because that interrupt number is not currently 
being handled. You'll notice that the second intemlpt vector (for 
interrupt number 1) in our display above is like that. 

If you want to, you can chase down any of the interrupt-handling 
routines by first decoding their interrupt vectors (as we showed 
above), and then feeding that segmented address to DEBUG's 
U-unassemble command in order to inspect the program code inside 
the interrupt handler. 

Immediately following the user memory area is a 128K area, consist
ing of the A- and B-blocks, that is set aside for use by the display screens. 
The data that appears on the screens of our computers has to be stored 
somewhere, and the best place to store it turns out to be in our computer's 
own memory address space. The reason why that's such a good idea is that 
it makes it possible for our programs to very quickly and easily manipulate 
the display screen data. So, to make that possible, the 128K area of the A
and B-blocks is set aside for the display screen's own data. (In Chapters 
11-14 we'll take an in-depth look at the how the display screens work, and 
how they use this memory. Until then, it's enough for us to know that what 
appears on our screens is recorded in this part of memory.) 

In the original PC design, only part of the B-block was actually used 
for the display screens; the A-block was reserved but not used. This is why 
it has been possible for some PCs to have an additional 64K of user mem
ory installed, encroaching on the A-block. This has never been a wise thing 
to do, though, because it broke an important design convention of the PC 
family. The first official use of the A-block came with the appearance of 

110 



7.3 THE PC'S MEMORY ORGANIZATION 

the IBM Enhanced Graphics Adapter, which needed more working display 
memory than the previous display adapters. 

The memory that is installed for use by the display screens operates 
just like the conventional RAM user memory. Normally, it has one extra 
feature which helps speed the operation of our computer: there are two 
circuit doorways into it, so that both our programs (using the microproces
sor) and the display screen can simultaneously work with it, without inter
fering with each other. 

After the display memory area comes three blocks, C through E, 
which are set aside for some special uses. They are rather nebulously called 
the "ROM extension area." There is no hard-and-fast assignment for this 
memory area. Instead, it is used for a variety of purposes that have arisen in 
the evolving history of the PC family. One use, which gives this section its 
name, is as a growth area for the very last section of memory, the 
ROM-BIOS which occupies the final F-block. When new equipment is 
added to the PC family and it requires built-in software support, the addi
tional ROM-BIOS programs are added here. That, for example, is how the 
XT model's hard disk was accommodated, using a small part of the 
C-block. 

Another use for the ROM extension area, which we have only seen in 
the PCjr, is as a home for removable software cartridges. Software car
tridges have programs recorded on them, and when they are plugged into 
the computer they have to appear somewhere in memory. In the PCjr the D
and E-blocks are used for this purpose. 

A third use for the ROM extension area, one which was not designed 
by IBM, is to support "extended memory," which we'll discuss shortly in 
Section 7.4. 

The final part of the PC family'S memory address space is the F-block, 
which is used to hold the computer's built-in ROM-BIOS programs. The 
memory used here (and in the PCjr's software cartridges) is a special kind 
known as Read-Only-Memory, or ROM. ROM memory is permanently 
recorded, so that it can't be written to or changed by our programs, and it 
isn't volatile so turning off the computer does not disturb it. As you can 
see, ROM is very different than the RAM we discussed earlier, although 
their names are all too easy to confuse. 

The ROM-BIOS holds a key set of programs that provide very essen
tial support for the whole operation of the computer. There are three main 
parts to the ROM-BIOS programs. The first part is used only when the 
computer is turned on: these are test and initialization programs that make 
sure our computer is in good working order. The delay between when we 
turn on the computer and when it starts working for us is mostly taken up 

111 



INSIDE THE IBM PC 

by the operation of these test and initialization programs, which are some
times called the POST, Power-On Self-Test. 

The second and most interesting part of the ROM-BIOS are the rou
tines that are properly called the Basic InpuUOutput Services, or BIOS. 
These programs provide the detailed and intimate control of the various 
parts of the computer, particularly the 110 peripherals, such as the disk 
drives, which require careful supervision (including exhaustive checking 
for errors). The ROM-BIOS, to help support the whole operation of the 
computer, provides a very long list of services that are available for use 
both by the computer's operating system (DOS) and by our application 
programs. We'll have much to say about this part of the ROM-BIOS 
throughout the rest of the book. 

The third part of the ROM-BIOS, which applies only to the members 
of the PC family made by IBM, is the built-in ROM-BASIC (also called 
Cassette BASIC). This is the core of the BASIC programming language, 
and it can be used either by itself, or it can serve (invisibly to us) as part of 
the disk-oriented BASIC that comes with DOS. 

All of the ROM-BIOS routines are contained very compactly within 
the 64K F-block of memory. The amount of this block that is used varies 
from model to model in the PC family, since some of them require more 
program support than others. For example, the PC}r probably has the most 
programming packed into this area, because the}r uses inexpensive soft
ware to perform tasks that other models handle with more costly hardware. 
Generally the more complex the model, the more software gets crammed 
into the ROM-BIOS; so the advanced AT has quite a bit more than the 
original Pc. 

If we care to, we can explore and experiment with any and all of these 
sections of memory. For example, I happen to know that the ROM-BASIC 
program is located at the segmented memory address F600:0000 in all the 
IBM models of the PC family. Knowing this, we can use the DEBUG 
program to display some of the program code, and see the messages that are 
hidden inside of BASIC. To do this, we can just fire up DEBUG, and give 
it the command D F600:0000. That will show us the first part of BASIC's 
code; if we give DEBUG the command D (without typing anything else), 
DEBUG will show us successive chunks of BASIC until it starts to reveal 
BASIC's hidden messages. 

In fact, if we want to, we can write a short BASIC program that will 
hunt through all of the ROM-BIOS looking for messages. In Appendix A 
you'll find the listing for a short program called MSG-HUNT that hunts 
through the whole F-block, looking for a string of five letters or punctua
tion characters in a row; when it finds them, it displays them, and goes on 

112 



7.3 THE PC'S MEMORY ORGANIZATION 

hunting. If you'd like to learn more about what's inside your computer's 
ROM-BIOS, try MSG-HUNT. 

There's one final and quite interesting thing to know about the 
ROM-BIOS. IBM places an identifying date at the end of the BIOS. We 
can inspect that date if we want to. It's interesting to see because it tells us 
essentially when the ROM-BIOS for our machine was finished. It can also 
be used to identify the revisions to the ROM-BIOS that IBM makes on rare 
occasions. This simple BASIC program will root out the date stamp, and 
show it to us, if it is there: 

10 , Display ROM-BIOS date 
20 DEF SEG = &HFFFF 

fill30 DATE. $ = 
40 FOR I = 5 TO 12 

50 DATE. $ = DATE. $ + CHR$ (PEEK (I) ) 

60 NEXT 

70 IF PEEK (7) < > ASC("/") THEN DATE. $ = "missing" 

80 PRINT "The ROM-BIOS date is ";DATE. $ 


While all of the IBM-made members of the PC family have this date 
stamp, most of the non-IBM family members do not, including the Compaq 
models. However, you'll find that some makers of PC-compatible com
puters have been nice enough to include the date stamp in their machines. 
Panasonic's Senior Partner is one such computer. 

In addition to the date stamp, IBM has created a loosely defined model 
ID code, which can be used by programs that need to know when they are 
running on some of the more different models of the family. This simple 
BASIC program displays the ID byte: 

10 ' Display machine id byte 
20 DEF SEG = &HFFFF 

30 ID = PEEK (14) 

40 PRINT "The id byte is";ID; "hex ";HEX$(ID) 


The original PC model had an ID byte of hex FF. The FE code is 
sometimes called the XT code, but it can be found on a variety of models, 
including the XT and the Portable PC. The distinct PCjr has an ID byte of 
FD; the PCjr is sufficiently different from the other models that some 
programs identify the jr's ID byte, and adjust their operation to be more 
ideal for the jr. Likewise, the AT model is identified by a byte code of 
Fe. 

Since each model of computer has its own subtle but distinct character
istics, it can be beneficial for programs to make appropriate adjustments in 
the way they operate based on the machine ID. From this point of view, it's 

113 



INSIDE THE IBM PC 

unfortunate that the most important of the non-IBM members of the family 
cannot be easily identified by either a model 10 byte or by the ROM-BIOS 
date. But, that's the way things go. 

7.4 Into Extended Memory 

While the regular members of the PC family are limited to addressing 
only one megabyte of memory by the fundamental design of the 8088 
microprocessor that they are based on, the AT branch of the family, which 
uses the 286 microprocessor, can work with much more memory. 

As we mentioned in our discussion of the 286 at the end of Chapter 6, 
286-based computers can have up to 16 megabytes of actual memory in 
them. Interestingly enough, that is exactly the same memory limit applied 
for many years to IBM's huge multimillion-dollar mainframe computers. 
It's amazing to think that IBM's mighty mainframes had no more capacity 
than our little microprocessors. 

In addition to the ability to accommodate large amounts of real work
ing memory, the AT's 286 can also provide vast amounts of virtual mem
ory, a clever simulation of more memory than is actually present. (See the 
How Virtual Memory Works sidebar.) The AT's virtual memory can pro
vide up to one gigabyte (1024 megabytes) of virtual memory for each and 
every program that's running in the computer. 

Bear in mind that the address space designed into a microprocessor, 
like the 286, is one thing, and a specific computer's ability to use that 
address space is another thing. While the 286 allows for 16 megs of mem
ory, the IBM AT model has an official limit of 3 megs of actual memory. 

To take full advantage of either the AT's extended memory or virtual 
memory requires an operating system environment (and accompanying pro
grams) that is designed for those features. Since the original PC and the 
PC's mainstream operating system DOS were not developed with extended 
and virtual memory in mind, the potential of these features will remain 
largely untapped, until we see a new generation of operating system and 
application software built with the AT in mind. 

However, it is still possible for a program to make some use of the AT 
extended memory. The standard way to do that is for a program to use 
some of the services provided by the computer's built-in ROM-BIOS pro
grams. One of these services transfers blocks of data, in whatever size we 
need, between the special extended memory and the conventional memory. 
It's also possible for a program to switch the 286 microprocessor from real 
mode (in which it acts like a regular 8088) into its protected mode. How

114 



7.4 INTO EXTENDED MEMORY 

ever, a' program has to be more sophisticated to successfully manipulate 
protected mode. If all a program wants to do is to benefit from the extended 
memory, it can just use the memory transfer service that the BIOS pro
vides, and avoid all the complications of protected mode. 

We have an example readily at hand of a program that uses the BIOS's 
transfer service to use an AT's extended memory: the virtual disk utility 
called VDISK, which has been a part of DOS since version 3.0. When 
VDISK is activated with the extended memory, it uses the BIOS transfer 
service to move data into and out of extended memory without VDISK 
needing to work in protected mode or directly manipulate the extended 
memory area. If you want to see how VDISK accesses and manages the 

Program 
uses 

virtual 
memory 

D 
~ 

REAL MEMORY 
Holding active 
parts of virtual 

memory 

VIRTUAL 
MEMORY 

DISK 

Storing parts 


of virtual 

memory 


Figure 7-2. Virtual memory. 

115 



INSIDE THE IBM PC 

extended memory, you can find out by looking at the assembler listing of 
the program, which comes with the DOS diskettes. 

How Virtual Memory Works 

Virtual memory is a sleight-of-hand operation that involves some 
carefully orchestrated cooperation between the microprocessor, a 
virtual memory support program, and the computer's disk. It 
essentially works like this. 

When a program is being set up to run in the computer, the operating 
system creates a "virtual memory space," which is a model of the 
amount of memory and the memory addresses that the program has at 
its disposal. Then, a portion of the computer's "real" or actual, 
physical memory is given over to the sleight-of-hand operation that is 
the core of the virtual memory concept. Using a feature that's an 
integral part of the 286 microprocessor, the operating system's virtual 
memory support program tells the 286 to make the real memory 
that's being assigned to the program appear to be at some other 
address, the virtual address that the program will be using. A 
"memory mapping" feature in the 286 makes the real memory 
appear to have a different working memory address than its true, real 
address. 

So far what we've described is just a shuffling act, a trick that makes 
some real memory addresses appear to be, and work as, some other 
virtual addresses. The most important part of virtual memory comes 
in the next step, when our programs try to use more virtual memory 
than there is real memory. 

A program starts out with some of its (large) virtual memory space 
mapped into a part of the computer's (smaller) real memory. As long 
as the program is only working with that part of its virtual memory, 
all goes well. The program is actually using different locations in 
memory than it thinks it is, but that doesn't matter. What happens 
when the program tries to use some of the large virtual memory that 
hasn't been assigned a part of the smaller real memory? When that 
occurs, the microprocessor's mapping table discovers that the 
program is trying to use an address that doesn't currently exist; the 
microprocessor generates what is called a page fault. 

When there is a page fault-indicating that a program is trying to use 
a virtual address that isn't actively mapped into real memory-a 
special virtual memory support program swings into action. It 
temporarily places the program on hold while it deals with this crisis. 
The support program chooses some part of the virtual memory that is 
currently in real memory, and saves its contents temporarily onto the 
disk; that's called swapping out. That part of the real memory is 
recycled to act as the newly-needed part of the virtual memory. 

116 



7.5 MEMORY BANKS AND EXPANDED MEMORY 

When the swapped-out part of memory is needed again, it's 

swapped-in, copied back from disk. 


As you can see, the computer's disk is used as a warehouse to store 
the parts of virtual memory that aren't in current use. 

Depending upon how things go, the virtual memory operation can 
either run very smoothly, or it can involve so much swapping in and 
out of memory that too much time is spent waiting to swap between 
memory and disk. When this happens, it's called thrashing; when a 
virtual memory system starts thrashing, very little work gets done. 

The practical operation of a virtual memory system can involve a 
very sensitive balancing act known as system tuning. Our 
microcomputers can benefit from a moderate and careful use of 
virtual memory, but they are too small and too slow to get into the 
heavy use of this powerful concept. 

7.5 Memory Banks and Expanded Memory 

While the future of the PC family's evolution belongs to the 286 
microprocessor-based AT branch of the family, the past and present are 
dominated by the literally millions of 8088-based PCs. The ATs may have 
access to vast amounts of extended memory, but a PC is limited to only 
addressing one million bytes of storage, and only using 640K of that for 
working programs and data. When PCs get into heavy-duty use, that's just 
too little memory. 

Fortunately there is a solution to the problem of the PC's memory 
limitation, based on an idea called bank-switched memory. 

Bank-switching allows the computer to actually have more memory 
than it has room for in the microprocessor's 1-meg memory address space. 
The memory is physically in the computer, but it's not fmnly assigned any 
place in the microprocessor's address space. Instead, the memory is in a 
kind of limbo, without an address, inaccessible to our programs until it is 
switched on. 

The circuit boards for this special kind of bank-switched memory 
allow the addressing of the memory to be turned on and off at will, and 
moved around at will. For example, a bank-switched memory board might 
contain eight "banks" of memory, each of them 64K (for a total of 5I2K). 
All of these 64K blocks share a single 64K address block in the computer's 
memory. At any instant, only one of eight banks can be active, with its data 
accessible, while the others will be on hold. 

The benefit of bank-switching is that it allows more memory to be 
attached to the computer, memory that is instantly accessible. All that it 

117 



INSIDE THE IBM PC 

takes to switch a bank into place is to send a command to the memory 
circuit board, telling it to change the addressing of the banks. The switch 
takes place as quickly as an instruction can execute-with no delay at all. 

There are complications, though, in using bank-switched memory. 
Unlike the computer's conventional memory, bank-switched memory 
requires active management, to make sure that the right pieces are available. 
at the right times. The need for that management-and a standard way of 
performing it-held back the use of bank-switching until the software giant 
Lotus and the microprocessor chip wizards at Intel teamed up to define a 
standard way of working with bank-switched memory. Officially this 
bank-switched approach is called the Lotus/InteUMicrosoft Expanded 
Memory Specification, but many people refer to it by the name of Intel's 
own memory board design for the specification, "Above Board." 

(To avoid problems, let me pause to note that the variety of 
bank-switched memory we're talking about here is called expanded mem
ory, while the AT's special memory that goes beyond 1 megabyte is called 
extended memory. The two terms expanded and extended are easy to con
fuse, so be careful.) 

Here's how the expanded memory works. It operates in three parts: 
one piece of hardware (the bank-switched memory board), and two pieces 
of software (the expanded memory manager-known as the EMM-and the 
application program that uses the memory). The bank-switched memory 
board-which could be Intel's Above Board or any similar memory 
board-provides anywhere from 64K up to 8 megabytes of memory, subdi
vided into small 16K pages that can be individually readdressed through 
bank-switching. 

The EMM memory manager program is activated when the computer is 
first started up, and it lays the groundwork for the expanded memory's 
operation. A key part of its task is to find an unused area in the PC's memory 
space, which it can use to map the bank-switched memory into. It requires a 
full 64K work area, called a page frame, but it's flexible about where the 
page frame is located. As we can readily see from looking at the PC's 
general memory allocation (see Figure 7-1), the D and E blocks of memory 
are obviously good candidates; however, the EMM can place the page frame 
in the C block as well. The exact location doesn't matter, as long as it 
doesn't interfere with any other use of the memory address space. Also, the 
64K page frame doesn't have to be placed on a memory block boundary. For 
example, it can begin at the segment address C400 and extend up through the 
rest of the C block and into the first 16K of the D block. 

Once the EMM has established where its 64K page frame will be 
located, it divides the frame into four 16K windows. After that, it's ready for 

118 



7.5 MEMORY BANKS AND EXPANDED MEMORY 

action, ready to supply any application program that knows how to use it 
with the service of swapping memory data in and out of the 16K windows. 

To use the expanded memory, an application program tells the EMM 
that it needs to use one or more of the four available windows. The applica
tion can ask the EMM supervisor to assign memory pages to it, and then to 
make those pages accessible by bank-switching them into the window area. 
As the application program needs to work with different 16K pages of data, 
it asks the EMM to switch different pages into place. Figure 7-3 illustrates 
how this works. 

EXPANDED 
MEMORY 

MAIN 
MEMORY 

o 640K Windows 

Figure 7·3. Expanded memory. 

While this scheme is very powerful and also very fast, it does have 
some obvious limitations. One is that it can only be used for a program's 
data, and not for the program code itself. DOS still has to find sufficient 
room in the conventional memory area to hold large programs, but once 
those programs are running in conventional memory, they can take advan
tage of expanded memory to work with more data than can be accommo
dated in the conventional memory. Another obvious drawback to expanded 
memory is that to use it a program must know how to work together with 
the expanded memory manager, EMM, and it must know how to conve
niently work with its data fragmented into 16K pages. Within these limita
tions, though, the expanded memory scheme can greatly enhance our 
computer's ability to work with large amounts of data. 

This expanded memory scheme can be added to any regular member of 
the PC family, including the AT wing of the family. While the A Ts can have 

119 



INSIDE THE IBM PC 

their own extended memory that goes beyond the PC's I-meg limit, they can 
also use expanded memory within the regular I-meg address space. 

Some Things To Try 

1. 	 Explain why the segmented addresses 1234:0005, 1230:0045, 
1200:0345, and 1000:2345 all refer to the same memory location. 
Which of these refers to a different location than the other two: 
A321:789A, A657:453A, and A296:824A? Is there an ideal way 
to divide up the two halves of a segmented address? 

2. 	 Using the DEBUG program's U-unassemble instruction, unas
semble some of your computer's ROM-BIOS (for example, like 
this: U FOOO:AOOO L 100); then pick out the examples of 
back-words storage that appear. 

3. 	 How could you write a program in BASIC that will find out how 
much memory is installed in the computer by experimental 
means? Can this operation disrupt the computer? Write such a 
program and see what happens. (Incidentally, you'll find a very 
fast version of such a test in the "System Information" program 
that is a part of my Norton Utilities program set.) 

4. 	 What do you think are the advantages and limitations of the 
Above Board approach to bank-switched memory? What does a 
program have to do to take advantage of it? What might the 
problems be for a program to work with windows of data that are 
16K bytes each? 

5. 	 If you try using the MSG-HUNT program, which searches 
through the ROM-BIOS looking for messages, you'll find that it 
gives some false alarms; for example, one "message" that it 
detects on my computer is "t' (. u"-nothing very fascinating or 
meaningful. That's because the program accepts as candidate 
message characters anything from a blank to a lowercase z. That 
allows us to capture punctuation inside of a message, but it also 
finds spurious messages, like the one above, that are mostly punc
tuation characters. What sort of test can we add to the program to 
filter out this nonsense? Try adding such a filter to MSG-HUNT; 
experiment with making your rules for an acceptable message 
tighter or looser, and see what the result is. 

120 



8 
Disks: 

The Basic Story 


H ere we're going to begin a three-chapter odyssey exploring 
our computer's disks. Only one other aspect of our computers 
(the display screen) is as richly varied and has as many fasci
nating aspects as the disks. 

Since everything we use on our computers-all our programs and all 
our data-makes its home on our disks, understanding the disk storage in 
our computers has a great deal of practical importance to us besides just 
being so downright interesting. 

It's worth knowing, at this point, how we'll be dividing up the subject 
of disks into these three chapters. Here we'll get the baSICS down so that we 
have a clear idea of just what a disk is. Since we use our disks under the 
supervision of DOS, the Disk Operating System, in Chapter 9, we'll look at 
our disks from the DOS perspective, seeing how DOS views them. In 
Chapter 10, we'll wrap up our discussion by inspecting some of the deeper 
details of disks. 

We begin now with the basics of disk storage. 

8.1 Basic Disk Ideas 

The disk storage that our computers use is based on two things: a 
recording technology and a quick-access design scheme. 

The technology is magnetic recording, the same method that's used in 
all the various forms of magnetic tape that we know about-from music 
cassettes to video cassette recorders (VCRs). The basis of magnetic record
ing lies in the fact that iron, and some other materials, can be magnetized. 
You probably remember from childhood science lessons in school how an 
iron bar becomes magnetized if we direct a magnetic field over it. The 
magnetic field is, in a crude sense, recorded on the iron. All of our sophis
ticated magnetic recording is nothing more than a refinement of that simple 
science lesson. 

121 



INSIDE THE IBM PC 

Magnetic recording was first and most widely used to record sound, 
which is an analog form of information. Only later was magnetic recording 
adapted for the digital recording that our computers require. That's ironic, 
because magnetic recording is essentially binary (magnetized or not), or 
digital in nature. 

Digital magnetic recording is done on a surface of magnetically sensi
tive material, usually a form of iron oxide that gives magnetic media their 
characteristic rust-brown color. The magnetic coating is quite thin-in fact, 
the thinner it is, the better it works. It's coated onto some supporting 
material, usually flexible mylar plastic for recording tape and diskettes, or 
rigid aluminum platters for so-called hard disks. 

Disk Turns 

.............. -." ........... .. 
 -
.. ·"·::::::::::::::::::::::::::::::::::::··········v:::·:····· 

~~:::::::::::::::::: ....... :.:: ............ . 

,=~:.:.L::.::::¥5:~ •••......•.•..••••.•••••••••..~ ~ ,........... ::::::.. ::::::::::::::::::::::::::::::::...............................,..:.. :::::.:::.. ::..:.: •.. ~:.;:.::.:::::
Head Moves .. ,,:,,:;:::::::::::::::::: ::::::::::::".:

In and Out":::::::::::::::::: ••.. :. . .. 

Figure 8-1. Disk direct access. 

Whether we're talking about tapes or disks, the way the information is 
recorded onto the magnetic surface is the same. The surface is treated as an 
array of dot positions, each of which is treated as a bit that will be set to the 
magnetic equivalent of 0 or 1. Since the location of these dot positions isn't 
precisely determined, the recording scheme involves some "ready-set-go" 
markings that help the recorder to find and match up with the recording 
positions. The need for these synchronizing marks is part of the reason why 
our disks have to be "formatted" before we can use them. 

That's the essence of the recording technology that I said was one of 
the two things that formed the basis for our computer's disk storage. The 
other is the quick-access design scheme of a disk. 

122 



8.1 BASIC DISK IDEAS 

A magnetic tape is essentially linear because information has to be 
recorded on it front to back; there's no quick and easy way to skip to the 
middle of a tape, short of just running through the length of it. A rotating 
disk, however, is another matter. 

There are two things about a disk that make it possible to get to any 
part of the surface quickly. The first is the disk's rotation. In a very short 
time the disk spins around so that any part of its circumference passes by 
without much delay. It's quicker than you might think. A diskette spins at 
300 RPM, which means it takes at most one-fifth of a second for any 
desired part to swing into place; for a hard disk it's about 3600 RPM, or 
one-sixtieth of a second per rotation. 

The other part of finding our way on the surface of a disk is the 
movement of the magnetic recording head, which corresponds to the tone 
arm of a phonograph player, across the disk from outside to inside. For a 
diskette it takes an average of about one-sixth of a second to move to any 
desired location; for a hard disk, around 1I25th of a second. 

When we combine the two factors-moving the read/write magnetic 
recording head across the disk surface, and rotating the disk into position 
under the head-we see that we can get to any part of the disk very quickly. 
That's why computer disks are called random access storage, because we 
can get to (access) any part of the recorded data directly, randomly, without 
having to pass through the whole set of information sequentially, as we 
would with a tape recording. 

If you want to roughly understand how computer data is stored on a 
disk, the analogy of a phonograph record and player gives you an approxi
mate idea of what it's like. But there are some important differences that 
make the analogy only a crude one. 

On a phonograph record, the sound is recorded in one continuous 
spiral groove. That makes it, like a tape, actually a linear medium, 
although we can easily skip from one part of the record to another. Our 
magnetic disks, on the other hand, are actually recorded in a series of 
concentric circles, unconnected to each other. 

In computer terminology, each of the concentric circles of a disk is 
called a track. The disk surface is divided into these distinct track/circles, 
starting from the outer edge of the disk, where the first track is located, to 
the innermost track. The number of tracks varies with the type of disk. 
Conventional diskettes, of the type that's called double-density, have 40 
tracks; quad-density diskettes, including the AT's high-capacity diskettes 
and other quad-density types, have 80 tracks. Hard disks typically have 
around 300 to 600 tracks. The tracks, however many there are, are identi
fied by number, starting with track zero as the outerm.ost track. 

123 



INSIDE THE IBM PC 

You might expect that the tracks spread across most of the width of the 
recording surface, but they don't; they cover a surprisingly small area. For 
both double- and quad-density diskettes, the space between the first and last 
track is just over three-quarters of an inch (or almost exactly 2 CM). In 
technical terms, a double-density diskette is recorded with 48 tracks per 
inch, and quad-density is recorded at 96 tracks per inch. (In the technical 
literature, tracks per inch is often abbreviated TPI; if you run into that term, 
you'll now know what it is.) 

Just as the width of a disk surface is divided into distinct tracks, so the 
circumference of a track is divided into parts, called sectors. The type of 
the disk and its format determine how many sectors there are in a circular 
track: usually it's eight or nine for regular diskettes, 15 for high-capacity 
diskettes, and 17 for the hard disks that are normally used with the PC 
family. 

Sectors are all a fixed size on any given disk. Our PCs can handle a 
variety of sector sizes, from ones as small as 128 bytes to as large as 1024 
bytes; however, 512-byte sectors have become a fixed standard size that is 
all-but-never deviated from. 

All of the reading and writing of data that our computers perform with 
disks is done in terms of complete sectors. As we'll see later, our data can 

Tracks 

Sectors 

Figure 8-2. The tracks and sectors of a disk. 

124 



8.1 BASIC DISK IDEAS 

be any size and it's made to fit snugly into the fixed storage size of sectors. 
But the actual disk 110 that the computer performs is only done in full, 
complete sectors. 

The sectors in a track, like the tracks on the side of a disk, are identi
fied by numbers that are assigned to them, starting not with zero, but with 
one (sector number zero on each track is reserved for identification pur
poses, rather than for storing our data). 

Side 1 

Side 2 

Side 3 

Figure 8-3. The sides of a disk. 

There is one final dimension to a disk which we haven't mentioned so 
far: the number of sides. A diskette might be recorded on both of its sides 
or only on one (more about that in Section 8.2). While a diskette, like 
anything that's flat, has only two sides, hard disk systems often contain 
more than one disk platter inside them, so they can have more than two 
sides. The sides of a disk, as you'd expect by now, are identified by 
number; as it is with tracks, the sides are numbered starting with zero for 
the first side. 

When we combine all these dimensions, we arrive at the size, or 
storage capacity, of a disk. Multiplying the number of sides by the number 
of tracks per side by the number of sectors per track gives us the total 
number of sectors per disk. Multiply that by the number of bytes per sec
tor-which is normally 512 bytes, or Y2K-gives us the raw capacity of the 
disk. Naturally some of that total capacity is taken up, when we use the 
disk, with overhead of one kind or another, as we'll see in Chapter 9. But 
the number that we can calculate this way is essentially the storage capacity 

125 



INSIDE THE IBM PC 

of the disk; it should be the same, or close to the capacity that's reported to 
us by the DOS utility program CHKDSK (check-disk). 

If you're interested in learning more about the dimensions of your 
disks, and if you have my Norton Utilities programs, you can use the 
program called NU to show the full dimensions of any disk you have. Go to 
menu 2.2, called Display Disk Technical Information, and you'll be shown 
the four dimensions of your disk's storage (together with some DOS-related 
information that we'll learn about in Chapter 9). 

There's one more thing we should cover in this section on basic disk 
ideas: that's what disks look like physically, how they are packaged and 
protected. But that varies with different types of disks, so we'll defer it just 
briefly until after we describe the main varieties of disks. 

8.2 Varieties of Disks 

At times it seems that there are more varieties of disks that can be 
used with our PC family than we can shake a finger at. It certainly isn't 
practical for us to undertake an exhaustive discussion of all the types of 
disks that there are, but we can see the principle types, outline the more 
exotic varieties, and look more deeply at the most important kinds. That's 
what we'll do here. In this discussion we need to keep clearly in mind 
that there are varying degrees of difference between the types; some dif
ferences are quite fundamental and others are important but not major 
differences. Finally, some are purely minor variations. We'll see the dis
tinctions as we go along. 

(Keep in mind that disk storage technology moves forward rather rap
idly, and advances in disks come all the time. Between the time I wrote this 
and you read it, it's likely that the PC family will have gained some new 
disk formats. It's certain that more will appear in the future.) 

The place to begin our discussion is where the PC family began, with 
the most common type of disk, the 5Y4-inch floppy diskette. You'll see a 
picture of one in Figure 8-4. 

There are a lot of variations on this diskette, but before we get into 
them, we will look at the common characteristics of this type of diskette. 
The circular diskette itself is made of very soft flexible material, mylar 
plastic with a magnetically sensitive iron-oxide coating. The coating is the 
same on both sides, even for "single-sided" diskettes that are intended to 
be recorded on only one side. The second side of a single-sided diskette 
may not have its second side finished, polished, and tested, but it still has 
the same coating. Incidentally, not many people know it, but the first side 

126 



8.2 VARIETIES OF DISKS 

of a diskette, the active side on a single-sided diskette, is on the bottom of 
the diskette, opposite the diskette label, not the top. 

The diskette has two holes in it. One is the hub where the disk drive 
grabs it. This hub may have a reinforcing hub ring on it, to help make sure 
that the diskette is properly centered. The other hole is just outside the hub. 
It provides a reference point that defines the beginning of a track. 

Surrounding and holding the circular diskette is the diskette jacket, 
which is usually black. On the inside surface of the jacket, almost com
pletely out of sight, is a white felt liner. The liner is specially designed to 
help the diskette slide smoothly around, and wipe it clean at the same time. 
A large oval slot provides the opening where the diskette drive's read/write 
head reaches in to touch the diskette. The two small cuts to either side of 
the read/write slot are called stress relief notches; they help make sure that 
the jacket doesn't warp. Near the hub opening is an index hole, which 
allows the diskette drive to see the diskette's own index hole. And, finally, 
on one side there is a write-protect notch. If this notch is covered over, you 
cannot write onto the diskette. 

There are some possible variations that you might encounter in the 
holes and notches that appear on a disk jacket. You'll see some disks that 
don't have a write-protect notch, which means that they are always pro
tected against being written over. These diskettes are used for the original 
copies of programs that we buy, such as the diskette that DOS comes on. 
You may also see some diskettes that have two write-protect notches and 
two index holes; these are "flippies," diskettes that are reversible (tum it 
over and use the other side) diskettes. 

That's the physical layout of a 51t1-inch diskette. Now let's look at the 
surprising variety of distinctly different diskette types that all look as if they 
are the same. We begin with single- versus double-sided. 

In the early days of the PC family diskettes were recorded on only one 
of the two sides of the disk, which saved a small part of the cost of the disk 
drive (at the expense of halving the potential storage capacity of the disk
ettes). Today it's almost unheard-of for a computer to have single sided 
drives in them, yet it's common for programs to come to us on single-sided 
diskettes. Let's pause to talk about the why and wherefore of that, because 
it's important if you're not going to trip your feet over the matter. 

A diskette drive that's single-sided can only read or write diskettes in 
single-sided format; on the other hand, a double-sided drive can read and 
write either way, single or double. A diskette that's manufactured as dou
ble-sided can be used either way. A diskette that's manufactured as sin
gle-sided is only supposed to be used that way, because the second side 
isn't necessarily usable. However, a single-sided diskette can often be 

127 



INSIDE THE IBM PC 

J cket 

Write

Protect 

Notch 


Read-Write 
Opening 

Figure 8-4. A 51Jt-inch floppy diskette (top view). 

formatted and used as a double-sided diskette with no problems at all-and 
that fact ends up making a lot of people confused about the matter. 

OK. Suppose we have diskettes and drives that are both made to be 
double sided. What determines whether we're actually using them as single 
or double? That turns out to be a question of software. When a diskette is 
being formatted, the FORMAT program marks the diskette as to how it 
should be used. After that, any time the diskette is used, the marking is 
checked to see how the diskette should be used. 

We can understand this better through an analogy. A completely new 
blank diskette is like a blank piece of paper. Let's imagine that we can not 
write on the paper until it has been ruled with guidelines. When we format 

128 



8.2 VARIETIES OF DISKS 

. a diskette, we're recording on it something very much like ruled guidelines, 
which provide a framework for what will later be written on the diskette. In 
addition, formatting a diskette has a second element to it that's something 
like writing a note at the top of the page that says whether or not it's OK to 
turn the page over and use the other side. At the beginning of a diskette the 
FORMAT program records how the diskette can be used, single- or 
double-sided. 

Unlike a piece of paper, a diskette can be formatted over and over 
again. Each time a diskette is reformatted, any previous information is 
erased and overwritten, and the type of formatting can be changed as well. 

With that background established, we're ready to learn more about the 
variety of formats that a conventional 5Y4-inch diskette can take on. There 
are quite a few variations. First, a diskette can be single- or double-sided. 
Next, it can be formatted with either eight or nine sectors squeezed into a 
track. Just considering those two parameters, we have four different possi
ble formats. The single-sided 8-sector format was the original PC format, 
and it was all that the first version of DOS, version 1.0, could use. Because 
the single-sided 8-sector format was the earliest format, it has the dubious 
honor of being the lowest common denominator, the one format that is 
universally usable on all PC models and all versions of DOS. That's why 
we see a great deal of software delivered in this format, even though it's a 
long-obsolete format. The next release of DOS, version 1.10, added the 
double-sided 8-sector format. Next came DOS 2.0, where it was decided 
that putting only eight sectors on a diskette track was overly conservative, 
and that nine per track could be safely and reliably used. So, with DOS 2.0 
the single- and double-sided 9 sector formats were introduced. 

While those four are the standard 5Y4-inch diskette formats, there are 
actually more. Although IBM has used only double-density (40 track) stan
dard diskette drives, some folks have installed in PCs quad-density drives 
(which have 80 tracks). There are also a variety of (nonstandard) 
quad-density formats as well. 

For extra variety, there is the high-capacity format, which was intro
duced with the AT model. High-capacity diskettes have a special magnetic 
coating on them that allows a track to hold an amazing 15 sectors, rather 
than just 8 or 9. In addition, the hi-cap drives are quad-density, which 
means that they can put 80 tracks on a diskette side. Thankfully there is 
only one hi-cap format, so far, avoiding all this single-sided, double-sided, 
etc. nonsense. 

It isn't quite accurate, however, to consider the hi-cap format as just 
an additional fifth addition to the standard four formats for 51f4-inch disk
ettes, because hi-cap diskettes have to have a special magnetic coating on 

129 



INSIDE THE IBM PC 

them. The four standard 5Y4-inch formats can be thought of as minor varia
tions in the use of the same kind of diskette, while the hi-cap format 
requires a special (and much more expensive) diskette, even though it looks 
identical to the other garden-variety diskettes. 

That finishes our discussion of the varieties of 5Y4-inch floppy diskette, 
but before we pass on to other kinds of disks, I should briefly mention that 
there are other sizes of diskettes, even though they are rarely used within 
the PC family. There is an 8-inch diameter format that has mostly been 
used with an older generation of personal and word-processing computers. 
Also, there is a little-known 3¥2-inch size of floppy diskette which looks just 
like a miniature version of the 5Y4-inch diskette. 

The next basic kind of disks that we need to consider are the 3¥2-inch 
microdiskettes; one is diagrammed in Figure 8-5. 

Microdiskettes are much smaller than floppy diskettes, and they are 
enclosed in a rigid protective case. Thanks to the smaller size and hard 
case, they are much easier and safer to mail and carry around (they fit 
nicely into a pocket). Inside, a micro diskette is the same familiar soft, 
flexible plastic, with a metal hub piece. Outside, the jacket is rigid, and it 
protects the disk from outside damage: the hub opening is nearly covered 
by a hub piece, and the read-write opening is sealed by a spring-loaded 
sliding metal protector. There's one further difference in the case: 
write-protection is signaled by a sliding plastic tab, rather than by a notch 
cut. 

Standard microdiskettes are recorded in quad-density format, so that 
they have exactly twice the storage capacity of conventional diskettes. 
Their small size, protected case, and larger storage capacity have made 
them the disk of choice for newly-designed computers (such as Apple's 
Macintosh and numerous Japanese machines). However, the weight of tra
dition, the problems of incompatibility, and the PC users' huge collective 
investment in conventional 5Y4-inch floppy diskettes have together retarded 
the use of this improved diskette format within the PC family. 

That finishes our tour through the land of diskettes; hard disks are the 
next variety of disk for us to consider. 

Hard disks get their name from the fact that the magnetically-coated 
disks themselves are rigid platters, made of an aluminum alloy. Because 
of many factors, including the much faster speed of rotation and the 
higher recording density, hard disks need to be in an atmosphere that's 
carefully protected against dust and other contamination. So hard disks 
are sealed inside the disk drive, and not removable like a diskette. It's 
because of this that IBM uses the term fixed disk for what everyone else 
calls a hard disk. 

130 



8.2 VARIETIES OF DISKS 

Write 
Protection Jacket 

D 
Sliding 
Cover 

Figure 8-5. A 31b-inch microdiskette (bottom view). 

There are many varieties of hard disks, differing in the number of 
platters and active recording sides, number of cylinders, number of sectors 
per track, speed, and other characteristics. We generally lump them all 
together into the collective category of hard disk. Two varieties are best 
known in the PC family. 

The fIrst is the lO-megabyte disk, which is used by the XT model, the 
Compaq Plus, and many other similar PC family members. The XT's disk 
has four sides, 305 cylinders (as track locations are called on hard disks), 
and 17 sectors per track. The second best-known variety of hard disk is the 
one introduced with the fIrst AT models. This disk has four sides, 615 
cylinders, 17 sectors per track, and a capacity of 20 megabytes. These two, 

131 



INSIDE THE IBM PC 

however, are only typical of the many varieties of hard disk that can be 
used in the PC family. The AT model alone has a built-in capability to 
accommodate no fewer than 14 different hard disks, and others can be 
easily added. 

There is one final basic variety of disk storage that we need to know 
about, cartridge disks. These are a hybrid type, combining the characteris
tics of hard disks (particularly the large storage capacity) and removable 
diskettes. There are quite a few varieties of cartridge disks, but probably 
the best known is the one called the "Bernoulli box," made by IOMega 
Corporation. Typically, cartridge disks have a capacity of five or ten 
megabytes, and they operate at a speed that is similar to a conventional 
sealed hard disk. But, like diskettes, cartridge disks can be removed, which 
makes it possible for data to be exchanged, shipped through the mail, or 
simply locked up for security. 

That finishes our basic tour of disks and disk formats. It gives us the 
foundation of information that we'll need to understand the next stage in 
our journey through disks, where we explore how DOS views disks. 

Some Things to Try 

1. 	 It's a mystery to me why the original PC ever had single-sided 
diskette drives, instead of double-sided. I wouldn't expect you to 
know why either, but see how many reasonable theories you can 
come up with. The exercise may help you understand a great deal 
about the realities that underlie personal computing. 

2. 	 In one of the IBM Technical Reference manuals, it states that for 
a regular diskette drive, which has 40 tracks, moving the 
read/write head takes five milliseconds per track. The average 
move, we're told, takes 81 milliseconds; why? What does that tell 
us? 

3. 	 There are hard disks that have the same capacity as each other, but 
they are "shaped" differently. For example, among the disk types 
that the AT can automatically accommodate, there is one with 
four sides and 614 cylinders and another with eight sides and 307 
cylinders. The capacity of the two is identical. Is there any practi
cal difference between them? 

132 



9 
Disks: 

The DOS Perspective 


I n this the second of our three chapters on disks, we'll take a look at 
our computers' disks from the DOS perspective, as DOS lays them 
out and uses them. Our disks, by themselves, are a kind of raw, 
unsurveyed land. It's only when an operating system, such as DOS, 

creates a map of how they are to be used that disks take on a useful form. 
Each operating system-and the PC family has several, in theory-has its 
own plan for how the unbroken land of a disk should be turned into produc
tive fields. Since DOS is the only operating system that most PC users 
encounter, DOS's way of organizing a disk is the only one that we'll cover. 

First we'll look at the basics of how DOS uses a disk, followed by the 
technical specifics that underlie a DOS disk. Then we'll explore key ele
ments of what DOS data files look like, so that we have a better under
standing of the working contents of our disks. Particularly, we'll focus on 
the most universal data format, ASCII text files. 

This chapter will give us most of what we need to know about our 
disks. What's missing here, we'll find in Chapter 10, the final installment 
of this three-chapter series, which covers deeper details of our disks. 

9.1 DOS Disk Overview 

In Chapter 8, when we looked at the basics of our computer's disks, 
we saw how a disk is intrinsically a three- or four-dimensional object. The 
three dimensions---of track or cylinder, the radial dimension; of side, the 
vertical dimension; and sector within a track, the circular dimension
locate the position of each sector on the disk. The size of each sector, how 
much data can be stored inside it, is the fourth dimension. Multiplying the 
first three dimensions gives us the total number of sectors on a disk, the 
number of working pieces that DOS has at its disposal when it uses the 
disk. Multiplying the number of sectors by the sector size gives us the data 

133 



INSIDE THE IBM PC 

capacity of the disk, the number of bytes that DOS has to tuck data away 
in. 

The sectors on a disk are the fundamental units of disk activity. All 
reading and writing on a disk is done with full sectors, and not any smaller 
amount of data. An important part of understanding how DOS looks at a 
disk is seeing how DOS handles sectors. A key part of this is that DOS 
"flattens" a disk, by ignoring the inherently three-dimensional shape of a 
disk. Of course DOS can't completely ignore the three-dimensional shape 
of a disk. To actually read and write disk sectors, DOS has to work with 
sectors in terms of the dimensions that locate and identify each sector. 
That, however, is just to accommodate the physical nature of the disk. For 
its own purposes, DOS thinks of a disk as a one-dimensional object. 

This means that DOS treats the sectors of a disk as just a sequential list 
of sectors, from the first sector on a disk to the last. The diagram in Figure 
9-1 draws a picture of how this is done. For its own purposes, DOS 
numbers the sectors on a disk sequentially, starting at 0 (for the first sector 
on the first side of the first cylinder of a disk), to I (for the second sector on 

First-+ DOS's View -+Last 

Figure 9-1. A three-dimensional disk meets a one-dimensional DOS. 

134 



9.1 DOS DISK OVERVIEW 

the first side, etc.) and on to the last sector in sequence (which is the last 
sector of the last side of the last cylinder). Everything that DOS does in 
working with and planning the use of disk sectors is done in tenns of these 
sequential sector numbers. Only at the last moment, when infonnation is 
actually read or written on the disk, does DOS translate between its internal 
notation (the sequential numbers) and the disk's own three-dimensional 
notation. 

This linear, sequential approach to a disk greatly simplifies DOS's job 
of organizing a disk. But it does have a price to it. One part of the price is 
that DOS can't take advantage of the fact that it takes quite a bit longer to 
go from one sector to another when they are located on different cylinders 
than between sectors in the same cylinder-that's because, to switch cylin
ders, the disk drive's read/write heads have to move from place to place. 
Basically DOS doesn't know which sectors are on the same cylinder 
because it ignores the disk's division into cylinders. There is another price 
too: the traditional way DOS handles disks sets a limit on how large a disk 
we can use with our PC computers. For more on that, see the sidebar The 
32-Megabyte Limit. 

The 32-Megabyte Limit 

The linear, sequential approach that DOS uses to organize disks led 
to a limitation that wasn't expected in the early days of DOS: a limit 
of 32 megabytes in the size of disk that DOS could use. 

This limitation comes about as the natural result of two simple 
things: first, that the standard size of a disk sector for DOS is 512 
bytes. Second, that DOS numbers diskette sectors sequentially, and 
holds those numbers in the PC's most natural data format, as a 16-bit 
integer. There are only 64K (or 65,536) different 16-bit numbers; so, 
using this scheme, DOS can only work with 64K distinct sectors. If 
the sectors are 512 bytes big, that sets a limit of 32 megabytes (64K 
times 512, roughly 32 million) as the largest disk that this scheme 
can handle. 

In the early days of DOS and the PC family, few imagined that 
anyone would want a disk that big on a computer this small. But the 
history of computing has one truism: however much you have, it's 
not enough. 

There are ways around this limit: sectors can be made bigger (say 
1024 bytes each), or DOS could use more bits to number the disk 
sectors with. One way or another the "32-meg barrier" will be 
broken-perhaps by the time you read this it will already be done, 
since the PC family is continually growing and expanding. But the 

135 



INSIDE THE IBM PC 

original design of DOS was created with this inherent limit on how 
large a disk could be. 

DOS takes a similar approach when it comes to storing our data on the 
disk. As we've mentioned, all reading and writing of data on a disk is done 
in terms of complete sectors. But when we work with data---or our pro
grams, acting on our behalf, work with data-it may be read or written in 
any amount. We can work with our disk data byte by individual byte, or we 
can have DOS transfer huge amounts of it at one time. This points to one of 
the main jobs that DOS performs in managing our disks: it acts as a transla
tor between the way the disk works with data (which is a 512-byte sector at 
a time) and the way we want to work with it (which can be any of a hundred 
ways). DOS's disk management routines handle the conversion between the 
amounts of data that we want, and the amounts of data that the disk stores. 
In effect DOS does it by running a warehouse operation. It packages and 
unpackages our data, so that the data is bundled in appropriate-sized quanti
ties-the size we want when we use it, and the size of sectors when it's 
transferred to the disk. 

TECHNICAL BACKGROUND I I I ••• 

Physical and Logical Formatting 

The formatting of a disk actually has two parts to it-which I call 

physical and logical formatting-and if we don't want to be confused 

about what's going on with our disks, we need to be aware of the 

distinction. 


Physical formatting involves the creation of sectors on a disk, 

complete with their address markings (which are used like name tags 

to identify the sectors after the formatting is done) and with the data 

portion of the sector (the part we and our programs know about) 

established and filled in with some dummy data. A brand-new, 

unused diskette normally comes to us without the physical 

formatting done, while a new hard disk will already be physically 

formatted. 


Logical formatting is essentially the adoption of a disk to the 

standards of our operating system. When a disk is formatted for 

DOS, the DOS-style logical structure (discussed in Section 9.2) of 

the disk is created. The logical formatting is the road map that DOS, 

or any other operating system, uses to navigate through and make 

sense out of a disk. 


136 



9.1 DOS DISK OVERVIEW 

Program 

Data 


DOS Buffers 

Disk 

Sectors 


Figure 9·2. DOS repackages data between disks and our programs. 

In terms of physical and logical formatting, the FORMAT command 
of DOS acts differently on diskettes and hard disks, which is why the 
distinction between logical and physical formatting is important to 
know about. Since the logical formatting is essential to DOS's use of 
a disk, naturally the FORMAT command always does that. What 
differs between diskettes and hard disks is whether or not DOS is 
free to perform the physical formatting. 

For a diskette, the FORMAT command performs the physical 
formatting as well as the logical. That's because a diskette 
completely "belongs" to the operating system that formats it, while 
a hard disk may be partitioned into sections that can belong to 
differing operating systems (we'll see more about that in Chapter 10). 
On a hard disk, the FORMAT command does not dare perform the 

137 



INSIDE THE IBM PC 

physical formatting, even within a partition that DOS "owns," since 
that might well interfere with the rest of the disk. 

While DOS doesn't provide us with a program to physically format a 
hard disk, you'll find one on the IBM Advanced Diagnostics 
diskette. There are some unusual circumstances in which we might 
want to get a fresh, from-scratch start on a hard disk, and it's good 
to know how to get our hands on a program that will do the physical 
formatting. 

The DOS FORMAT program uses a special BIOS command (see 
Chapter 18) to format diskettes track by track. The mechanism of 
physical formatting requires that the formatting for all the sectors in 
each track be laid down in one coordinated operation. This 
track-by-track diskette formatting feature can be used as the basis of 
a copy-protection scheme, as we'll see more about in Chapter 10. 

When FORMAT formats a diskette, it sets the sector data to a default 
value, hex F6, in each byte. Since the FORMAT command 
overwrites each byte of the diskette, all old data on the diskette is 
completely obliterated. That eliminates any hope of recovering any 
previous data after a diskette is formatted. However, FORMAT does 
not overwrite the old data on a hard disk, so it is possible to recover 
data from a reformatted hard disk. 

Before DOS can use a disk, the disk has to be formatted, which means 
marked off and organized the way DOS likes to work with its disks. We use 
the DOS utility program FORMAT to do that. The FORMAT command does 
whatever is necessary to put a disk into the state that DOS expects it to be in 
(which varies, depending upon the type of disk-see the sidebar Physical 
and Logical Formatting for more details). After that's done, FORMAT lays 
out the DOS structure on the disk, the structure that establishes how and 
where files can be stored. We'll see how that works in Section 9.2. 

9.2 The Structure of a DOS Disk 

In order to organize our disks, DOS divides them into two parts: a 
small system area that DOS uses to keep track of key information about the 
disk, and the data area, the bulk of the disk, where our file data is stored. 
The system area uses up only a quite small portion of a disk: at most it's 
just two percent of the total space (that's on the very smallest 160K diskette 
format), and on a hard disk it's quite a bit less-for example just 3/10 of 
one percent on the AT model's 20-megabyte hard disk. 

138 



9.2 THE STRUCTURE OF A DOS DISK 

The system area that DOS uses is itself divided into three parts, called 
the boot, the FAT, and the root directory. Let's explore them one by one. 

The boot, or boot record is the very first part of a DOS disk. It holds a 
very short program-one that's only a few hundred bytes long-that per
forms the job of beginning the loading of DOS into the computer's mem
ory. The start-up procedure is called booting (because the computer is 
"pulling itself up by the bootstraps"-loading the programs that are neces
sary for the computer to carry on its work). When we have a DOS system 
disk (one that's been formatted with the /S system option) the disk contains 
a full copy of DOS. The job of this boot record program is to begin the 
process of starting DOS from a disk reading from disk to memory the first 
part of the DOS programs. Interestingly enough, the boot record doesn't 
just appear on a system formatted disk. It's on every disk, and it's clever 
enough to report the error if we try to boot up from a disk that isn't system 
formatted (doesn't include a copy of DOS on it). 

The boot portion of a disk is very small-only a single 512-byte sec
tor, so it takes up practically none of the space in a disk. Incidentally, there 
is some very interesting information that's recorded on some disks' boot 
records. We'll look into that in Chapter 10, when we dig into some of the 
more technical information about our disks. 

The next part of the system portion of a disk is called the File Alloca
tion Table, or FAT for short. DOS needs a way to keep track of the big data 
portion of a disk, to tell what's in use and what's available for new data 
storage. The FAT is used to record the status of each part of the disk. In 
order to manage the data space on a disk, DOS divides it up into logical 
units called clusters. When a file is being recorded on the data portion of 
our disks, disk space is assigned to the file in these clusters. How big a 
cluster is varies from one disk format to another; it can be as small as an 

First System Portion Data Portion Last 

I 

I 

" 
 " t 

ROOT 

BOOT DIRECTORY 


FATS 

Figure 9-3. The parts of a DOS diskette. 

139 



INSIDE THE IBM PC 

individual sector or much bigger. On the largely-obsolete single-sided disk
ettes, each sector is its own cluster; on double-sided diskettes, clusters are 
two sectors each, 1024 bytes. On the XT model's lO-megabyte disk, the 
cluster size is usually eight sectors, 4096 bytes. There's an obvious pattern 
here-the bigger the disk, the bigger the cluster size, generally; but it's far 
from a strict rule. On the AT model's larger 20-megabyte disk the cluster 
size is half that of the XT: four sectors, 2048 bytes. 

Whatever the cluster size, DOS carves up the data portion of the disk 
into these relatively small clusters and then uses them as the unit of space 
that it allocates to the disk files. This allocation is managed by using the 
File Allocation Table. The FAT is simply a table of numbers, with one 
place in the table for each cluster on the disk. The number that's recorded 
in each cluster's F AT entry indicates if the cluster is in use by a file or 
available for new data. A zero in the cluster's FAT entry means the cluster 
is free. Any other number indicates it's in use (and the number is used to 
link together the different clusters that make up one file's data; we'll see 
more of these technical details in Chapter 10). 

The essence of the FAT is that it gives DOS a distinct and separate 
place to keep track of the allocation of the disk's data space. This isolates 
the space and record-keeping function, which helps protect it from possible 
damage. If you think about it, you'll see why the FAT is the most critical 
part of a disk, the part that most needs to be protected. In fact, the FAT is 
so critical that DOS usually records two separate copies of the FAT on each 
disk. Only the first copy is actually used, but the second copy is made to 
help make it possible to perform emergency repairs on damaged disks. 

The last part of the disk's system area is the root directory. This is the 
file directory that every disk has-it's the basic, built-in directory for the 
disk. (Disks can also have subdirectories added to them, but subdirectories 
are an optional part of a disk that we can create as we need. The root 
directory isn't an optional part of the disk.) 

The directory, of course, records the files that are stored on the disk. 
For each file, there is a directory entry that records the file's 8-character 
filename, the 3-character extension to the filename, the size of the file, and 
a date and time stamp that records when the file was last changed. All those 
parts of a file's directory entry are known to us, because they're shown in 
the DIR listing that we're used to seeing. There are also two other pieces of 
information that are recorded about a file in its directory entry. One is 
called the starting cluster number-which indicates which cluster in the 
disk's data space holds the first portion of the file. The other item in the 
directory entry is called the file attribute-it's used to record a number of 
things about the file. For example, subdirectories have a particular direc

140 



9.2 THE STRUCTURE OF A DOS DISK 

tory attribute marking; DOS's so-called system files have a special pair of 
attributes called system and hidden. There are also two attributes that serve 
us more directly: the read-only attribute protects our files from being 
changed or deleted; the archive attribute is used to help keep track of which 
files on our disk already have or need backup copies. 

The root directory of each disk, like the other items in the system 
portion of a disk, is a ftxed size for each disk format. This size determines 
how many entries there are for files in the root directory. Each directory 
entry occupies 32 bytes, so 16 of them fit into a single sector. The smallest 
diskette format, the single-sided 160K format, has four sectors set aside for 
the root directory, so it has room for 64 files in the directory. A dou
ble-sided diskette has seven directory sectors, making room for 112 files. 
Hard disks have more: for example, the AT's 20-meg disk has 32 sectors, 
making room for 512 file directory entries. 

I mentioned before that the FAT is used to chain together a record of 
where a file's data is stored. Here is how it works. As we saw, each file's 
directory entry includes a field which gives the cluster number where the 
first part of the file's data is stored. The FAT table has a number entry for 
each cluster. If we look up the FAT entry for the first cluster in a file, it will 
contain the number of the next cluster in the file-and the FAT entry for 
that cluster will point to the next one. This way, the FAT entries are 
chained together to provide DOS with a way of tracing through the entire 
contents of a file. When the end of the file is reached, the FAT entry for the 
last cluster doesn't hold the number of another cluster. Instead, it contains a 
special code number marking the end of the file's space allocation chain. 

3 4 8 7 END 

2 3 4 5 8 7 8 9 

Figure 9-4. A file's space allocation in the FAT. 

That finishes our survey of the system portion of a disk. What remains 
is the majority of the disk, the data portion. But we already pretty much 
know everything basic there is to know about this part of a disk. The data 

141 



INSIDE THE IBM PC 

portion is used to record the actual data contents of the disk files. The data 
space, as we've seen, is divided up into units called clusters (which are 
made up of one or more sectors; on each disk the clusters are all the same 
size, but between disk formats the cluster size will vary). Each file's data is 
recorded on one or more clusters (and the record of which clusters, in 
which order, is kept in the disk's File Allocation Table). It's worth noting 
that a file's data can be scattered allover a disk in disjointed clusters. DOS 
generally tries to keep a file's data gathered together into contiguous 
sequential clusters, but with varying activity in the disk's space allocation 
files can end up being stored scattered around different parts of the disk. 

We've mentioned subdirectories, and at this point I should explain that 
each subdirectory acts like a mixture of a data file and the disk's root 
directory. As far as how a subdirectory is recorded on the disk, it's no 
different than any other disk file: the subdirectory is stored in disk's data 
space, and a record of where the subdirectory is located is kept in the FAT, 
exactly like any other file. But when it comes to using the contents of a 
subdirectory, it acts like the disk's root directory: it holds a record of files 
and other subdirectories that are stored on the disk, and DOS works with 
subdirectories just like it works with the main, root directory. There are two 
major differences between subdirectories and root directories. One is that 
there is only one root on each disk, but there can be numerous subdirecto
ries. The other is that each root directory has a fixed size and capacity, 
while subdirectories, like files, can grow to any size that the disk can 
accommodate. 

What we've seen so far gives us all the fundamental information that 
we need to understand the basics of the structure of DOS disks. There is 
more to know about them, of course; there are plenty of fascinating techni
cal details left to explore. We'll get into that in Chapter 10 when we dig 
into deeper disk details. 

9.3 Learning About File Formats 

Each file that we have stored on our disk potentially has its own 
unique data format-the structure of the data that's recorded inside the file. 
It would seem that there is little that we can say about the format of our disk 
files; and in many ways that is true. However, there are a number of 
important observations that we can make about files which will deepen our 
understanding of what's going on inside our disks. 

First, we should note that the three-character extension part of a file
name is intended to be used as an indication of the format and use of a file. 

142 



9.3 LEARNING ABOUT FILE FORMATS 

Some of these filename extensions are standard and must be used to cor
rectly identify the file type; most, though, don't have a strict use, just a 
conventional one. 

The strictly enforced extensions mostly have to do with programs: 
DOS requires that all programs be recorded in one of two special program 
formats, and they must be identified by the standard extension names of 
COM and EXE. Batch command files also must be named BAT. Most 
other filename extensions are optional, but each application program sys
tem is usually designed to work more easily with files that have extensions 
that are standard for the system. For example, the BASIC interpreter 
expects that BASIC program files will be named BAS. Other programming 
languages also expect this: Pascal expects program source files to be named 
PAS, and so forth. Likewise, programs like 1-2-3, Word, and so forth, all 
have their conventional extension names. 

The contents of data files can be very interesting to us, but we have to 
make a special effort to look inside our files-using snooping tools like 
DEBUG or NU, both described in Chapter 22-and often it's hard to 
decode, or otherwise make much sense of what we can see inside a data 
file. However, by looking, we can sometimes find some very interesting 
things. 

There is one very good reason for taking a look at and learning about 
the data formats created by the programs we use: if we ever need to do any 
repair work on our disks, such as "unerasing" deleted files or other such 
file recovery operations. If we learn what our data looks like in advance, 
we have a better chance of recognizing it in an emergency. 

As a general rule, the data files created by our programs have an 
internal structure that is completely jumbled to the human eye. Certain parts 
can be easily recognized if we take a look at them: character text data, such 
as the names and addresses in a mailing list database, are easy to recognize. 
But the parts of the data which hold numbers and formatting information 
describing the layout of the data are usually recorded in a form that is 
thoroughly cryptic, and can only be deciphered by the programs that work 
with the data. 

One special kind of file, though, has a pattern to it that we should be 
able to recognize fairly well: these are data files made up of what are called 
"fixed length records" -a repeated pattern of data where content of the 
data varies, but each element has the same length, so that we can notice a 
repeated pattern, even when the actual data itself isn't recognizable. This is 
the kind of data that BASIC uses for its random files. Since the data records 
in this kind of file are all the same length, BASIC can calculate its way to 
the location of any randomly specified record number without having to 

143 



INSIDE THE IBM PC 

search through the file from the beginning. Whenever we look at one of 
these data files that is built from fixed-sized elements, we may be able to 
recognize the pattern in it and decode some of the file's data. 

By exploring and digging through our files data, we can learn a great 
deal about how our computers and programs work with disk data. 

9.4 ASCII Text Files 
There is one particular file format that every PC user needs to know 

about, the ASCII text file format. ASCII text files-which are also called 
ASCII files or text files for short-are the closest thing the PC family has to 
a universal format for data files. While most programs have their own 
special way of recording data, the ASCII text file is a common format that 
can be used by any program, and is used by very many of them. 

ASCII text files are designed to hold ordinary text data, like the words 
that you are reading. ASCII text files are used by many simple text editing 
programs (such as the EDLIN editor program that is a part of DOS), and 
some word-processing programs also work directly with ASCII text files. 
However, most programs, including word processors, the BASIC inter
preter, spreadsheet programs, and many others, use the ASCII text file 
format as an alternative to their own "native" data formats. These pro
grams are prepared to work with ASCII text files simply because the ASCII 
text file format is something of a last resort way of transferring data from 
one program to another. Often, in fact, more than a last resort, it's often the 
only way to get data from here to there. 

ASCII text file data is rather nude-it isn't clothed in the rich format
ting that most programs use for their data. But, when we need to pass data 
from one place to another, it's often the only reasonable way to get it done. 

When I said that most programs have their own special data formats 
that are different than ASCII text files, I was really referring to applications 
programs such as databases, spreadsheets, and so forth. There are also 
many programs which expect to work only with the simple and common 
data format of ASCII text files. Programming language compilers and 
assemblers expect to read their program source code from plain ASCII text 
files. Some other programs too are intended to work primarily with ASCII 
text files, such as IBM's spelling checker WordProof. Among programs 
that are, one way or another, writing tools, there is an informal division 
between the simple ones which use ASCII text files (e.g., many text-editing 
programs and spelling checkers) and the complex ones that use their own 
custom data formats (e.g., most word-processing programs). Finally, there 

144 



9.4 ASCII TEXT FILES 

is one further and very important use for ASCII text files which I need to 
mention: batch command files, which allow DOS to carrY out a series of 
commands together as a single unit; these batch files are kept in the text file 
format. 

The data in a text file is composed of two character types: ordinary 
ASCII text characters-letters of the alphabet and so forth-which we 
learned about in Section 4.2 and the ASCII control characters, covered in 
Section 4.3. The regular text characters are the principle data in an ASCII 
text file, while the ASCII control characters tell how the text is formatted: 
they mark its division into lines and paragraphs and so forth. 

There is no strict definition about how our programs and computers are 
supposed to make use of ASCII text files. Instead, all the programs that 
work with ASCII text files use the most basic elements of this file format, 
and some programs go further and make use of some of the less-common 
formatting control characters. Let's start by describing the most common 
elements. 

• 	 A pair of ASCII control characters are used to mark the end of each 
line: the characters carriage-return and line-feed (known in ASCII 
terminology as CR and LF; they are character codes 13 and 10, or 
hex OD and OA). These two, together as a pair, are the standard 
way to mark the end of a line of text. 

• 	 One ASCII control character is used to mark the end of the file of 
text data. It's the Control-Z character, code 26 or hex 1A. In most 
tables of ASCII control characters this code is called SUB, but 
since it's used here to mean End-OJ-File, it's also called EOF. 
Normally an ASCII text file has this End-oj-File character to mark 
the end of the text data. 

• 	 The tab character is used as a substitute for repeated spaces; its 
character code 9, and the ASCII term for it is HT, short for hori
zontal tab. Tab appears in many ASCII files, even though there is 
no universal agreement about just where the tab stops are. Most 
programs (but, unfortunately far from all) handle tabs on the 
assumption that there is a tab stop every eight positions (at the 9th, 
17th, etc., columns). 

• 	 The Jorm-Jeed character is used to mark the end of one page and the 
beginning of the next; the character code is 12, hex OC, and the 
ASCII name is FF. This control character is also called page eject. 

An ASCII text file can contain any of the control characters that you 

145 



INSIDE THE IBM PC 

saw in Section 4.2 (they're summarized in Table 4-1, on page 49), but most 
often the only ones used are the five I just described, and in many cases 
even the last two-tab and form-feed-aren't used, to keep the coding as 
simple as possible. 

There are several commonly used ways to indicate the division of text 
data into paragraphs. The most common form marks the end of each line of 
text with a carriage-returnlline-feed pair. This is the form that compilers 
expect to find their program source code in. When this form is used to mark 
words, sentences, and paragraphs, it's common to indicate the end of a 
paragraph by a blank line (that is, two pairs of carriage-returnlline-feeds in 
a row, with no other data in between). Sometimes, though, we'll see ASCII 
text files in which each paragraph is treated as a single, very long line, with 
a carriage-returnlline-feed pair at the end of the paragraph, but nowhere 
inside the paragraph. Some word-processing programs like to create ASCII 
text files like this. 

Because there are these different ways of laying out an ASCII text file, 
there can often be conflicts between the way one program expects a text file 
to be and the way another program expects it. We often find that different 
programs are at odds with each other when we try to use ASCII text files as 
a way of transferring data between them. For example, if we try to use 
ASCII text files to pass something we've written from one word-processing 
program to another, we may find that what one program considered to be 
just lines that make up a paragraph the other program considers to be 
separate paragraphs. This sort of nonsense can be very annoying to deal 
with. Nevertheless, ASCII text files are the closest thing our computers 
have to a universal language which every program can speak. That's why 
you may find yourself working with ASCII text files more often than you 
expect to. 

We usually think of ASCII text files as containing either words, like 
the sentences and paragraphs you are reading here, or program source code, 
like the programming examples that you have seen throughout this book. 
But any form of data can be translated into an ASCII text format, one way 
or another. So, we might find some text files that consist only of numbers, 
written out in ASCII characters. This is the way that programs can use 
ASCII text files to exchange data that isn't made up of words. For example, 
the Data Interchange File, or DIF, standard uses ASCII text files to trans
fer data between spreadsheets and other programs that know how to inter
pret "DIF" data. These DIF files are simply ASCII text files whose text 
describes, for example, the contents of a spreadsheet, all expressed in 
ASCII text characters rather than the internal coded format that the spread
sheet program uses for itself. 

146 



9.4 ASCII TEXT FILES 

To get a more concrete idea of what an ASCII text file looks like, let's 
create an example. Suppose we had a text file with these two lines in it: 

columbus sailed the ocean blue 
In fourteen hundred and ninety two. 

To see what that looks like inside an ASCII text file, I'll write it out 
again in a way that represents what would be in the text file's data. To do 
that, I'll indicate the control code characters with (CR) for carriage return 
and so forth. Here's what our two-line rhyme looks like: 

columbus sailed the ocean blue(CR) (LF) 
In fourteen hundred and ninety two. (CR) (LF) (EOF) 

The more advanced tinkering you do with your computer, the more 
likely it is that you will find yourself working with, or looking at, ASCII 
text files. When you do, there is one anomaly that you may run into that 
you should know about so that it doesn't confuse you. It has to do with the 
way ASCII text files are ended and the size of the file. 

I mentioned earlier that the Control-Z end-of-file character, code 26, is 
normally used to mark the end of a text file's data. There are several 
variations on just how that is done. The cleanest and strictest form has the 
Control-Z end-of-file character stored right after the last line of text (the 
way I show in our example above). The length of the file, as recorded in the 
file's disk directory, includes the end-of-file character in the size of the file. 
Sometimes though, a file may appear to be bigger, judging from the size 
recorded in the disk directory. This is because some programs work with 
text files not byte by byte, but in chunks of, say, 128 bytes at a time. When 
this kind of program creates a text file, the Control-Z end-of-file character 
will show where the true end of the file is, but the file's disk directory entry 
will show a length that's been rounded up to the next higher multiple of 
128. In cases like that, the real length of the file is slightly smaller than 
what we would expect it to be, based on the size in the directory. There is 
another way that an ASCII text file might appear odd to us: it could be 
recorded without a Control-Z end-of-file character marking the end. In this 
case, the file size recorded in the directory indicates the true size of the file, 
and there's no end-of-file marker, on theory that none is needed, since the 
size tells us where the end is. Any time we take a close look at the insides 
of an ASCII text file, or any time we write a program to read them, we 
need to be prepared for variations like this in the way the end of the file is 
indicated. 

147 



INSIDE THE IBM PC 

Some Things to Try 

1. 	 If you have the NU program, use it to explore the dimensions of 
your disks and see the size of the clusters which DOS creates on 
your disks. You'll find the cluster information displayed in NU's 
menu selection 2.2. 

2. 	 Why is the FAT the most critical part of a disk? What makes it 
more important than the directory portion? There is a DOS file 
recovery utility called RECOVER that can recreate a disk's direc
tory if the directory is damaged but the FAT is not. How do you 
think this is this possible? Could there be a similar program that 
will recreate a damaged FAT if the directory was intact? 

3. 	 To see how BASIC can record its program files in two forms, in 
BASIC's own coded format or in the ASCII text file format, enter 
a short BASIC program (just a line or two of any BASIC pro
gram) and then save it to disk in both formats, using these com
mands: SAVE "BASFORM" and SAVE "TEXTFORM" ,A. 
Then see the differences between the two files: compare their 
sizes using the DIR command. See how their contents differ by 
using the TYPE command to print them on your computer's dis
play screen. If you know how to snoop in files using DEBUG or 
NU (see Chapter 23 to learn how if you don't), inspect the con
tents of the two files with either of these two snooping tools. 

148 



10 
Disks: 

Deeper Details 


T
his is the last leg of our three-chapter journey though the PC 
family's disk storage. Here we'll move into some of the deeper 
and more technical details of how our computers use their disks. 
We'll be covering what's special about hard disks and the way 

that our computers work with them. Then we'll see the details of how DOS 
works with our disks, expanding on what we covered in Chapter 9. Finally, 
we'll close our treatment by looking at some special disk peculiarities, 
including copy protection and nonstandard disk formats. 

As you've seen so far, this book is divided, in an informal way, into 
two parts, with the more technical information separately identified, so that 
readers who want to focus on understanding the PC could easily pass over 
the technical parts. Most of this chapter falls into that category, but there is 
one part that I don't want you to miss: that's the discussion of hard disks 
and particularly hard disk partitions. If you want to understand all the most 
important practical things about the PC family, you need to be sure to know 
what's what with hard disks. 

10.1 Hard Disk Features and Partitions 

Hard disks present some special challenges to the designers of com
puters that just don't apply to diskettes. The most obvious thing that's 
different about a hard disk is that it has a storage capacity that's much 
bigger than a diskette. In nearly everything in life there comes a point when 
a quantitative difference becomes a qualitative difference-when more isn't 
just more, it's also different. That's the case with our computer's hard 
disks: their storage capacity is so much more than a diskette's that it also 
has to be treated differently than a diskette. A hard disk's greater capacity, 
and also its much faster speed, is part of what's special about a hard disk, 

149 



INSIDE THE IBM PC 

but oddly enough it isn't the most critical difference. What's most different 
about a hard disk is that it isn't removable. 

I've been using the term "hard disk" because that's what nearly eve
rybody likes to call them. But IBM's own term for them is "fixed disk"-a 
name that emphasizes the key fact that, unlike a diskette, a (fixed) hard disk 
is built into the machine and can't be casually switched to change the data 
that's on-line to our computer. 

(We should note here that there are some hard disk systems that have 
removable disk cartridges, so that they aren't fixed; they are as changeable 
as a floppy diskette. One widely known brand of cartridge disk system is 
the Bernoulli Box. This type of disk combines the size and speed of a 
conventional hard disk with the removability of a diskette. Our discussion 
of hard disks (or more properly fixed disks) here mostly does not apply to 
these cartridge hard disk systems.) 

The fact that a fixed hard disk is fixed presents a special problem: 
we're stuck with the disk in our computer, we can't switch it for another 
one in a different format or set it up to accommodate another operating 
system. While most of us work exclusively within the framework that DOS 
creates for our computers, DOS isn't the only operating system around
there are others for the PC family, including CPIM-86 , the UCSD 
p-System, Xenix, and PC-IX (a pair of operating systems derived from the 
well-regarded UNIX system) and others. 

The idea here is that there is no problem with a diskette being 
"owned" by an operating system like our DOS--owned in the sense that 
the diskette has a format and logical structure that only applies to the 
program (DOS) which works with the disk. Likewise, there's no funda
mental problem with a game program using its own peculiar diskette 
format if it wants to (which many games do, just for copy-protection 
reasons). Although odd diskette formats can be a nuisance for us, it's not 
any fundamental problem for our use of our PCs, simply because our 
machines aren't committed in any sense to always using these odd for
mats, since we can just switch our diskettes around, take one out, and put 
another on it. 

With a (fixed) hard disk the situation is completely different. If our 
hard disk is "owned" by one operating system (say our DOS), then we 
can't use it with another operating system (say any of the increasingly 
popular UNIX-type systems). Since almost everything that we do with our 
PCs is based on DOS, we'd be tempted to say "So what?" But that is a 
very short-sighted view. The world of computing is always changing, and 
it's quite likely that the operating system that we use for our computers 
today isn't the one we'll use a few years hence. Even today, there are PC 

150 



10.1 HARD DISK FEATURES AND PARTITIONS 

users who find good reasons to use systems besides DOS. How do we 
accommodate different operating systems, with incompatible ways of struc
turing the use of a disk, all on one hard disk? 

The answer, of course, is partitioning: dividing a hard disk into areas 
which can be "owned" by different operating systems. Within the confines 
of each partition, the disk can be formatted and logically structured to meet 
whatever the needs are of the operating system that "owns" the partition. 

This arrangement allows for a great deal of flexibility in the use of our 
hard disks, but it relies on some across-the-board standards that every pro
gram using the disk must follow. There has to be a variety of master format 
that the disk has which all the operating systems on the disk must live 
within. Part of this common ground is the actual physical formatting of the 
disk, which sets, among other things, the sector size that will apply in every 
partition on the disk. This points up the distinction between physical and 
logical formatting that we discussed in Chapter 9. But a common sector 
size isn't all there is to the common ground and rules of coexistence that 
apply to a partitioned hard disk. There also has to be standard way of 
marking off the boundaries of a disk's partitions; and each operating system 
using a partitioned disk has to agree to stay within its own bounds and not 
poach on another partition's territory. 

Here is how it's done. The very first sector of a hard disk is set aside 
for a special master record, which contains a partition table describing the 
layout of the disk. This table shows what the dimensions of the disk are, 
and shows how many partitions there are, and what the size and location of 
each is. Now a disk doesn't have to be divided into more than one parti
tion-in fact, the most common thing on our PCs is to have only one 
partition, a DOS partition, which takes up the entire disk. However many 
partitions there are on the disk-from one to four-and whether they take 
up the whole disk or leave part of it for future use, this master disk record, 
stored on the first sector of the disk, shows how many there are, and where 
they are located in the hard disk. Figure 10-1 gives you a picture represent
ing what this is like. 

By far the most common thing that PC owners do is to ignore the extra 
possibilities and complexity that disk partitioning brings us. Instead, most 
of us simply create a single DOS partition that fills the entire hard disk, and 
use it as if DOS owned the whole disk and as if there were no such thing as 
partitioning. This, in fact is the most sensible thing to do. Until you have a 
need for another partition, which may never happen, there is no reason to 
set aside hard disk space in case you might need another partition in the 
future. We can take care of that problem when the time comes. 

To deal with partitions on our hard disks, DOS has a program called 

151 



INSIDE THE IBM PC 

Partition Partition Partition Unused 
1 2 3 

Figure 10-1. A partitioned hard disk. 

FDISK, which can display and change partition data. Figure 10-2 shows a 
typical display of partition data, for a disk that's devoted entirely to DOS. 
There can be up to four partitions in the list that FDISK displays. Each will 
have its own starting and ending location and size in disk cylinders. 
Together they can take up the entire disk (as you see in Figure 10-2) or 
leave parts of the disk open. 

The FDISK program allows us to manipulate the disk partitions while 
we're working with DOS. If we're working with other operating systems, 
they should have equivalent programs. DOS's FDISK allows us to create or 
delete a DOS-owned partition, but it doesn't allow us to remove a partition 
that belongs to another operating system. This seems like a good safety 
feature, but it has its disadvantages: if we end up with an unwanted parti
tion from another system, we can't blow it away from DOS, so we could 
end up being stuck with a bum partition (this has happened to acquaintances 
of mine). 

Suppose we've devoted our entire hard disk to DOS and now we want 
to surrender some of the space to make room for another partition? Can we 
simply give up the space? Unfortunately not. The way DOS structures it's 
disk partitions, it can't just simply shrink the partition. If we need to resize 
a DOS partition (to make it smaller or larger), we need to unload all the 
contents of the partition (say with the DOS utility BACKUP), delete the 
partition (with FDISK), create a new partition, format it (with FORMAT) 
and reload the data (with RESTORE). That can be a laborious process, 
which we can avoid by leaving room for new partitions when we first start 
using our hard disks. We could leave room, but I don't recommend it. I 
think that unless we know for sure that we'll be needing another partition, 
we're better off letting DOS use all of our hard disks, and face the chore of 
repartitioning when the need arises. 

152 



10.1 HARD DISK FEATURES AND PARTITIONS 

Display Partition Information 

Partition Status Type Start End Size 
1 A DOS 0 613 614 

Total disk space is 614 cylinders. 

Press Esc to return to FDISK Options 

Figure 10-2. Hard disk partition data. 

In Figure 10-2 you'll notice that the sole partition is marked with 
status "A": that means that it is the active partition. On any partitioned 
disk, one partition at a time is marked as active. This has to do with the 
start-up, or booting, process. We know that every ordinary disk has a boot 
program on its fIrst disk sector, which begins the process of starting up or 
booting the operating system. The same thing applies to a partitioned hard 
disk, but there is an extra set involved. The fIrst sector of a partitioned hard 
disk contains a "master boot program" along with the table that describes 
the partitions. This master boot program looks at the partition table to see 
which partition is active. Then it fIres up the boot program starting that 
partition. Each partition has its own boot program (just as each diskette has 
a boot record) that is tailored to the needs of the particular operating system 
which owns that partition. The master boot record does the job of fInding 
the right partition boot record and getting it going. 

We've spoken of disk partitions as belonging to distinct operating sys
tems, but that isn't always the case. OffIcially there can be only one DOS 
partition on a hard disk, but sometimes there are actually two or more, and 
for an important reason. As we saw in Chapter 9, DOS ordinarily has a 

153 



INSIDE THE IBM PC 

32-megabyte limit to the size of the disks it can work with. What if we have 
a larger disk, say a 70 meg disk? The DOS partition that we create on such a 
disk ordinarily couldn't be bigger than 32 megs, leaving the rest of the disk 
unavailable to DOS. But, we can create other DOS-style partitions on the 
disk, and access them through a special DOS device driver. Using this trick, 
we can use the entire disk for DOS data, although it would be divided up into 
separate partitions (which we would treat as if they were separate disks). 

You can see from all this that partitions are a special key to making the 
large storage space of hard disks work for us, with an extra flexibility that 
just doesn't apply to our diskettes. With this large size and extra flexibility, 
though, comes an additional degree of complexity that we have to master, 
if we want to get the full benefit from our computer's hard disks. 

Next, we're going to look inside the structure that DOS places on our 
disks, and see some of the fascinating technical details of how DOS man
ages our disks. 

TECHNICAL BACKGROUND I I I •• • _________ 

10.2 Detailed Disk Structure 

In this section we're going to take a deeper look at the way DOS 
structures a disk, so we can better understand what's going on with our 
disks. That will help us appreciate and use our disks when everything is 
going right with them, and it may help us work our way out of trouble when 
something goes wrong. 

As we saw in Chapter 9, DOS divides each disk into two parts: the 
system part, used for DOS's record-keeping, and the data part, where our 
files are stored. The system portion itself has three parts: the boot record, 
the FAT (File Allocation Table), and the root directory. Now we'll get a 
closer look at what's stored inside each one. 

The boot record is always the very first part of each disk. As we 
learned before, it's used to hold a short program which begins the process 
of starting up ("booting") DOS. The boot record is present on every disk, 
even those we can't boot from (because they don't contain a copy of the 
DOS system files). 

The boot program is small enough to easily fit into a single disk sector, 
so it isn't necessary for the boot portion to take up more than one sector. 
But in case some future circumstance does make it necessary to have a 
larger boot program, DOS's method of handling disks allows for the possi
bility that the boot area might have to become larger. 

154 



10.2 DETAILED DISK STRUCTURE 

There are more interesting things inside the boot record of a disk than you 
might imagine. We can use the DOS DEBUG program to inspect the contents 
of a boot record; it only takes two simple DEBUG commands: L 0 0 0 1, 
which reads into memory the boot record from a disk in the A drive, and D 0 
L 200, which displays the boot record's data in hex and ASCII. Figure 10-3 
shows what this information looks like for DOS version 3.10. 

2B35:0000 EB 29 90 49 42 4D 20 20-33 2E 31 000202 01 00 
2B35: 0010 02 70 00 DO 02 FD 02 00-09 00 02 00 00 00 00 00 
2B35:0020 000000 00 OF 00 00 00-00 01 00 FA 33 CO 8E DO 
2B35:0030 BC 00 7C 16 07 BB 78 00-36 C5 37 IE 561653 BF 
2B35:0040 20 7C B9 OB 00 FC AC 26-80 3D 00740326 8A 05 
2B35: 0050 AA 8A C4 E2 F1 06 IF 89-47 02 C7 07 20 7C FB CD 
2B35: 0060 13 72 67 AO 10 7C 98 F7-26 16 7C 03 06 1C 7C 03 
2B35:0070 06 OE 7C A3 34 7C A3 2C-7C B8 20 00 F7 26 11 7C 
2B35: 0080 8B IE DB 7C 03 C3 48 F7-F3 01 06 2C 7C BB 00 05 
2B35:0090 Al 34 7C E8 96 00 B8 01-02 E8 AA 0072 19 8B FB 
2B35:00AO B9 OB 00 BE BE 7D F3 A6-75 OD 8D 7F 20 BE C9 7D 
2B35: OOBO B9 OB 00 F3 A6 74 18 BE-5F 7D E8 61 00 32 E4 CD 
2B35:00CO 16 5E IF 8F 04 8F 44 02-CD 19 BE A8 7D EB EB Al 
2B35:00DO 1C 05 33 D2 F7 36 OB 7C-FE CO A2 31 7C Al 2C 7C 
2B35: OOEO A3 32 7C BB 00 07 Al 2C-7C E8 40 00 Al 18 7C 2A 
2B35:00FO 0630 7C 40 50 E8 4E 00-5872 CF 28 06 31 7C 76 
2B35:0100 OC 01 06 2C 7C F7 26 OB-7C 03 D8 EB D9 8A 2E 15 
2B35: 0110 7C 8A 16 IE 7C 8B IE 32-7C EA 00 00 70 00 AC OA 
2B35:0120 CO 74 22 B4 OE BB 07 OO-CD 10 EB F2 33 D2 F7 36 
2B35:0130 18 7C FE C2 88 16 30 7C-33 D2 F7 36 1A 7C 8816 
2B35: 0140 IF 7C A3 2E 7C C3 B4 02-8B 16 2E 7C Bl 06 D2 E6 
2B35:0150 OA 36 30 7C 8B CA 86 E9-8B 16 IE 7C CD 13 C3 OD 
2B35:0160 OA 4E 6F 6E 2D 53 79 73-74 65 6D 20 64 69 73 6B 
2B35:0170 20 6F 72 20 64 69 73 6B-20 65 72 72 6F 72 OD OA 
2B35:0180 52 65 70 6C 61 63 6520-61 6E 64 20 73 74 72 69 
2B35:0190 6B 65 20 61 6E 79 20 6B-65 79 20 77 68 65 6E 20 
2B35:01AO 72 65 61 64 79 OD OA OO-OD OA 44 69 73 6B 20 42 
2B35:01BO 6F 6F 74 20 66 61 69 6C-75 72 65 OD OA 004942 
2B35:01CO 4D 42 49 4F 20 20 43 4F-4D 49 42 4D 44 4F 53 20 
2B35:01DO 2043 4F 4D 00 00 00 00-00 00 00 00 00 00 00 00 
2B35:01EO 0000000000 00 00 00-00 00 00 00 00 00 00 00 
2B35:01FO 0000000000 00 00 00-00 00 00 00 00 00 55 AA 

Figure 10-3. A boot record displayed. 

.) . IBM 3.1 .. 

. p .... .. 

............ 3.. . 

.. I ... x.6. 7.V.S. 
I ..... &.:.t.&.. 

.. G.. I. 
. rg .. I .. &. I ... I. 
.. 1.41., I... &. I 
... I .. H.... , I. 
.41 ......... r .. 

.} .. u.. .} 
..... t .. _}. a. 2.. 
.•.... D..... }... 
.. 3.. 6. I ... 11., I 
. 21 .... , I . @... 1* 
.01@P.N.Xr. (.llv 
... ,1.&. I .. . 
I ... I .. 21 ... p.. 
. t'.... . .3 .. 6 
.1 .... 013 .. 6.1. 
. I .. I ...... I .. 
.601 ....... I .. 
.Non-System disk 
or disk error .. 

Replace and stri 
ke any key when 
ready..... Disk B 
oot failure ... IB 
MEIO COMIBMDOS 

COM ... 

..... U. 

There are several obvious things that we can see looking at this boot 
record. The error messages, and the names of the two DOS system files 
(IBMBIO.COM and IBMDOS.COM) give us an idea of some of the things 
that can go wrong during the boot process, and it also, indirectly, tells us 
that the boot program checks for these two names in the disk's directory, to 
see that it is a system disk. You'll also see, near the beginning, a version 

155 

http:IBMDOS.COM
http:IBMBIO.COM
mailto:01@P.N.Xr


INSIDE THE IBM PC 

marker that reads "IBM 3.1". Not so obvious, but quite interesting, is that 
this version marker is just the first element in a table describing the charac
teristics of the disk to DOS. The table includes key information such as the 
number of bytes per sector, sectors per track, and so on (the physical 
dimensions of the disk), and also the size of the FAT and the directory (the 
logical dimensions of the DOS structure on the disk). This table, and also 
an identifying signature at the end of the record, (hex 55 AA) are included 
in all disks except those formatted for versions of DOS earlier than version 
2.0. 

DOS needs to identify all the characteristics of each disk that it works 
with. In the earliest versions of DOS, when there were only a few disk 
formats, knowledge of those characteristics was built into DOS, and all 
DOS needed from a disk was a single-byte ID code (which is stored in the 
FAT) to know everything it needed about a disk. That approach isn't really 
flexible enough, though, so now DOS learns what it needs to know about a 
disk from the information table in the boot record. 

If you want to decode the boot program to study it, you can use 
DEBUG's U-unassemble command. To see all of it, you'll have to unas
semble it in pieces, and look to the addresses used in any "jump" com
mands to see where other parts of the program code begin. For the boot 
record shown in Figure 10-3, these two unassemble commands will get you 
started: U 0 L 2 and U 2B. 

Immediately following the boot record on each disk is the File Alloca
tion Table, or FAT, which controls the use of file space on the disk. As we 
discussed in Chapter 9, the data portion of a disk is divided into clusters of 
segments, and the clusters are the units of space that are allocated to files. 
Each cluster is identified by a sequential number, beginning with number 2 
for the first cluster on a disk (cluster numbers 0 and 1 are reserved for the 
convenience of DOS). Regardless of the cluster size (which might be a 
single sector, or as much as eight sectors or more) each cluster has an entry 
in the FAT which records its status. 

Since what's stored in each cluster's FAT entry is the identifying 
number of another cluster, the total number of clusters identifies how big a 
FAT entries need to be. Originally the FAT entries were stored as 12-bit 
numbers, which could accommodate numbers as large as 4K-and that set 
a limit of about 4,000 on the possible number of clusters. However, the 
design of the AT model's 20-meg hard disk called for over 10,000 clusters; 
that, in tum, required a larger FAT design. So, now there are two FAT 
formats: one, for smaller disks, with entries 12 bits in size, and one with 
entries 16 bits in size. The difference between the two is only in how the 
FAT itself is stored; the way the FAT is used is the same for both sizes. 

156 



10.2 DETAILED DISK STRUCTURE 

If a FAT entry is zero, that indicates that the corresponding cluster is 
not in use-it's free for allocation to any file that needs it. For clusters that 
hold file data, the FAT entry contains either the identifying number of the 
next cluster or a special number which marks the end of a file's space 
allocation chain. The clusters where a file is stored are "chained" together 
by the numeric links that are stored in the FAT. The file's directory entry 
indicates the first cluster number, and each cluster points to the next clus
ter, or indicates the end of the chain (the end marker is hex FFF for a 12-bit 
FAT, FFFF for a 16-bit FAT). This allows DOS to trace the location of a 
file's data from front to back. Portions of a disk which are defective and 
shouldn't be used-so-called "bad track" areas-are identified by a FAT 
entry of FF7 (or FFF7 for a 16-bit FAT). Other special FAT codes, FFO 
through FFF or FFFO through FFFF, are reserved for any needs that may 
arise in the future. 

You'll note that the special FAT codes are kept to the 16 highest 
values (for either FAT format), so that there are as many usable cluster 
numbers as possible: up to 4078 for 12-bit FATs and 65,518 for 16-bit 
FATs. As we know, the number 0 is used to identify available clusters, and 
the number 1 is also reserved for a technical reason. 

Both 12-bit and 16-bit FATs are used the same, but each is recorded in 
its own way, to take account of the difference in the size of the entries. 
There's nothing special about how a 16-bit FAT is stored: 16-bit numbers 
are part of the PC's natural scheme, and so the numbers in a 16-bit FAT are 
simply stored as a list of 2-byte words. For 12-bit FATs, things are more 
complicated. The PC's microprocessors don't have any natural and conve
nient way to record numbers that are 1'h. bytes long. To deal with this 
problem, the FAT entries are paired, so that two FAT entries take up three 
bytes with no wasted space. The method of coding two 12-bit numbers in 
three bytes is set up to be as convenient as possible to handle with assembly 
language instructions, but it's rather difficult for us to make sense of it if 
we look at the hex coding for this kind of FAT. 

Each FAT table actually begins with the entry for cluster number 0, 
even though the first actual cluster is number 2. The first two FAT entries 
are dummies, and they are used to provide a place to store an ID byte that 
helps DOS identify the disk format. The very first byte of the FAT contains 
this code. For example, the hex code FE identifies the PC's original 160K 
single-sided diskette format. 

To help safeguard the FAT, DOS can record more than one copy of 
the FAT. Usually disks have two copies of the FAT stored on them, 
although it's possible for a disk to have only one copy, or more than two. 
However many copies of the FAT there are, they are stored one after 

157 



INSIDE THE IBM PC 

another. To the best of my knowledge DOS does not make any use of the 
second copy of the FAT, although it carefully records it each time the FAT 
is changed. 

The next and final element of the system portion of each disk is the 
root directory, which is stored immediately following the disk's FATs. The 
directory works as a simple table of 32-byte entries that describe the files 
(and other directory entries such as a volume label) on the disk. 

The directory entries record, as we noted in Chapter 9, the 8-byte 
filename, the 3-byte filename extension, the file's size, the date and time 
stamp, the starting cluster number of the file, and the file attribute codes. 
There is also an unused 10-byte field in each directory entry that can be 
used to take care of future needs. There are a lot of interesting things for us 
to discover in these directory entries. For example, in the filename field, 
there are two special codes that are used in the first byte of the filename. If 
this byte is 0, it indicates that the directory entry (and any following entries 
in this directory) has never been used; this gives DOS a way of knowing 
when it's seen all the active entries in a directory without having to search 
to the end. Another code, hex E5, is used to mark entries that have been 
erased. That's why, whenever we work with erased files (using my 
UnErase program or any similar program) we don't see the first character of 
the erased file's name; that's because when a file is erased, the first charac
ter of the filename is overwritten with this hex E5 erasure code. Inciden
tally, when a file is erased (or a subdirectory removed) nothing else in the 
directory entry is changed: all the information is retained. The only thing 
that's done when a file is erased is that the filename is marked as erased, 
and the file's space allocation in the FAT is released. 

There's one more special and interesting thing to know about the file
name and extension fields. For files and subdirectories, these two are 
treated as separate fields. But when a directory entry is used as a disk's 
volume label, the two together are treated as a single unified ll-character 
field. When a disk's volume label is displayed (as it is by the DIR and 
CHKDSK commands) the label isn't punctuated with a period the way 
filenames are. 

The size of each file is stored in the file's directory entry as a 4-byte 
integer, which accommodates file sizes much larger than any disk we could 
use-this guarantees that our files won't be limited by the size that can be 
recorded in the file directory. Incidentally, the file size is recorded only for 
true files. Other types of directory entries have their file size entered as 
zero. That makes sense for the directory entry which serves as a volume 
label, but it's a little surprising for subdirectories. Even though subdirecto
ries are stored in the data portion of a disk the same way files are, and even 

158 



10.2 DETAILED DISK STRUCTURE 

though a subdirectory has a size to it, it's not recorded in the subdirectory's 
own directory entry. 

The date and time stamp in each directory entry is formatted in a way 
that can record any date from January 1, 1980, through the end of 2099; the 
time stamp records times to an accuracy of two seconds, although when 
DOS shows us the time stamp it only displays the time to the minute. The 
date and the time are separately recorded in two adjacent 16-bit words, and 
each is coded according to its own formula. However, the way they are 
stored allows the two together to be treated as a single 4-byte field that can 
be compared in a single assembly language instruction to learn if one stamp 
is earlier or later than another. The date and time are coded into 2-byte 
numbers by these formulas: 

DATE = DAY + 32 * MONTH + 512 * (YEAR -1980) 

TIME = SECONDS / 2 + 32 * MINUTES + 2048 * HOURS 

The final item of interest to us inside a directory entry is the file 
attribute byte. This single byte is treated as a collection of eight flags, each 
controlled by a single bit. Six of the eight are currently in use, while the 
other two are available for future use. Two of the six attribute bits are 
special and are used by themselves, without any other bits set: one marks a 
disk's volume label directory entry; the other marks a subdirectory entry, so 
that DOS knows to treat it not as a file but as a subdirectory. The other four 
attributes are used to mark files, and they can be set in any combination. 
One marks a file as read-only, not to be modified or erased; another marks 
a file as having been changed. This is used by the BACKUP program (and 
similar programs) to indicate which files need to have backup copies made. 
The final two attributes are called "hidden" and "system"; they are used 
to make a file invisible to most DOS commands. There is essentially no 
difference between hidden and system status. The two DOS system files 
that are on every bootable system disk are both marked as hidden and 
system. As an interesting oddity, hidden or system files are invisible to the 
DOS commands DIR, COPY, and DEL, but they are seen by the TYPE 
command; you can verify that for yourself by entering the command TYPE 
IBMDOS.COM on a system disk. 

Like the other elements of the system portion of a disk, the root direc
tory has a fixed size for each disk, so that DOS knows exactly where to find 
the beginning of the directory, and the beginning of the data area that 
follows it. This means that the root directory can only hold so many entries, 
which is a rigid limit. Subdirectories, on the other hand, don't have that 

159 

http:IBMDOS.COM


INSIDE THE IBM PC 

problem. While subdirectories work essentially just like the root directory, 
they are stored in the data portion of the disk-just as though they were 
ordinary files-and they can grow to any size that the disk can accommo
date. Using subdirectories, which were introduced with DOS version 2.00, 
avoids any arbitrary limit on the number of files that a disk can hold. 

Menu 1.5 

Select Disk Sector 

You may select a sector numbered from 0 through 319 

Enter sector number: 

Press Esc or Enter to return to Top Level Menu 

Outline of Sector Usage on This Disk 

o Boot Area (used by DOS) 
1 - 2 FAT Area (used by DOS) 
3 - 6 Directory Area (used by DOS) 
7 - 319 Data Area (where files are stored) 

Currently selected: No file or disk sector selected 
Drive B: Directory: root directory 

Figure 10-4. Showing the sizes of parts of the disk. 

As we've mentioned, each element of the system portion of a disk has 
a fixed size for that particular disk format. The boot record is always one 
sector. The FAT varies from as little as two sectors on a 160 kilobyte 
diskette to much larger sizes, such as 82 sectors on the AT's 20-meg hard 
disk. The root directory also varies, so that on a lOOK byte diskette it has 
64 entries and occupies four sectors, and on a 20-meg disk it has 512 
entries and fills 32 sectors. If you have my NU program, you can see the 
size of each part of the disk, using menu selection 1.5. Figure 10-4 shows 
an example of this information for a standard 160K diskette. 

The final and largest part of each disk is the data space. As you can 
imagine, there aren't quite as many fascinating details to discover about this 
part compared to the system part of the disk, but there are interesting things 
there. We know that our file data can have any length, but the file data is 
always stored on complete 512-byte disk sectors, and the sectors are allo
cated to files in complete clusters. So at the end of most files there is some 

160 



10.3 NONSTANDARD FORMATS AND COPY PROTECTION 

slack filling out the last sector that's used, and there may even be com
pletely unused slack sectors at the end of the last cluster assigned to a file. 

When DOS writes file data out to the disk, it doesn't do anything to 
clean up these slack areas. Any slack sectors are just left undisturbed from 
whatever was recorded there before. In the case of any slack bytes at the 
end of the last sector of a file, we'll pick up whatever was stored in the 
computer's memory area where DOS was putting the sector's data together; 
usually it's a small fragment of other disk data-part of another file, or part 
of a directory. If you inspect the slack area at the end of a file, you'll find 
these odds and ends. 

10.3 Nonstandard Formats and 
Copy Protection 

Nearly everything that we've learned so far about our disks has to do 
with the standard way that DOS formats and structures a disk. But our 
computer's disks aren't bound by the rules that DOS follows; there are 
many other possible ways of handling a disk. 

Some of the ways that we may encounter have to do with other operat
ing systems, as we've mentioned-{)perating systems like CP/M-86 , the 
p-System, and others. Also, there are a few programs that create their own 
operating system environments to suit their special needs. To see why, 
consider the limitation that DOS places on filenames: no more than 11 
characters including the extension. If a program wants to have longer, more 
meaningful names for its data files, it needs to break out of the DOS mold. 
And that is one of the reasons why we sometimes find programs that use 
their own special disk formats. 

However, when we encounter nonstandard disk formats it's usually for 
only one reason: copy-protection. If a program has its own peculiarities in 
the way its disks are formatted, then it has at least some resistance to being 
copied. Unfortunately for us, any nonstandard disk format presents us with 
special problems in using and protecting our programs and data, which has 
little to do with copy-protection. Discussing the matter here can only do 
very little to reduce the difficulties that copy-protection can impose. It's 
worthwhile to have a basic idea of what is going on with these nonstandard 
disk formats, so that we have the least possible difficulty with them. 

The first thing that we need to know is that there are two distinct 
categories of nonstandard disks-{)ne of disks that are totally different than 
the DOS format, and the other of disks that we might call tampered-with, 
but otherwise in DOS format. 

161 



INSIDE THE IBM PC 

Some copy-protected programs really have nothing to do with the 
ordinary uses that we put our computers to, and they have no reason to 
exchange data with other programs that use DOS. These are often game 
programs, such as the Flight Simulator program. Programs like this are 
usually designed to be self-loading from disk: they boot up the same way 
that DOS boots up. But while DOS goes into action to create an environ
ment to help other programs run, these self-loading programs are booted up 
strictly to run themselves. Game programs like this have no need to 
exchange disk data with other programs, and so there is no compelling 
reason for them to be stored on standard DOS disks. They could be, but 
they don't need to be, and by being stored in their own unique self-loading 
formats, they can resist ordinary efforts to be copied. 

In contrast, there are many programs that are copy-protected which also 
need to work with DOS so that they can fit into the overall DOS scheme of 
using our computers, including exchanging data files stored in the standard 
DOS manner. The best-known example of this type of program is Lotus' 
1-2-3. These programs completely make use of standard DOS disk formats, 
with one exception, which forms the basis of their copy-protection. Typically 
these programs make use of a special master or key diskette, which has some 
special marking on it that resists conventional copying. When we begin using 
a program like this, the program inspects the key disk to see that the special 
copy-resistant marking is there-if it doesn't find the special marking then 
the program refuses to continue working. 

How is it possible for these nonstandard formats to be created, and 
what makes them resist copying? As we saw in Chapter 8, our disks can be 
formatted with a variety of sizes of sectors, number of sectors per track, 
and so forth. DOS uses only a very simple variety of disk formats. For 
example, DOS only uses sectors of 512 bytes, even though our disks can 
have sectors of different sizes. The standard copy routines in DOS, includ
ing the COPY and DISKCOPY commands, only handle the standard forms 
of disk. Anything unusual-an odd-size sector, an oddly numbered sector, 
a missing sector, an extra sector, and so on--can't be properly handled by 
DOS. However, a smart program can work with these oddities to create and 
maintain copy-protection. Special copy progran1s, which know about the 
usual schemes used, can often defeat copy-protection, but the standard 
DOS operations cannot. 

When we encounter a completely non-DOS disk format-whether it's 
a copy-protected disk, or a disk from another operating system-the ordi
nary things that we might do with a disk (for example, use the DIR com
mand to see a list of the files on the disk) just can't be done. Don't expect 
to do anything like that with a game program. On the other hand, disks 

162 



SOME THINGS TO TRY 

such as the 1-2-3 key disk, which are mostly in DOS format, can be treated 
largely like any other disk that we use. We can get a directory listing of the 
disk, we can copy the files (but not the special copy-protected part of the 
disk), and so forth. 

There's one additional thing that we need to know about copy
protection, and that's how it's accomplished on a hard disk. Most 
copy-protected programs require that we load their original diskettes into 
our computer's diskette drive, even if we can copy the programs to our hard 
disks. To run, these programs have to inspect their key diskettes to check 
the copy protection. This of course is a real nuisance, and defeats one of the 
greatest advantages of having a hard disk, which is to avoid playing around 
with diskettes. However, there are some copy-protected programs that are 
able to transfer their copy protection schemes onto a hard disk, so that we 
don't have to fiddle with a key diskette. How can this be done? 

Fortunately for us, it's not done by tampering with the format of our 
hard disk in anything like the way that a copy-protected diskette has a 
specially tampered format. Instead, these hard-disk copy protection 
schemes are based on the unusual use of file formats. These methods can 
involve things like hidden files (which ordinarily can't be copied) and spe
cial encrypted data which records key information about the computer it's 
loaded on (so that if it is transferred to another computer that's even slightly 
different, the copy-protection scheme can detect it). 

Because there are so many different ways of achieving copy protec
tion, and so many possible oddities in copy protection, there is no way that 
I can explain all of them to you, or offer any tips on dealing with 
copy-protection that would apply all or even most of the time. But hope
fully just a little understanding of the nature of copy-protection and non
standard disk formats will help you deal with any peculiarities that come 
the way of you and your computer. 

Some Things to Try 

1. 	 Can you explain why a DOS partition on a hard disk can't be 
changed in size without reformatting it? Is it possible to write a 
conversion program that can resize a partition? Describe the steps 
that would be involved. 

2. 	 Using the techniques shown in Section 10.2, inspect a boot record 
from one of your own disks and compare it to the one shown. 

163 



INSIDE THE IBM PC 

Then, using the U-unassemble command of DEBUG, get an 
assembly language listing of the boot program and discover how it 
works. 

3. 	 For every diskette format that your computer handles (sin
gle-sided, double-sided, etc.), format a diskette with the DOS 
files, and then inspect the disk to see what the differences are in 
the boot record and other elements. 

4. 	 If you have my NU program, use it to inspect the slack area at the 
end of your disk files. Go to menu selection 1.3 to select a file, 
then go to selection 2.5 to display the file's data; press the End 
key to jump to the end of the file-and see what you can find. 

164 



II 
Video: 

An On-Screen Overview 


I n one odd sense I suppose we could say that the only part of our 
computer that really matters is the display screen. At least that's the 
way it can seem, since most of the time that we're using our com
puters it's the results that appear on the screen that we're interested 

in, and not the messy details of what it took to figure out those results. 
In this chapter, and the next two, we're going to discover how our 

computer's display screens work, and learn what they can do and what the 
limits are on what they can do for us. To begin, our goal for this chapter is 
to simply understand the basics of how our computer screens work, so that 
we know fundamentally what they can do for us. Then, in the next two 
chapters, we'll cover what's special about the two main screen modes: text 
mode and graphics mode. 

We begin with the basics. 

11.1 How the Screen Works 

The first thing that we ought to note about our computer's display 
screens is that they show information, and that information has to be 
recorded somewhere. To gain the maximum flexibility and speed, the PC 
keeps the data that's shown on the screen inside the computer, rather than 
inside the display screen. That's in contrast to the way many computer 
terminals work. Consider, for example, the terminals used by travel agents. 
There, the screens are located miles away from the computers that feed 
them. They must hold their own record of the data that's displayed, and talk 
to the computer far away only when new data is needed. That's an approach 
that tends to make response on the display screen sluggish. By contrast, the 
display screens in our pes are so close by that the screen and the computer 
can work together very intimately. 

The way that's done is to place the memory that holds the data appear
ing on the display screen inside the computer. The memory is inside the 

165 



INSIDE THE IBM PC 

computer in two senses: it's there physically, because the memory chips are 
inside the computer's boxy system unit, but it's also there in a logical 
sense, because the display screen data is recorded in an integral part of the 
computer's memory space. In Chapter 7 we discussed how our PCs have a 
one-million byte "address space" of memory that they can work with. The 
very memory that the display screen needs to record its data is a part of the 
PC's address space, so that it's not in any way remote to our computers and 
the programs that we run in them. The display memory is very intimately 
connected with the computer, so there is no delay or inconvenience in 
getting to it. This helps make our PC computers very responsive. 

The display memory is rather different than the rest of the computer's 
memory, though, because it has to serve two masters. On the one hand it 
must be accessible to the PC's microprocessor and programs, just like any 
other part of the memory. On the other hand, the display memory also has 
to be accessible to the display screen, so that the screen can see the infor
mation that it is supposed to display. 

As a consequence, the display memory used by our PC has special 
circuitry working with it. In effect the display memory is a room with two 
doors into it. The rest of the computer's memory has only a single "door," 
a single way of being accessed, because only one thing uses that memory
the microprocessor. But two parts of the computer work with the display 
memory: the microprocessor places data into the display memory to make it 
visible; and the display screen looks at that data to know what to show on 
the screen. Both parts access the display memory, and each part has its own 
"doorway" into the memory so that the two do not get in each other's way. 

The programs running in our computer's microprocessor only have to 
tap into the display memory when they need to change what's being shown. 
The display screen, however, is constantly reading the display memory and 
constantly creating a screen image that reflects the contents of the display 
memory. Roughly 50 times a second, the display screen's electronic cir
cuitry reads the display memory and paints a new picture on the screen to 
reflect what's recorded in the memory. With the screen being repainted that 
often, new data can appear almost instantly. All a program has to do to 
make new information appear in the screen is to place the data in the 
display memory and right away it shows up on the screen. 

The electronic work behind all this is found in an optional part of our 
computer called the display adapter. To allow the PC family to work in as 
many ways as possible, the PC's display adapter was made a changeable 
part, which plugs into the computer's option slots inside the system unit. 
This makes it possible for us to change the kind of display adapter we have 
to suit our needs. We can even have more than one type installed in our 

166 



11.1 HOW THE SCREEN WORKS 

computers, to give us more than one type of display screen at once. In 
Section 11.2 we'll take a look at the various kinds of display adapters for 
the PC family and see what each one can do for us. 

As part of the idea of making the PC family's display screens change
able, the PC's design has numerous video modes, or ways of presenting 
data on the display screen. Each display adapter has its own repertoire of 
video modes which it can use. The video modes defme what kind (and 
quality) of information we can show on the screen, and we select the 
display adapter hardware for our Pes to get the video modes that we want 
to work with-although, when we select the hardware for our PCs, we may 
not think of it in exactly those terms, but that's basically what we're doing. 
We'll see an outline of the various video modes in Section 11.2, and the 
following two chapters are devoted to discovering the ins and outs of how 
these video modes work and what they can do for us. 

Because each display adapter uses its own video modes and because 
each mode has its own particular memory requirements, the display mem
ory that our computers use is physically located on the display adapter 
board itself-so that if we change from one adapter to another, we'll also 
change the memory. That way, we automatically get just the right amount 
and kind of display memory when we install a display adapter in our 
computers. 

Our computer's display screens themselves work in a manner very 
much like a television set. The scheme is what's known as raster scan, and 
it works like this: the display screen is constantly being "painted" by a 
moving electron beam which traces a path through the entire screen roughly 
the way we read; it starts at the upper left, "scans" the fIrst thin line of the 
image from left to right, lighting up the active parts of the screen, and then 
skips back to the left to trace the next fIne line. It proceeds from top to 
bottom, painting the entire image. As the electron beam scans over the 
screen, the display adapter's circuitry continuously reads out data from the 
display memory and translates the data bits into the signals that control the 
electron beam. To minimize flicker on the screen, the image is actually 
painted in two interleaved halves: every other line is painted from top to 
bottom, and then the remaining lines are painted in a second scan; after two 
quick scans, the image is complete. Television sets use the same inter
leaved double scan. 

The Screen and its Border 

There is a border area on our computer's display screens that 
surrounds the working part of the screen where data is displayed. 

167 



INSIDE THE IBM PC 

This border is an inactive part of the screen, and our programs can't 
show any infonnation there-but that doesn't mean that the border is 
necessarily blank. 

The electron beam that traces out the working part of the screen's 
"raster scan" also passes beyond the working area into what's called 
an overscan-the border area of the screen. 

While we can't put data into the border, we can, at times, set the 
border color. The results we get vary among the display adapters and 
screens that we use. The Monochrome Adapter doesn't generate a 
changeable border; the Color Graphics Adapter does and so does the 
Compaq adapter (though at times in a less satisfying way). The 
Enhanced Graphics Adapter sometimes does and sometimes doesn't, 
even when it's being used in a way in which the Color Graphics 
Adapter does provide color. 

The PC's ROM-BIOS software provides a service that sets the border 
color when it's available. BASIC gives us access to this service 
through the COLOR statement. This little program demonstrates the 
border colors if they are active: 

10 SCREEN 0,1 WIDTH 80 CLS 

20 FOR BORDER. COLOR = 0 TO 15 

30 COLOR , ,BORDER. COLOR 


II.40 PRINT "Border color is , BORDER.COLOR 
50 PRINT "Press a key ... " 

= 111160 WHILE INKEY$ WEND 
70 NEXT 

The main reason for setting a border color is to have it match the 
background color that's being used-that can make the screen much 
easier on the eyes. Often it's not a good idea for a program to use a 
background color if it can't be matched with a border color. 

Those are the basic principles behind how our computer's display 
screens work. The fundamental ideas are very simple, and the interesting 
parts lie in the details of what our PC's display screens can do for us. We'll 
begin uncovering those details by looking at an overview of the various 
video modes that our PCs can show us. 

11.2 Video Mode Overview 

Just about the most important thing for us to know about our com
puter's display screens is the variety of modes that they can work in. We 
need to know the different stunts that our screens can perform, and that 

168 



11.2 VIDEO MODE OVERVIEW 

means understanding the video modes, the different ways that our display 
screens can operate. 

There are two parts to that. First, we need to understand what the 
range of modes is on our computer's screen. We need the answer to the 
question, "What tricks can my computer do?" Second, we need to under
stand the full range of video modes. We need the answers to the two 
questions, "What tricks can the PC family do?" and, "Do I want to add 
new tricks to my machine?" We need to know what our machines can do, 
what they could do if we equipped them with different display options; and 
then we need to decide if we've got the wrong stuff. 

We'll start on the analytic side, seeing what the basic differences are 
among the display modes, seeing how the video modes provide us with a 
multi-dimensional range of choices. Then we'll tidy up by listing all the 
modes and seeing which ones apply to which display adapters. 

The fIrst big division among the video modes, the fIrst of two main 
dimensions for us to consider, is between text mode and graphics mode. In 
a text mode (and there are several distinct text modes), all the display screen 
can show is the PC family's basic character set, which we pored over in 
Chapter 4; only these characters can be shown and nothing more. It's worth 
pausing to note again that the PC's character set is a rich one, an~ it 
provides plenty of opportunities for showing more on the screen than Just 
written text. The box-drawing characters and others that we saw in Chapter 
4 make it possible to create impressive character-based drawings on the 
PC's screen. But still, in a text mode, the only thing that can be shown are 
these 256 PC characters. In the text modes, the PC's screen is divided up 
into specific character positions-usually 80 columns of characters across 
the width of the screen, and 25 lines of characters from top to bottom. 
Chapter 12 is devoted to covering the details of how our computers work 
with the text modes. 

The alternative to the text modes are the graphics modes. In the graph
ics modes the screen is treated as an array of tiny dots, called pixels (which 
is short for picture elements), and anything that appears on the screen is 
shown by building up a drawing made up of these dots. The various graph
ics modes differ in how many dots there are on the screen, which is called 
the resolution; a typical high-resolution mode has 640 columns of dot posi
tions across the screen, and 200 lines of dots down. Any kind of 
dot-drawing can be built up from these dots, including drawings of the PC's 
text characters, like the letter A. The PC's built-in ROM-BIOS programs 
do the work of drawing characters dot-by-dot, so that programs operating in 
a graphics mode don't have to take on that chore, if they don't want to 
(sometimes they do to draw the characters in special ways such as italic). 

169 



INSIDE THE IBM PC 

Chapter 13 is devoted to covering the details of how our computers work 
with the graphics modes. 

Text versus graphics is one dimension of the video modes; color is the 
other main dimension. There are modes which have no color range at all. 
These are the black-and-white or two-color modes. There are the hon
est-to-gosh color modes, which provide us with as few as four or as many 
as 64 colors to choose from. Finally, there are the monochrome modes, 
which don't have color in the ordinary sense, but have display attributes 
which are the equivalent of a variety of colors. The monochrome display 
attributes include normal and bright high-intensity, reverse video (dark 
characters on a lit background instead of the other way around), underlined 
characters, and so forth. There are color and black-and-white video modes 
for both text and graphics modes. 

Within the four main possibilities that these two dimensions 
describe-text or graphics, colored or not-there are a number of minor 
dimensions, lesser variations in the range of video possibilities. These vari
ations include the resolution (how many dots or characters the display 
screen holds), the range of colors, and so forth. We'll see them as the 
details of the video modes unfold. 

The next way that we need to view the PC family's video modes is to 
see them from the hardware angle: looking at the various display adapters 
(and the display screens which connect to them) that determine which of 
the video mode possibilities apply to our computer. We'll look at the four 
main display adapters that the PC family uses (and peek at a few others as 
well). 

The ftrst two display adapters that appeared for the PC family and the 
most important ones are the IBM Monochrome Adapter and the IBM Color 
Graphics Adapter (CGA). The Monochrome Adapter was intended as the 
PC family's standard professional choice, the display adapter for "serious" 
work. It's a text-only display adapter which generates very crisp, 
easy-to-read characters. As a "monochrome" option, it only shows one 
actual color, but the video mode for this display adapter and screen features 
the color-like display attributes we mentioned before: underlining, bright 
intensity, and so forth. The Monochrome Adapter only works with IBM's 
Monochrome Display Screen or its equivalent. The IBM Monochrome Dis
play Screen glows in a soft green color, but there are equivalent screens 
available in amber color as well. The Monochrome Adapter has only a 
single video mode. 

The other of the PC's original pair of display adapters is the Color 
Graphics Adapter. The Color Graphics Adapter works in both text modes 
and colored and colorless modes in various resolutions, a total of seven 

170 



11.2 VIDEO MODE OVERVIEW 

video modes in all. It also works with four different types of display 
screens, in contrast to the one type that can be used with the Monochrome 
Adapter. By these simple specifications, it sounds as though the Color 
Graphics Adapter completely has it over the Monochrome Adapter, and 
superficially that's true. Everything that the Monochrome Adapter can do, 
the Color Graphics Adapter can also show-with color and graphics in 
addition. However, the Color Graphics Adapter has serious drawbacks 
which led to most PCs being equipped with the Monochrome Adapter. The 
main problem with the CGA is its relatively poor display quality. Its screen 
images are not nearly as crisp and clear as the Monochrome Adapter's. In 
fact many people, me induded, think that the Color Graphics Adapter is 
too fuzzy and hard on the eyes to work with for an extended period of time. 
But, fuzzy or not, the Color Graphics Adapter gives us color, graphics, a 
selection of resolutions, and a selection of display screens that goes far 
beyond what the Monochrome Adapter gives us. 

As I mentioned, the Color Graphics Adapter is able to work with four 
different types of display screens. One-which is not often used-is a TV 
set. The picture quality with a TV set is poor, and using it requires one 
additional piece of equipment, a RF modulator, which translates the Color 
Graphics Adapter's signal into TV signals. The best type is called an RGB 
monitor, because it accepts the display adapter's Red-Green-Blue display 
signals, and produces the best possible picture image; the standard IBM 
Color Display is an RGB monitor. In between a TV and an RGB monitor 
are the other two types, known as composite monitors. They work with a 
lower quality image signal from the Color Graphics Adapter, so they don't 
produce as good a picture as an RGB monitor. There are two kinds of 
composite monitors, color and monochrome; the monochrome composite 
monitors do accept a color signal, but they show colors in the form of 
shades of the one color the screen can show. 

There is a special variation on the Color Graphics Adapter we need 
to know about, although it is not part of the mainstream of the PC family. 
That is the display adapter that comes with each of the Compaq computer 
models. This Compaq display adapter functions just like the Color Graph
ics Adapter, with its full range of video modes, but it has a special feature 
that overcomes the main problem with the Color Graphics Adapter, its 
fuzzy text characters. When the Compaq display adapter is working in the 
standard text mode it's able to show its text characters with the same 
clarity and fine-drawing that the Monochrome Adapter uses. The Compaq 
display adapter effectively combines the virtues of both the Color Graph
ics Adapter and the Monochrome Adapter. However, the Compaq adapter 
is only available on the Compaq members of the PC family. Some people 

171 



INSIDE THE IBM PC 

find that sufficient reason to choose these models over other members of 
the PC family. The Compaq adapter can work with the same four types of 
display screen as the Color Graphics Adapter. Essentially everything that 
there is to say about the Color Graphics Adapter applies as well to the 
Compaq adapter. If you're using a Compaq computer, you can think of it 
as having a special and slightly better version of the Color Graphics 
Adapter. 

The next display adapter for us to consider is the Hercules graphics 
adapter-popularly called the Herc card-and its equivalents. There are 
strong similarities between the Herc card and the Compaq adapter. While 
the Compaq adapter is essentially a Color Graphics Adapter with the main 
advantage of the Monochrome Adapter (clear text characters) added, the 
Herc card is essentially a Monochrome Adapter with the main advantage of 
the CGA (graphics) added. The Herc card acts exactly as a Monochrome 
Adapter, but it has an additional display mode which provides 
high-resolution monochrome graphics, very suitable for most important 
graphics applications. The Herc card's graphics mode is, in IBM's view, 
very much a nonstandard display format which we might not take too 
seriously. However, the PC community has taken so favorably to the Herc 
card's capabilities that I consider it to be a key part of the PC family'S 
equipment, and one of the four main display adapters that we'll be covering 
in this chapter and the next two. The Herc card, like the Monochrome 
Adapter, only works with the Monochrome Display or its equivalent. 
Although the Herc card's graphic mode is not a standard display mode (as 
IBM sets the standards) it has been widely accepted by software develop
ers, so that most important graphics-oriented software works with the Herc 
card. 

The last of our four mainstream display adapters for the PC family is 
the IBM Enhanced Graphics Adapter (EGA). The Enhanced Graphics 
Adapter is IBM's effort to unify the variety of display adapters and 
extend the PC family's capabilities into new technology. The Enhanced 
Graphics Adapter essentially combines all the features of the Mono
chrome Adapter, the Color Graphics Adapter, and the Herc card, together 
with new video modes that can be used with higher-quality color monitors 
like the IBM Enhanced Color Display, which is essentially a technologi
cally advanced version of an RGB monitor. The Enhanced Graphics 
Adapter clearly set out to be the wonder-board, a single display adapter 
which would combine all the advantages of the other boards, obsoleting 
each of them. The Enhanced Graphics Adapter would be a complete 
replacement for both of IBM's original display adapters if it weren't twice 
as expensive as either of them. It would also be a replacement for the 

172 



11.2 VIDEO MODE OVERVIEW 

Herc card if it weren't for the fact that the EGA's monochrome graphics 
mode isn't compatible to the Herc card's, and for some time there will be 
more Herc software than EGA software, because the EGA is a relative 
late-comer. 

While these four are what I consider to be the mainstream of the PC 
family's display adapters, there are others; we've already seen one, the 
Compaq display adapter. You also should know about the PCjr's built-in 
display adapter, which acts very much like the Color Graphics Adapter, but 
adds to the CGA's skills some extra graphics modes. There is also the very 
special IBM Professional Graphics Adapter, which is intended for unusu
ally demanding circumstances. The Professional Graphics Adapter is so 
special that it has its own microprocessor built into it, a microprocessor that 
is more powerful than the one in the PC that it is installed in. In this case, 
the accessory has more horsepower than the instrument it's designed for. 
Because the peculiar capabilities of the PCjr and the Professional Graphics 
Adapter are so removed from the heart of the PC family, we won't go into 
them in any detail. 

Most PC computers have a single display adapter in them, but it is 
possible to install and use two display adapters in the same machine. Before 
we move on to summarize all the display modes that these display adapters 
provide, let's take a look at which combinations of display adapters we can 
use, and which we can't. 

The Monochrome Adapter and the Color Graphics Adapter can be 
used together, and either can be combined with the Enhanced Graphics 
Adapter. So any two of these three can be together in the same machine. 
The Herc card can't be combined with any of the three IBM display adapt
ers, but Hercules makes an equivalent to IBM's Color Graphics Adapter 
that can be combined with the Herc card (just as IBM's own CGA can be 
combined with IBM's Monochrome Adapter). 

Now, how do we make sense of all the possibilities that these various 
display adapters present us with? The best way to see them is to list them 
out in the form that IBM's technical manuals see them, by the video mode 
numbers that identify them. We'll gloss over some of the more interesting 
details until we get to the next few chapters; what we'll see here are the 
main aspects of each mode. After we talk about these modes, I'll show you 
how you can determine which mode your computer is in, and do some 
exploring with them. 

The first seven modes, numbered 0 through 6, apply to the Color 
Graphics Adapter and any equivalent display adapter (which includes the 
Enhanced Graphics Adapter, the Compaq adapter, and the PCjr's built-in 
display adapter). Here's a list of them: 

173 



INSIDE THE IBM PC 

GraphicS:<;<· 

There are some easily identifiable patterns in these seven modes. 
You'll note that the first six modes are in pairs, one mode with color, the 
other without. For the colorless modes, colors appear as shades of grey 
when they appear on either a TV set or a composite monitor (on an RGB 
monitor, color still appears, regardless). You'll also notice an inconsistency 
in the order of the color and colorless mode for video modes 4 and 5, the 
graphics modes. For all these modes which have more than two colors, a 
colorless variation makes sense. Mode 6 has only two colors (black and 
white) to start with so there would be no distinction between a colored and 
colorless variation on this mode. In the text modes, there are two widths 
available (40 and 80 characters across). The 40-column mode was created 
to be more legible when a TV set is used as a display screen, but few PCs 
use TV sets or this mode. Most major programs for the PC family are not 
designed to work in 40-colurnn mode. All the text modes have 25 lines of 
characters on the screen. In the graphics modes, there are also two widths 
and two resolutions. The high-resolution mode has 640 dots across and the 
medium-resolution modes have 320 dots across. All three of these graphics 
modes have 200 lines from top to bottom. You'll also note the progression 
of colors that's available: 16 in the text modes, 4 in medium-resolution 
graphics, and 2 (or, if you prefer, none) in high-resolution graphics. 

Those seven modes are all used by the Color Graphics Adapter, and 
any other adapters which duplicate its features, including the Enhanced 
Graphics Adapter. The Monochrome Adapter, on the other hand, has a 
single video mode, in keeping with its single-minded focus on text applica
tions. Here it is: 

174 



11.2 VIDEO MODE OVERVIEW 

This monochrome text mode, video mode 7, is similar to the 80-col
umn text modes that the Color Graphics Adapter provides, with 80 col
umns of characters across and 25 lines down. There are two important 
differences: one is that the characters themselves are drawn in a more 
detailed way that produces an easier-to-read character (we'll see the 
details of that in Chapter 12). The other is that the the Monochrome 
Adapter has a special concept of "color," which displays characters in a 
variety of ways: underlined, in reverse video, and so forth. The Mono
chrome Adapter only works with the Monochrome Display screen, which 
is specially designed for it. 

The next three video modes were introduced with the PCjr and only 
apply to it. It is possible that we'll see them also in use by some future 
display adapters, but I think that isn't likely since they were not included in 
IBM's do-everything Enhanced Graphics Adapter. They are all special 
graphics modes which extended the range of graphics that the Color Graph
ics Adapter provides: 

Each of these three modes is a natural extension of the graphics modes 
we've seen so far. Mode 8 introduces a low-resolution (160 dots across) 
mode. Modes 9 and 10 add more color to the existing medium- and 
high-resolution modes. The PCjr's built-in display adapter works in these 
three special modes, plus all eight of the conventional Color Graphics 
Adapter modes. Like the Color Graphics Adapter, the PCjr works with four 
different kinds of display screen (TV, color and monochrome composite, 
and RGB). 

After these video modes there are a missing pair of mode numbers, 11 
and 12. They probably belong to modes that IBM defined for the PC fam
ily, but decided not to introduce. There's little to say about them, except 
that they could possibly appear in a later IBM product. 

The Enhanced Graphics Adapter works in all of the first nine standard 
modes (but not the three special PCjr modes. In addition, it adds these four 
modes: 

175 



INSIDE THE IBM PC 

Mode Type Color? Width Description .. 

13 Graphics 16 320 . Medium-resolution, IlighJC~kjf 
14 Graphics 16 64Cl High-resolution, more color . fi4Q: •..

i 

15 Graphics No Monochrome graphics, 350 line.fi4Q: ..·i.l~ Graphics 64 High-resolution, 350 line 

These four new modes have more that's special about them than is 
readily apparent from this short summary table, such as which display 
screens they apply to. The first two, 13 and 14, work with the four standard 
color-graphics types of displays. These modes are similar to the PCjr's 
medium- and high-resolution modes 9 and 10, but the high-resolution mode 
here, mode 14, offers the PC's full complement of 16 colors, rather than 
just 4. Both of these new graphics modes, like all the ones we've seen so 
far, have 200 lines of dots up and down the screen, but the two following 
modes, 15-16, have nearly twice as many, 350 lines. Mode 15 is IBM's 
monochrome graphics mode, which is only used with the Monochrome 
Display screen. Mode 16 is a special high-color, high-resolution graphics 
mode that can only be used with the special Enhanced Color Display which 
was developed to accompany the Enhanced Graphics Adapter. Using the 
Enhanced Color Display, video mode 16 can provide the highest resolution 
we've seen so far (640 across, 350 down) and many more colors--64-
than any other mode can provide. 

Finally, there is one more mode for us to consider, the monochrome 
graphics mode that is used by the Hercules graphics adapter. Since this 
mode is not a part of IBM's own designs, it does not have an IBM video 
mode number; we'll call it the Herc mode. It is similar to IBM's mono
chrome graphics mode (mode 15), but it has different dimensions and a 
slightly higher resolution: 

Mode Type Color? Width Description 

No 720 Monochrome graphics, 348 line 

It's worth noting that the two monochrome graphics modes that we've 
seen, IBM's 640 by 350 mode, and Hercules 720 by 348 mode, are roughly 
equivalent. IBM's has the advantage of being "IBM standard" and also of 
having built-in support in the machines' ROM-BIOS. Hercules has the 
advantage of having a 17 percent higher horizontal resolution and the initial 

176 



11.3 EXPLORING VIDEO MODES 

advantage of being more widely used and software-supported. Ultimately I 
expect that both modes will have equal software support. 

Now that we've dug our way through an overview of the video modes, 
it's time for us to have a little fun with them. 

11.3 Exploring Video Modes 
It's relatively easy to explore and tinker around with most of the video 

modes. 
To begin, let's see how we can discover the video mode that our 

computer is currently using. As we saw in Chapter 7, in the Low-Memory 
Goodies sidebar, the PC's ROM-BIOS programs use a low-memory area, 
starting at hex address 400, to store information that the ROM-BIOS needs 
to keep track of. Part of that information is current status information about 
the display screen, including the current video mode. The mode is recorded 
in a single byte located at hex address 449. Any tool that allows us to 
inspect data in memory can show us the video mode. We can easily do it 
with either BASIC or with DEBUG. 

In BASIC it requires two simple commands: the fIrst sets up BASIC to 
inspect low-memory locations: DEF SEG = 0; the second command 
extracts the byte where the video mode is, and displays it on the screen: 
PRINT PEEK (&H449). To try it yourself, fIre up BASIC and give it those 
two commands, and you'll see your current mode. 

To do the same thing with DEBUG, activate DEBUG and give it this 
command: D 0:449 L 1. That tells DEBUG to display (D) one byte (L 1) at 
the address we're interested in. DEBUG will show us the mode, displayed 
in hex form, something like this: 

0000:0440 07 

That shows a video mode of 7, the standard Monochrome Adapter 
mode. 

If you do either of those two experiments, you'll see what mode your 
computer is currently in. It's also possible to change the mode and then 
inspect it. We can only see some of the possible modes, because the tools 
that we'll be using-DOS, BASIC, and DEBUG-only operate in certain 
video modes. While a program-say Lotus 1-2-3-is running, it can 
change the mode to anything it wants; but the tools which we'll experiment 
with only work in certain modes. And, of course, you can only see the 
modes that your computer is equipped to use. If your computer only has the 
standard Monochrome Adapter, the only mode you can see is mode 7. Even 

177 



INSIDE THE IBM PC 

though we won't be able to see every mode, the experiments I'll describe 
here will let you tinker a bit, and get a feeling for what it's like to be in 
control of the display screens different modes. 

There are two ways that we can change the mode, just as there are two 
ways that we can detect what mode we're in. One uses the DOS command 
MODE to set the mode; we can use this together with DEBUG to display 
the mode. The other method uses BASIC both to set the mode and to show 
it. 

We'll begin with MODE and DEBUG. These two commands work in 
the standard DOS way, which only accepts text modes so we won't be able 
to try any of the graphics modes. 

To do this experiment, we enter a MODE command to set the mode, 
and then use DEBUG in the way we've already seen to show what mode 
we're in. The idea is that we try to switch to a new mode with the MODE 
command, and then use DEBUG to see if we actually got there. We set the 
mode like this: MODE X, where, for X we put MONO, C080, BW80. 
C040, BW40, 40, or 80. After we've done that, we try DEBUG to see 
what mode we're actually in. 

If we use BASIC, we can perform the same sort of experiment, but in 
a way that also allows us to try the graphics modes. Here is an example, 
which switches us into a medium-resolution graphics mode (if our com
puter is equipped to do it): 

10 SCREEN 1 
20 DEF SEG = 0 
30 PRINT PEEK (&H449) 

You can tinker with this program by changing line 10 to any of the 
screen modes that are allowed for your computer's BASIC. (By the way, 
don't be confused by mode numbers that BASIC uses in the SCREEN 
command; they aren't the same as the fundamental video mode numbers 
we've been using in this chapter.) If BASIC reports an error when it tries to 
perform the SCREEN command, then that mode does not apply to your 
computer. 

You'll see a more elaborate version of this program under the name 
VID-MODE in Appendix A. Try running that program to see more about 
the video modes, or just study the program to learn more about how BASIC 
interacts with the PC family's video modes. 

Now that we've covered the fundamentals of our computer's display 
screens, it's time to move on to see the specific details. We'll begin in 
Chapter 12 with the text modes. 

178 



SOME THINGS TO TRY 

Some Things to Try 
1. 	 Try all the MODE commands suggested in Section 11.3. Also, 

check your DOS manual to see if there are any other MODE 
commands that apply to your display screen. New ones may have 
been added to the list. 

2. 	 Check your computer's BASIC manual to see if any new display 
modes have been added beyond the ones covered here. You can 
find out by comparing the description of the SCREEN command 
options with the SCREEN commands that appear in the 
VID-MODE listing in Appendix A. 

179 





12 
Video: Text Fundamentals 

I n this chapter we're going to explore the inner workings of the PC's 
display screen text modes. Although there is a growing shift in the 
use of computers towards the extra appeal and benefit of graphics 
images, by far the majority of work that's done on our PCs is done 

entirely in text mode, with nothing appearing on the display screen but the 
PC family's text character set. In fact, most PCs are equipped only with the 
IBM Monochrome Adapter, which can only show text characters and noth
ing more. 

No matter how you look at it, and even if you are a graphics enthusi
ast, the PC's text mode is very important. So, we're going to see how it 
works and what the capabilities and limitations of the text mode are. We'll 
begin with an outline of how the text modes are organized and the funda
mentals of how they work. Then we'll look at more of the technical details 
underlying the text modes; and we'll finish up by exploring some tricks that 
can be used to add sizzle to a program's use of the text modes. 

12.1 Text Mode Outline 

Underlying the PC family's text screen modes is the division of the 
display screen into individual character positions, arranged in a grid of 
columns and lines. Each character position has two separate components: 
its data, which determines what character appears on the screen, and its 
attribute, which determines how that character is to appear (in color, or 
blinking, or whatever). 

In the text modes, our programs have full control over both the data 
and the attributes, so that they can specify exactly what characters will 
appear, where they will appear among the predefined character positions, 
and how they will appear in terms of the predefined color attributes, which 
we'll be discussing shortly. However, our programs have no control over 
any other details, such as how the characters are drawn or the precise 
position of the character locations. That's all strictly defined by the capabil

181 



INSIDE THE IBM PC 

ities of the display adapter and the display screen. (By contrast, as we'll see 
in Chapter 13, when characters are used in the graphics modes, some or all 
of these things can be controlled by our programs.) 

In short, in the text modes, our programs work within a rigid frame
work of what can be shown on the screen. That predefined framework, 
though, frees our programs from a great deal of overhead work that they 
would otherwise have to take care of, directly or indirectly. 

Figure 12-1. Display columns and rows. 

The character positions on the screen are organized into 25 rows and 
usually 80 columns-but, as we saw in Chapter 11 there are two text video 
modes which have only 40 columns of characters across the screen. These 
40-column modes were created to make it more practical to use a TV set as 

182 



12.1 TEXT MODE OUTLINE 

the display screen for a PC, since the resolution and picture quality on a TV 
screen is not good enough to show 80 characters clearly. The 40-column 
modes, together with a few other features (like the cassette tape link), were 
designed into the PC when it was thought that many people might want 
low-budget minimally equipped PCs. As it turned out, the 40-column 
modes are seldom used, and many programs do not accommodate them. 
Figure 12-1 shows how the display screen is organized into columns and 
rows for either 40- or 80-column widths. 

We and our programs can treat the screen as either being divided into 
lines, or as a single continuous string of characters 2000 long (or 1000 for 
40-column mode). The PC family's text mode is designed to work either 
way, in a neat and simple way. If our programs ask for their output to be 
placed on a particular row and column position, it will appear there. On the 
other hand, if our programs just pour out data onto the screen, it will be 
written out wrapping around from the end of one line to the beginning of 
the next. The PC's screen will work either way with equal ease, for maxi
mum flexibility. 

Our display screens are able to show all of the PC's character set that 
we learned about in Chapter 4, and saw demonstrated in the ALL-CHAR 
and REF-CHAR programs (see Appendix A). But to get some of the char
acters to appear on the screen can require special techniques such as the 
POKE statements used in those two programs. This is because the ASCII 
control characters, codes 0-31, have special meanings that are used to affect 
the way output appears, such as skipping to a new line. If any of these 
control characters are written to the screen-say with the PRINT statement 
in BASIC-generally they'll take action as control characters, but they may 
simply appear as ordinary PC characters. The results vary depending on 
which character codes are being written, and also they can vary depending 
on which programming language is being used. 

Except for these ASCII control characters, though, all of the PC fam
ily's text character set can be easily shown on the display screen, placed in 
any of the screen's character positions. 

The character that appears in each position is the data component of 
the character position. There is also an attribute component, which controls 
how the character appears, such as whether it's in color. 

A character's attribute is a control code that determines how it is shown, 
and each position has its own attribute that's independent of all the others. 
There are basically two different sets of attribute codes, one designed for the 
Monochrome Adapter and one for the Color Graphics Adapter, but the two 
schemes are organized in a way that makes them as compatible as possible. 
Let's look at the Color Graphics Adapter's attributes first. 

183 



INSIDE THE IBM PC 

For the Color Graphics Adapter, each character position's attribute has 
three parts: one specifies the foreground color (the color of the character 
itself); the second controls the background color (the color around or 
"behind" the character); and whether or not the character blinks. There are 
16 foreground colors, numbered 0 through 15, as listed in Figure 12-2. The 
colors are made up of the three component parts red, green, and blue. The 
various combinations of those three elements give us eight main colors, and 
with a normal or bright variation on each of the eight gives us a total of 
sixteen. There are eight background colors, just the main eight colors with
out their bright variations. The final part of the color attributes is a switch 
which allows the foreground character to either blink or appear solid and 
steady. 

Code Appearance 

o Black (nothing) 
1 Blue 
2 Green 
3 Cyan (blue +green) 
4 Red 
5 Magenta (blue +red) 
6 Light yellow or brown (green + red) 
7 White (blue + green + red) 
8 Grey (bright only) 
9 Bright Blue (blue + bright) 

10 Bright Green (green +bright) 
11 Bright Cyan (blue +green +bright) 
12 Bright Red (red +bright) 
13 Bright Magenta (blue +red +bright) 
14 Bright yellow (green + red +bright) 
15 Bright White (blue +green + red +bright) 

Figure 12-2. Color attributes. 

What I've just described is the normal form of the color attributes, but 
some of the fancier display adapters can work variations on this scheme. 
For example, the PCjr's built-in adapter is able to trade the blinking feature 
for bright background colors, allowing a full 16 background colors. And 
the pejr and the Enhanced Graphics Adapter are able to remap the color 
palette, so that when we use the code for one color (say 1 for blue) another 
color actually appears. These are fancy features which are interesting and 

184 



12.2 DETAILS OF THE TEXT MODE 

have their uses, but they're not a part of the PC family's standard repertoire 
of tricks. 

The Monochrome Adapter also uses attributes to control how its char
acters will appear, but in a different way. The Monochrome Adapter 
doesn't have color at its command, but it can make its characters appear in 
bright or normal intensity, blinking, underlined, or in reverse video (black 
characters on a lit background). You'll see the various possibilities listed in 
Figure 12-3. Not all combinations of these features are possible; for exam
ple, there's no reverse underlined. 

Code Appearance 

o Invisible 
1 Underline 
7 Normal 
9 (8 + 1) Bright underline 

15 (8 +7) Bright normal 
112 Reverse 
129 (128 + 1) Blinking Underline 
135 (128 + 7) Binking Normal 
137 Blinking Bright underline 
(128+8+ 1) 
143 Blinking Bright normal 
(128 +8+7) 
240 (128 + 112) Blinking Reverse 

Figure 12-3. Monochrome attributes. 

That's the essence of the features of the PC's text display modes. 
What's left to learn about them are the technical details of how the display 
data is laid out in memory, how the attributes are coded, and other fascinat
ing details. We'll cover that next, in a more technical section. 

TECHNICAL BACKGROUND I I I •• • __________ 

12.2 Details of the Text Mode 

Each display adapter contains its own memory chips which record the 
data that is displayed on the screen, and a special part of the PC's address 
space is set aside to hold this display memory. A 128K block of memory is 

185 



INSIDE THE IBM PC 

available for use by the display adapters, filling the A- and B-blocks of 
memory (see Section 7.3). 

The B block is the standard display memory area, where both the 
Monochrome Adapter and the Color Graphics Adapter place their memory . 
The Monochrome Adapter places its memory at the beginning of the B 
block, starting at hex paragraph address BOOO. The Color Graphics Adapter 
starts its memory at the middle of the B block, at hex paragraph address 
B800. (You'll see these addresses in some of the listings in Appendix A.) 

Each of these two display adapters uses only part of the 32K of mem
ory that's set aside for it. The Monochrome Adapter has only 4K of mem
ory, while the Color Graphics Adapter has 16K. Each has just enough for 
the information that's displayed on the screen. 

The Monochrome Adapter needs 4K, because the display screen has 
2000 character positions (80 columns times 25 rows), and each position 
needs two bytes of memory to support it: one to hold the character data, and 
one to hold the display attributes. Exactly 4000 bytes used for the display 
data, and another, unused 96 bytes bring the total up to a round number in 
binary, 4096 or exactly 4K. The Color Graphics Adapter also needs 4000 
bytes for its text mode, but more is needed for the graphics modes, as we'll 
see in Chapter 13, so the CGA has 16K of memory. In Section 12.3 we'll 
see how this extra memory is put to use. 

The other display adapters are similar to these original two. The Com
paq adapter works just like the Color Graphics Adapter, and the Hercules 
adapter, in text mode, works just like the Monochrome Adapter. Both have 
the same amount of memory and memory addressing as the adapters they 
mimic. The PCjr's built-in display adapter acts as though it were a Color 
Graphics Adapter, and its display memory appears to be located at memory 
address B800, as it is for the CGA. In fact, the PCjr uses part of its 
standard memory for the display screen, and special addressing circuits 
make this ordinary memory appear to be located at B800. 

The Enhanced Graphics Adapter can have even more memory , 
depending upon how much has been installed in it. Since the EGA is able to 
act like either a Monochrome Adapter or Color Graphics Adapter (or use its 
own special video modes), it's flexible about the memory addresses that it 
uses. Normally the EGA makes its memory appear in one of the two stan
dard locations, BOOO or B800. When the EGA switches into some of its 
special modes, it also makes use of the A-block of memory addresses. 
However, when it's functioning in an ordinary video mode, none of the 
EGA's display memory appears at A-block addresses, which is why we 
can't detect it with memory snooping tools, like DEBUG or the SI-System 
Information program that's part of my Norton Utilities set. 

186 



12.2 DETAILS OF THE TEXT MODE 

While different starting addresses are used for display memory of the 
Monochrome Adapter and Color Graphics Adapter, the layout of the text 
mode memory from there is the same. Memory is used in pairs of bytes, 
with two bytes for each text position on the screen. The very first byte of 
the display memory holds the character data for the top left-most screen 
position, and the next byte holds the display attribute for that position. The 
next pair of bytes are for the second column on the first line, and so on, 
continuously without any gap until we reach the last position on the screen. 
(See Figure 12-4.) 

Figure 12-4. Display memory and the screen in text mode. 

In the display memory, the screen is treated as a continuous string of 
2000 pairs of bytes, and nothing indicates the division of the display into 
lines. So, if information is simply stored into the memory, byte after byte, 
it appears on the screen automatically wrapping around from one line to 
another. In the display memory, there are lines: only byte after byte of 
information. When the line and column positions matter to our programs, 
they calculate the relative position of the appropriate bytes, and set their 
data there. 

187 



INSIDE THE IBM PC 

We can calculate the relative memory location of any position on the 
screen, by using simple and obvious formulas. If we number the rows and 
columns on the screen starting with a (rather than 1), then this gives the 
location of a data byte: 

LOCATION = (ROW * 80 + COLUMN) * 2 

That location is relative to the beginning of the display memory, and 
the formula is for a 80-column mode; for a 40-column mode on the Color 
Graphics Adapter, we'd multiply the row by 40, not 80. The location of the 
attribute byte for the same screen position is just one higher. 

The only way that information ever appears on the display screen is 
for it to be stuffed into the display memory by some program or other. It 
can be either done directly by the programs that we run, or it can be done 
by the computer's built-in ROM-BIOS services. There are two schools of 
thought about which way it should be done. If a program does this 
itself-by placing its data directly into the display memory- it can be 
done with great efficiency and impressive speed. Most or all of the 
snappy-appearing programs that you use work like this. When our pro
grams work that way, they have to know how the display memory is laid 
out, and they have to incorporate a fair amount of knowledge about how 
the display adapters work. Programs like that wouldn't be able to work 
with any display adapter that placed its display memory at a new location. 
On the other hand, if our programs rely on the services of the ROM-BIOS 
to place data into the display memory, then it's easy to adjust to any 
changes in the display screen-whether it's a new location for the display 
memory, or a windowing environment like TopView that can move infor
mation around on the screen. Using the ROM-BIOS services decouples 
our programs from the peculiarities of the display screen and display 
memory, and that should make our programs more adaptable to changes 
in the computer they run on. 

Seen from that point of view, it appears that all our programs should 
use the ROM-BIOS services for screen data, to get the maximum flexibil
ity. But there is an enormous penalty in using the ROM-BIOS services: 
they take a surprising amount of time to work. (If you have my Norton 
Utilities program set, you can demonstrate this for yourself, because the 
NU program uses both methods of creating screen displays. Try the pro
gram with the "/00" option to see how quickly it works with direct screen 
output, and try the "/01" option to see how much slower it performs when 
it uses the ROM-BIOS services.) It's because of the heavy penalty in using 

188 



12.2 DETAILS OF THE TEXT MODE 

the ROM-BIOS that so many programs perform their own screen output, 
moving their data directly into the screen buffer. 

It's clear that IBM originally wanted all of our programs to route their 
display data through the ROM-BIOS, but things didn't work out that way. 
So many programs do their own screen output, using the two key display 
adapter memory addresses of BOOO and B800, that it's become impossible 
for IBM to consider any radical change to the way the display memory 
works, at least.for the text modes. That's why IBM has now announced that 
any future display adapters developed for the PC family will maintain com
patibility with the original two adapters and continue using these two 
addresses. We can see that commitment in action in the Enhanced Graphics 
Adapter. 

When people use their computers, they easily get the impression that 
there is a close link between the cursor and the information that gets dis
played on the screen, as if information could only appear when it's painted 
there by the cursor. But we know that that's simply not true. Whatever 
information is placed in the display memory will appear on the screen, 
completely independent of the cursor. The cursor is simply a convenient 
way of indicating where the active part of the screen is, which can be very 
helpful for the person looking at the screen. 

To reinforce that idea, the ROM-BIOS services that place information 
on the screen for our programs carefully match the writing of information 
with the placement of the cursor. For the ROM-BIOS, the cursor isn't only 
a visual clue for anyone looking at the screen, it's also a means of coordina
tion between the screen, the ROM-BIOS, and the program that is generat
ing information. The cursor lets both the program and the ROM-BIOS have 
one single way to indicate where information is to appear. For more infor
mation on the cursor, see the sidebar The Cursor. 

The Cursor 

The flashing cursor that we're accustomed to seeing on our screen is 
a hardware feature of the PC's display adapters, and it only applies 
to the text modes that we're covering here, and not to the graphics 
modes. 

The flashing cursor is generated by the display adapter itself, which 
controls, among other things, the rate at which the cursor blinks on 
and off. The blink rate can't be changed, but the position of the 
cursor and the size of the cursor-which scans the lines it appears 
on---can be changed, and there are ROM-BIOS services built into the 
PC that control the cursor for our programs. 

189 



INSIDE THE IBM PC 

Normally the cursor blinks at the bottom of a character on the last 
two scan lines. But the lines the cursor appears on can be changed 
with a hardware command which is performed through the 
ROM-BIOS. We can experiment with changing the size of the cursor 
using BASIC's LOCATE statement. We can change the cursor to 
start and end on any pair of the scan lines that make up a character 
position (lines 0-13 for the Monochrome Adapter, 0-7 for the Color 
Graphics Adapter). One real curiosity is that if we start the cursor on 
a higher line number than we end it, we get a two-part wrap-around 
cursor. You can experiment with that using this BASIC statement: 

LOCATE ",6,1 

The blinking cursor we've been describing is a hardware cursor 
that's an integral part of each display adapter. Many programs find 
that the hardware cursor doesn't suit their purposes, so they create 
their own logical cursor, typically by using reverse video to highlight 
the cursor area. One of the main reasons why programs create their 
own cursor is to extend the cursor to more than one character 
position on the screen (for example, the way a spreadsheet's cursor 
highlights the entire width of a cell). Technically, a cursor like that 
is something completely different from the hardware cursor, but the 
function of all kinds of cursors are the same: to show us where the 
active part of the screen is. 

When programs create their own logical cursors, they normally make 
the hardware cursor disappear, either by deactivating it or by moving 
it to a position just off the edge of the screen. 

Next we want to take a look at how the coding is worked out for 
attribute bytes which control how text characters appear on the display 
screen. Although the attributes for the Color Graphics Adapter and for the 
Monochrome Adapter are quite different, there is a common design that 
underlies each scheme. Let's start by looking at the common part, and then 
we'll get into the specifics for both color and monochrome. 

The eight bits of each attribute are divided into four fields, like this: 

76543210 

B .... Blinking (of foreground) 
.RGB. Background color 

I Intensity (of foreground) 
..... RGB Foreground color 

As we can see, the rightmost four bits control the foreground color: 
three bits (RGB) specify the main red-green-blue components of the 

190 



12.2 DETAILS OF THE TEXT MODE 

color, and an intensity bit (I) makes the color bright or dim. The other 
four bits similarly control the background color, but the bit we might 
expect to control the background intensity is instead borrowed to con
trol foreground blinking (as we saw in Section 12.1, the PCjr is able to 
borrow it back to make 16 background colors). All possible combina
tions of bits are faithfully produced based on this scheme. You can 
demonstrate them all with the program COLORTXT listed in Appendix 
A. Every combination works-no matter how hard on the eyes or how 
bizarre. Some color combinations are very pleasing, such as bright yel
low on blue (one of my favorites). Others are amazing, such as bright 
blinking blue on red, attribute hex C9, bits 11001001. If you have a 
color screen, you can try that combination in BASIC with the command 
COLOR 25,4. 

The Color Graphics Adapter uses these attribute bits exactly as this 
table suggests. The Monochrome Adapter matches this scheme as closely 
as it reasonably can. The normal display mode, lit characters on a black 
background, is coded hex 07 (in bits 00000111), which corresponds to the 
color attributes of white on black. Reverse video is coded just the opposite, 
hex 70, the equivalent of black on white. The code for underlined is hex 
01, which makes the monochrome underlined attribute equivalent to the 
foreground color blue. The Monochrome Adapter's invisible or nondisplay 
mode is coded hex 00, the equivalent of black on black. We might expect 
that the white-on-white code, hex 77, would give us another invisible mode 
with the whole character area lit up-but it doesn't. The Monochrome 
Adapter only has a handful of attribute modes, just the ones listed in Figure 
12-3. We don't get all the combinations of the Monochrome Adapter's 
attributes that we might expect-that's why there is no reverse video under
lined mode, for example. The Monochrome Adapter only shows those 
combinations shown in Figure 12-3. 

Even though the Monochrome Adapter has only a limited number of 
distinct display attributes, it works properly no matter what the setting of 
the attribute bits is. No matter what attribute bits we set, the Monochrome 
Adapter produces one of its standard ways of showing characters. In most 
cases, it shows the characters in the normal way, as if the attribute were set 
to hex 07. If you have a Monochrome Adapter in your computer, you can 
see how it responds to all the possible combinations of attribute bits by 
running the COLORTXT program, the same program we use to demon
strate the Color Graphics Adapter's colors. 

The attributes that we've been discussing control how characters 
appear on the screen, in the terms that we've been discussing: color, blink
ing, and so forth. What they don't control is the actual appearance or shape 

191 



INSIDE THE IBM PC 

of the characters, which is controlled by the display adapter. For more on 
that, see the sidebar The Character Box. 

The Character Box 

In the text modes, the characters that we see on our computer's 
screen are drawn by the display adapter, rather than by the PC's 
software (which is the way they are drawn in the graphics modes, as 
we'll see in Chapter 13). The quality of the characters that we see 
displayed varies among the display adapters, because of differences 
in what's called the character box. 

The character box is the framework that our PC's characters are 
drawn in. In every case the characters are drawn from a rectangular 
matrix of dots, although it's not easy to see that looking at the 
screen. 

For the IBM Monochrome Adapter-and any adapter mode that 
matches it-the character box is composed of nine dots across and 14 
down, which allows a well-drawn character. For the Color Graphics 
Adapter, the character box is eight by eight, which only allows for a 
noticeably cruder character drawing. For some of the special modes 
of the Enhanced Graphics Adapter, the character box is eight by 14, 
nearly as good as the Monochrome Adapter. 

It's relatively easy to observe the vertical dimension of the character 
box, just by turning up the brightness on our display screens. 
Because the screen's scan lines don't completely overlap, we can see 
where they fall. But the horizontal resolution is more difficult to see: 
the pixel dots overlap and blur together so we can't see any 
separation between them. It's only by carefully observing and 
comparing the characters that we can judge how many dots across 
our characters are. 

The character box only defines the framework within which the 
characters are drawn. Not all of the box is used for the characters 
themselves-parts are set aside for the space between characters. To 
see how this goes, we'll use the Monochrome Adapter's character 
box as an example. 

The complete Monochrome Adapter character box is nine by 14. Of 
the nine columns across, the first and last are reserved for the space 
between characters, so our characters are actually drawn out of seven 
dots across. Of the 14 rows down, the top two and the bottom one 
are similarly used for the space between lines of characters, so there 
are 11 rows to draw the characters with. Two of those rows are used 
for descenders, as on the lowercase letters p, g, or y. That leaves 
nine rows for the main part of the characters. So, the Monochrome 
Adapter's characters are called seven by nine, referring to the main 

192 



12.3 TEXT MODE TRICKS 

part of the character box, the part that a capital X will fill; the actual 
working part of the character box, including the descender rows, is 
seven by 11. 

The parts set aside for spacing---one column on each side, two rows 
at the top and one row at the bottom---only apply to conventional 
characters. The special drawing characters-such as the solid 
character, code 219, or the box-drawing characters which we 
mentioned and demonstrated in the BOXES program-use these parts 
of the character box, so that they can touch each other without any 
space between. 

The finer a character box is, the more detailed the drawing of a 
character can be. That's why the Monochrome Adapter's characters 
are able to have serifs, the fine parts on the ends of characters which 
dress them up, and make them more legible. 

That's the main part of what there is to know about the technical 
details that underlie our PC family's text modes. But there's still more to 
know, and we'll see some of it in Section 12.3 on text mode tricks. 

12.3 Text Mode Tricks 

There are special features and tricks inherent in our computer's text 
modes which can be used to enhance the operation of programs and to 
produce some special effects. Of course the full range of tricks is only 
limited by our imagination and cleverness, and I can't begin to discover and 
explain everything that can be done. But there are some fundamental fea
tures and tricks that will help us understand the workings of the text mode, 
and that's what we'll look at in this section. We begin by considering the 
uses of excess display memory. 

While the Monochrome Adapter has just enough display memory to 
hold all the information that appears on the display screen at once, the 
Color Graphics Adapter and the Enhanced Graphics Adapter contain more 
memory than is needed for one text screen image. That's because the graph
ics modes that these adapters also provide require more display memory 
than the text modes require. Rather than let this memory go to waste, it's 
put to use to hold several independent screen-loads of information. These 
separate screen-loads are called display pages. 

Figure 12-5 shows how this works for the Color Graphics Adapter 
when it's in an 80-column text mode. For 80-column text, only 4000 bytes 

193 



INSIDE THE mM PC 

are needed to hold the display screen information (which is just the amount 
of memory in the Monochrome Adapter). But the Color Graphics Adapter 
has 16K bytes of memory, enough for four separate sets of 4000. The Color 
Graphics Adapter's memory can be divided into four independent display 
pages. 

16K Memory 

4K 4K 4K 4K 
Page 0 Page 1 Page 2 Page 3 

Inactive Active Inactive Active 

Figure 12-5. Four display pages. 

Anyone of these display pages can be activated so that its information 
appears on the display screen. The display adapter is able to switch imme
diately from one page to another, so that what appears on the screen can be 
changed without delay. While only one page appears on the screen at a 
time, our programs always have access to all the data in all the screens, all 
the time. 

That's the point of having and using multiple display pages: while it 
may take a noticeable amount of time for a program to generate informa
tion for the screen, the information can be made to appear instantaneously, 

194 



12.3 TEXT MODE TRICKS 

by switching from one page to another. While we're looking at one 
screen-load of information, the program can be invisibly building another 
screen image off stage in another page buffer. When we're ready to have it 
appear, it can appear without delay. 

The number of screen pages available varies with the display adapter 
and the video mode that we're using. As we've seen, the Monochrome 
Adapter has only one page, so no page switching is possible (more on this 
in a moment). The standard Color Graphics Adapter provides four pages for 
80-column text, or eight pages for 40-column text. The Enhanced Graphics 
Adapter, which can be equipped with varying amounts of memory, can 
have even more pages. 

These multiple display pages can be put to any use. They might be 
used to hold completely new information or slightly changed data. If we 
built four or eight versions of a character-based drawing, we can rapidly 
page through them, making them appear in succession creating an anima
tion effect. 

Programs switch among the pages by a simple command to the display 
adapter that tells it to paint the screen image from another part of the 
display memory. BASIC includes features that let us work with multiple 
display pages. You'll find them as parts of the SCREEN statement, and you 
can experiment with them, provided your computer has a Color Graphics 
Adapter or the equivalent. The third parameter of BASIC's SCREEN state
ment, the parameter called apage, is the "active page," and it controls 
which page the program is working with (that is, if the program is writing 
information to the "screen," which screen page is being changed by the 
program). The fourth parameter of the SCREEN statement, called vpage, is 
the "visible page," and it controls which page image is currently appearing 
on the screen. 

While BASIC provides us with features that do the basic tasks of 
screen page control, programs written in other languages have to do this 
themselves, with the assistance of some features provided by the com
puter's built-in ROM-BIOS. One of the things that the ROM-BIOS will do 
for our programs is to keep track of a separate cursor location for each 
page. But, whether our programs take advantage of BASIC's features, or 
use the ROM-BIOS's features, or do all the screen page control themselves, 
the mUltiple-page feature is there to be used. 

Few programs actually use the paging feature though, because it's 
simply not of as much benefit as we might think. For one thing, it's not 
available on computers equipped with the Monochrome Adapter-and 
that's been the majority of PCs. If a program has to do without the benefit 
of the display paging with the Monochrome Adapter, it may not be worth 

195 



INSIDE THE IBM PC 

the extra programming effort to have a program use pages with one display 
adapter and not use them with another. 

Even though the Monochrome Adapter does not have multiple display 
pages built into it, programs can-and often do-adopt the paging idea to 
make their screen images appear instantaneously. This is done by setting 
aside a portion of the program's conventional memory, as an improvised 
display page, where a complete screen image is constructed. When the data 
is ready, it's moved into the real display memory in one quick assembly 
language operation. The mechanics are different than what's done with true 
display pages. With true pages, the display data is not moved. Instead, the 
display adapter switches from looking at one page of memory to another, 
while with this pseudo-page operation the data is actually moved from 
another location to the display memory. Moving a full screen-load of data 
takes such a small fraction of a second that it appears to happen as quickly 
as true page switching does. 

If any of the programs you work with present unusually snappy screen 
displays, it's likely that they use this "private paging" technique that I've 
described. My own NU program does as well. 

There is more that can be done with the screen display than just mov
ing data into or out of it. It's also possible, with assembly language tricks, 
to blank out the data that's on the screen, or to change the display attrib
utes, the colors, in a flash. The slow and laborious way to change the data 
on the screen is to do it a character at a time, changing each position on the 
screen individually. But there are faster and more efficient ways. 

For example, if we want to clear the whole screen, we can do it with 
just a few assembly language instructions. To blank the screen properly, 
we'd want to set each data byte to a blank space (code 32, hex 20) and each 
attribute byte to the "normal" color (which is usually 7, hex 07). We can 
set the first screen position to blank-normal by using the assembly language 
instruction that places a two-byte word anywhere we want in memory. The 
word we'd use is hex 2007, which combines the blank space character (20) 
with the normal color attribute (07). A variation on the instruction that 
moves a single word into memory can be used to repeat the operation into 
successive words of the display memory, so that the same data is propa
gated over the whole screen. 

A variation on the same trick can be used to change only the color 
attributes, leaving the data unchanged, or vice versa. That's done with the 
assembly language instructions that "AND" and "OR" data, so that we 
can just turn on or off the bits we want. Using these tricks, just a couple of 
instructions can paint a new color across the entire screen, faster than the 
eye can see. 

196 



SOME THINGS TO TRY 

In addition to the tricks that our programs can perform on their own, 
the PC's ROM-BIOS contains service routines that will do most of the 
things that we would like done, including some fancy steps that you'll 
rarely see used. One of these ROM-BIOS services lets us define a rectangu
lar window anywhere on the screen, and inside that window we can display 
information and scroll it off the window without disturbing any other data 
outside the window. That service is among the ones we'll look at in Chapter 
17. 

But, before we move on to new topics, we have more to explore about 
our computer's video capabilities. Next comes the graphics modes, a spe
cial dimension beyond the text mode we've just seen. 

Some Things to Try 

1. 	 In BASIC, or any other programming language you use, write a 
program that prints the 32 ASCII control characters, codes 0-31, 
on the display screen. See what happens with each, and note 
which ones appear as their PC characters and which ones work as 
control characters. Compare your results with the information on 
these control characters in Chapter 4. 

2. 	 Figure out what the memory addresses will be for the four differ
ent display pages that a Color Graphics Adapter has when it's 
working in 80-column mode, and the eight pages in 40-column 
mode. 

3. 	 Why does the Monochrome Adapter have 4,096 bytes of display 
memory when it only needs 4000? Why might it be risky for a 
program to attempt to use the left-over 96 bytes in the display 
memory? 

4. 	 If your computer has the Color Graphics Adapter (or any other 
adapter, including the PCjr's or the Compaq's, that has more than 
one video page), experiment with text pages using the BASIC 
SCREEN command to switch pages and the PRINT command to 
place some information in each page. 

197 





13 
Video: Graphics Fun.damentals 

I n this chapter we'll take a look at the unique characteristics and 
capabilities of the graphics modes. We'll begin by seeing what the 
main features of the graphics modes are, and while we're doing that 
we'll repeatedly contrast the graphics modes with the text modes, to 

highlight the differences. Then we'll look at the variety of different modes 
that are at our disposal. Finally, we'll finish up our discussion with a look 
at some of the technical details that underlie the workings of the graphics 
modes. 

13.1 Graphics Modes Outline 

In each of the graphics modes, our PC's display screen is divided up 
into a series of dots, called pixels. The pixels are arranged in a rectangular 
grid of rows and columns, and each pixel can be individually set to show 
some color, within the range of colors that the particular mode allows. In 
those respects, the graphics modes aren't fundamentally different than the 
text modes. And even though there are many more pixel dots in the graph
ics modes than there are text characters in the text modes-for example, 
320 pixels across and 200 down, compared to 80 characters across and 25 
down-that's mostly a difference of degree, rather than a fundamental 
difference in kind. 

What is really different about the graphics modes is that each pixel on 
the screen is simply a small splash of light that has no form to it. In the text 
modes, each position on the screen is a rich entity in itself: it holds a 
character that has its own unique shape, and the shape is made visible by 
the contrast between the two colors that fill the foreground and background 
of the character position. But with the pixels in the graphics modes, we just 
have a dot of light, with no unique shape and no division between fore
ground and background. In the text modes each screen position has three 
elements to it. First, there are the two main elements of data (which charac
ter is to be shown) and attribute (how the character is to be shown). Then, 

199 



INSIDE THE IBM PC 

the attribute part is divided into two parts, the foreground color and the 
background color, so that we end up with a total of three separate elements 
to each text screen position. By contrast, in the graphics modes, each pixel 
has only one element, the color that the pixel is set to. In graphics modes, 
there is no "data" (in the sense that each text mode position has a data 
element) and there is no background color, only the color of each individual 
pixel. 

If we want to understand the graphics modes, it's important for us to 
understand the meaning of "background." In the text modes, there really is 
something called a background color; each character position has one. But 
in the graphics modes, each pixel simply has a color to it: no foreground, 
no background, just a single color. What we think of as the background 
color in a graphics mode is just the color that we give to all the pixels that 
we're not doing something in particular to. The "background color" in a 
graphics mode is the default color that we set all the pixels to, so that they 
contrast with the color (or colors) that we're drawing with. That's a practi
cal convention (and a sensible and necessary one) that has to do with the 
way we make pictures that people can look at and understand. However, it 
doesn't have anything to do with the fundamental way the graphics modes 
operate. In text mode, the background color is something that's a technical 
reality as well as a visual reality. In graphics mode, the "background 
color" is just a visual convention that has nothing to do with the technical 
way graphics modes work. 

There is one other thing that the graphics modes give up, compared 
to the text modes: blinking. In the text modes, we're used to seeing 
blinking in two things: one is the cursor, and the other is the blinking 
attribute of characters. The graphics modes don't have either. There is no 
blinking cursor in the graphics modes, and in fact there is no cursor at all, 
in the technical sense. (For more on that, see The Graphics Cursor 
sidebar.) In addition, one aspect of the "colors" that are available in the 
text modes is blinking. Of course blinking isn't a color in any real sense, 
but in the text modes, as we saw in Chapter 12, characters can be made to 
blink on and off, and the blinking feature is controlled in the same way 
that true color is controlled-so for the text modes the blinking feature is, 
in effect, a special kind of color. The normal graphics modes don't pro
vide us with blinking in any form. (There is, however, one exception, 
which we'll see later, in graphics mode 15.) Software can do almost 
anything, so our programs can make things blink on and off on the screen 
simply by changing the screen image on a regular interval. There is no 
inherent (and hardware supported) blinking feature in any of the graphics 
modes. 

200 



13.1 GRAPHICS MODE OUTLINE 

The Graphics Cursor 
If we activate BASIC, we'll see on the screen a flashing cursor, of 
the type we're most used to. If we switch to a graphics mode-say 
by using the SCREEN 1 command-we still seem to have a cursor 
on the screen, although if we're observant we'll notice that the cursor 
appears as a solid block, rather than in the normal flashing form. 

What's going on here? A trick! 

In the hardware sense, there is no such thing as a cursor in graphics 
mode. The standard flashing cursor-as we saw in Chapter 12-is a 
designed-in feature of the display adapters, which applies only to the 
text modes. This hardware cursor flashes and it appears only on just 
one character space at a time. Normally it just underlines the current 
position on the screen, and it's created specifically by the display 
adapter hardware circuitry. Its appearance requires no special effort 
from our software (other than the occasional command to position the 
cursor where it's wanted). That cursor, the hardware cursor, simply 
does not exist in the graphics modes. 

What we see as a cursor in the graphics modes is a software-created 
effect that serves the role of a cursor (indicating where the active 
location is on the screen). Functionally it's no different than the 
hardware cursor, but technically it's a totally different animal, 
because it's created a completely different way. 

When a program-such as BASIC operating in a graphics mode
wants to create a cursor on the screen it simply does whatever is 
necessary to produce the right kind of effect. Usually that's nothing 
more than changing the background color where the cursor is to be 
shown. This same thing can be done in a text mode, to supplement 
or completely replace the blinking hardware cursor. We're used to 
seeing this sort of software-ge~erated cursor with spreadsheet 
programs, which place a cursor on the current cell by making the cell 
appear in reverse video. 

In text mode, programs have the option of using the hardware cursor 
or creating their own software cursor. In the graphics mode, there's 
no choice because there is no hardware cursor in graphics mode. 

You may encounter the two main conventions for showing a cursor 
in graphics mode. One, which we see used by BASIC, is the old 
standard of indicating the cursor location by changing the background 
color. The other is a newer standard popularized by the Apple 
Macintosh computer and used more and more in software for our PC 
family. It shows the cursor as a thin vertical line which may blink 
(the blinking is a software-generated effect). This line-cursor can be 
hard to see and use, but it has the advantage of being able to appear 
anywhere, even between characters, not just on top of a character. 

201 



INSIDE THE IBM PC 

No matter what it looks like, anything that acts like a cursor in one 
of the graphics modes is simply a visual effect created by our 
software, to serve the same purpose as the text modes' hardware 
cursor. 

Instead, the graphics modes simply have available at their command a 
palate of colors that each pixel dot position on the screen can be set to. 
Each graphics mode has its own repertoire of colors-that, and the number 
of dot positions is what makes up the differences among the various modes. 
What they all have in common, what characterizes the graphics modes, is 
the grid of dots and the ability to set each dot to a solid color chosen from a 
palette of colors. 

If that seems remarkably simple and primitive to you, then you are 
understanding the essential character of the graphics modes. They are at 
once cruder and more powerful than the text modes. Cruder, because all 
they can show are colored dots. More powerful, because from those dots 
we can construct rich and complex drawings that would not be possible to 
create from the more specialized text modes. The graphics modes provide 
us with a rawer material to work with than the text modes. There is a 
greater variety of things that we can do with the graphics modes, but getting 
those things done requires more work, because everything has to be drawn, 
dot by dot, the hard way, by our software. And that includes, by the way, 
any text characters that we might want to appear on the screen; they have to 
be drawn dot by dot as well (see the Writing Text in Graphics Mode 
sidebar). 

Writing Text in Graphics Mode 

The ROM-BIOS routines that supervise the graphics modes provide 
services to write text characters on the screen, just as they do for the 
text modes. The reason is simple enough: if the ROM-BIOS provides 
character-writing services for any mode, it ought to provide it for all 
modes. There's an important addition to that reason: any part of any 
program ought to be able to toss an error message on the screen in 
case it gets in trouble. Having a universal set of text-output routines 
in the ROM-BIOS, which work in every mode, text or graphics, 
provides a common way for any program to send up an emergency 
flare. 

In the text modes, programs-including the ROM-BIOS-write 
messages on the screen by outputting the ASCn character codes, and 
the display adapter hardware takes on the job of producing a 

202 



13.1 GRAPHICS MODE OUTLINE 

recognizable character. But in the graphics modes, characters can 
only appear on the screen if they are drawn like any other picture. 

The ROM-BIOS is prepared to do just that, in a standard way, with a 
set of little drawing templates, one for each character that it can 
draw. A table of character drawings is stored in the ROM-BIOS 
memory area for this purpose. While some of the newer graphics 
modes, like those provided by the Enhanced Graphics Adapter, may 
require their own specific drawing tables, a standard table-based on 
the eight by eight pixel character box used in Color Graphics 
Adapter's graphics modes--can be found at memory location 
FOOO:FA6E in most PCs. 

The bits in this drawing table are used to indicate the pixel settings, 
on or off, used to draw each character. For the standard table, eight 
bytes represent each character: the bits of the first byte give the eight 
pixel settings for the first scan line, and so on. In Appendix A you'll 
find a program called GRAPHTXT, which will decode this table, and 
display each character drawing in enlarged form, so that we can 
inspect how each character is drawn. You can use the GRAPHTXT 
program with any display adapter, because it recreates the drawings 
with characters, so you don't have to have a graphics screen to use 
GRAPHTXT to see how graphics characters are drawn. 

When our progranls use the ROM-BIOS services to display 
characters in a graphics mode, the ROM-BIOS looks up the 
character's drawing in this table, and uses the bits in the table as a 
code to set the appropriate bits in the display memory, so that a 
drawing of the character appears on the screen. The technique used is 
roughly the same as our demonstration program GRAPHTXT uses. 

In the original PC design, only the first 128 ASCII characters were 
provided in this table. That covered the most important characters, 
particularly the letters of the alphabet, but it didn't provide the entire 
PC character set. Drawings for the upper 128 characters can be 
provided by our programs, and the ROM-BIOS will use them, 
provided we tell the BIOS about them by placing the address of the 
table in the interrupt vector for interrupt 31. 

It's common for game programs, and other "light-duty" programs 
that use graphics, to rely on the ROM-BIOS's services to display any 
text information that needs to be shown. But "heavy-duty" 
programs, such as 1-2-3 or Framework, generally paint their own 
character data when they work in a graphics mode. This is because 
these programs have their own demanding needs for how characters 
should appear, and by doing their own character drawing, they can 
control the size, type style, and features (such as bold or italic) of 
the characters that appear. The same is true of word-processing 
programs that can work in graphics mode. 

203 



INSIDE THE IBM PC 

No matter which approach a program uses--do-it-yourself or leave it 
to the BIOS-any text characters that appear when our computers are 
in a graphics mode are drawn on the screen, pixel by pixel, through 
the work of software, and not, as it is in the text modes, by 
hardware. 

That's given us a basic idea of what the graphics modes are about, 
collectively. Now it's time for us to consider the range of graphics modes 
and see what the characteristics and potential of each is. 

13.2 A Tour of the Graphics Modes 

There are no fewer than 11 graphics modes that we'll be taking a look 
at, which we saw in the brief summary in Chapter 11. For easy reference, 
here's a quick recap from Chapter 11 (the mode numbers in the first column 
of the table, are the numbers used by the PC's ROM-BIOS to identify each 
mode): 

These are the 11 main modes that are available for our PC family. 
There are other modes, such as the extra-high quality modes provided by 
the very expensive and very specialized IBM Professional Graphics 
Adapter, but these 11 are the main ones and probably the only ones that 
most of us will encounter. In fact, we'll only encounter a few of them at a 
time, because this full list is provided by a variety of display adapters and 
we can only have one or two at the most installed in a single computer. 

204 



13.2 A TOUR OF THE GRAPHICS MODES 

That's the point we should begin with-reviewing what modes are 
available with what adapters-before we get into the details of each mode. 
That way, if you are only interested in the modes that apply to your com
puter, you'll have a roadmap of the ones to pay attention to. And if you're 
interested in the full range of the PC family's graphics capabilities, you can 
study them all, and also know what applies to which adapter. 

The IBM Color Graphics Adapter-one of the two original display 
adapters for the PC family-provides us with the first three graphics 
modes, numbered 4-6. These are the modes that we'll be spending the most 
time discussing, because they are the most commonly used, and because 
they provide us with a model for the other modes, which are mostly just a 
variation on the themes that these three provide. These modes are not 
exclusive to the Color Graphics Adapter, as we'll see. 

The special built-in display adapter in the PCjr mimics the Color 
Graphics Adapter, so it provides the first three graphics modes. In addition, 
three modes were specially created for the PCjr, modes 8-10. These PCjr 
modes are not supported by any other display adapter; they are unique to 
the PCjr. 

The IBM Enhanced Graphics Adapter (EGA), like the PCjr, covers 
the three standard CGA graphics modes and also provides its own unique 
modes, four of them in this case, numbered 13-16. It's important to note 
that two of these four, like all the other modes we've covered so far, are 
used with standard RGB or composite monitors. For the other two new 
modes, one is used with the Monochrome Display and one is used with the 
special Enhanced Color Display (ECD). 

Finally, the Hercules adapter provides one special graphics mode for 
use with the Monochrome Display. While the other graphics adapters 
we've been discussing provide a variety of graphics modes, the Hercules 
only has this one. (It also provides the standard monochrome text mode.) 

Now that we know which modes are provided by which display adapt
ers, let's take a look at the particular capabilities of each one. 

Video mode 4 is a medium-resolution, four-color mode. It uses a pixel 
grid of 320 dots across and 200 lines down. All of the standard graphics 
modes are drawn with 200 lines. The variation in resolution shows only in 
the horizontal dimension: 160 dots across is called low-resolution; 320 is 
medium; 640 is high. You might expect that it would not work well to use 
the same vertical resolution with three different horizontal resolutions, but 
on the whole it works out reasonably well. In any event, technicallimita
tions largely forced the use of a common 200-line vertical dimension. 

Since video mode 4 uses four colors, it works with just part of the PC 
family's standard 16-color color repertoire. The colors that are made avail

205 



INSIDE THE IBM PC 

able are a curious combination of free choice and preselection. One of the 
four colors can be freely chosen to be any of the 16 basic colors. The other 
three colors are predefined by IBM, but we get to choose from two different 
sets of three. One set, known as palette 0, includes the colors green, red, 
and brown (also known as dark yellow); palette 1 has the colors cyan 
(blue-green to those of us unfamiliar with that word), magenta, and white. 
We can't mix and match these palettes: they are predefined and fixed by 
IBM (except as we'll note in a moment). Our programs can, however, 
freely switch between the two palettes, and freely set the other color to 
anything, including any of the colors used in the fixed part of the palette. 

When a program uses these four colors, it requests them by a number, 
o through 3; 0 selects the freely chosen color (whatever it happens to be) 
while 1, 2, and 3 select green, red, and brown from palette 0 or cyan, 
magenta, and white from palette 1. One thing particularly worth noting is 
that these selections are all relative. If a program paints a picture using 
color 0 and then changes the selection of what color is color 0, everything 
that was painted 0 instantly and automatically changes to the new color; the 
same thing happens if we change our palette selection. This trick can be 
used in a number of ways to good graphic effect. For example, a drawing 
can be made to appear and disappear by changing its color to contrast or be 
the same as its background; or we can make the screen appear to shake 
violently just by rapidly alternating between the palettes. 

You'll see a demonstration of what can be done with color in video 
mode 4 in the program COLOR-4, listed in Appendix A. (To use 
COLOR-4 or to experiment with the example given here, you'll have to 
have a computer equipped for color graphics, of course.) 

For a shorter introduction to the color capabilities of video mode 4, try 
these statements in BASIC: SCREEN 1 will switch you into video mode 4. 
COLOR, 0 will select the predefined palette 0, while COLOR, 1 will select 
palette 1. These statements demonstrate what happens when we change the 
one freely selectable color: 

10 FOR CHOICE = 0 TO 15 
20 COLOR CHOICE 
30 PRINT "This is color number"; CHOICE 
40 NEXT CHOICE 

The color palettes that we've talked about are predefined and fixed in 
the ordinary sense. However, two of our display adapters, the PCjr's and 
the Enhanced Graphics Adapter, have the ability to remap the color selec
tion, so that when a program apparently asks for one color-say red
another color might appear, say blue. This is done through the magic of a 

206 



13.2 A TOUR OF THE GRAPHICS MODES 

hardware register, which allows us to redefine the meaning of the numbers 
that are used to identify colors. When we can do that, then we can have our 
own free choice of the four colors that are used in this video mode 4. 
Instead of being bound by the two standard palettes, we can remap the color 
numbers so that the standard palettes give us whatever colors we want. This 
trick only works, however, with those two special display adapters-it 
doesn't apply to the standard Color Graphics Adapter or any equivalent 
adapter (such as the Compaq adapter). 

Mode 4 provides 200 lines of 320 dots, or 64,000 pixels total. With 
four color choices for each, we need two bits of memory to record the four 
possible color choices. That means that this video mode needs 128,000 bits 
of memory to support it; that's 16,000 bytes. Since the Color Graphics 
Adapter's display memory provides 16K of memory, there is just enough 
memory for this video mode. (In Section 13.3, where we dive into more 
technical details, we'll see how that memory is used.) 

Now we're ready to move on to look at some of the other graphics 
modes. Most of the ideas that we've covered for mode 4 apply to the other 
modes as well, so we've already covered most of what there is to know 
about the standard graphics modes. 

Mode 5 is a special color-suppressed variation on mode 4. It works 
just like the two color-suppressed text modes (modes 0 and 2). Mode 5 
works identically to mode 4, but the signal coming out of the composite 
video jack does not have a color signal in it, so that the four colors appear 
more-or-Iess as four shades of grey. However, that only applies to the 
composite video jack; the signals coming out the RGB socket of the display 
adapter are as colorful as ever. Since this mode is organized just like mode 
4, the memory requirements are the same. 

Mode 6 is a high-resolution, two-color mode. As a high-resolution 
mode, it has 640 pixel dots across (and the standard 200 lines down). There 
are two colors available in mode 6; they are predefined and fixed as the 
colors black and white. It's debatable, of course, whether or not we should 
say that this mode has colors; in the technical sense it clearly does: there are 
two to choose from Gust as mode 4 has four to choose from) and they are 
part of the PC's standard 16-color range. On the other hand, most of us 
would say that black and white are "black and white" and not a selection 
of two colors. Call it what you will, as long as you understand what this 
video mode provides us with: twice the resolution and half the colors of 
mode 4. 

The black and white colors that are used by mode 6 can be remapped, 
just like the remapping of mode 4's colors when we're using a PCjr or an 
Enhanced Graphics Adapter. This remapping doesn't increase the number 

207 



INSIDE THE IBM PC 

of colors that appear at one time, which is fixed at only two for mode 6, but 
it does permit the use of "real color" in place of the colorless colors black 
and white. 

Mode 6 has twice as many pixels as mode 4, 640 by 200 for a total of 
128,000. But with half as many color choices to be recorded, only one bit 
is needed for each pixel in this mode. So, the total memory requirement of 
this mode is the same as for modes 4 and 5: 16K. 

These modes, 4-6, are the main, common graphics modes for the PC 
family because they apply to every standard graphics display adapter 
(excluding the Hercules adapter). As a general rule, we find mode 4 used 
for light-duty programs, such as games and educational programs, while 
mode 6 is used by heavy-duty business programs such as 1-2-3. Games use 
mode 4 to gain color, sacrificing detailed picture resolution; business pro
grams use mode 6 to gain high-resolution, sacrificing color. It's a clear 
tradeoff, but a trade off that isn't necessary in some of the more advanced 
graphics modes that we'll be covering next. 

The next three modes, 8-10, are special to the PCjr, and they pro
vide some natural and expected extensions to the basic complement of 
graphics modes, resolving some of the most obvious shortcomings of the 
basic set. 

Mode 8 is a low-resolution, 16-color mode. It's a bridge from mode 4, 
in the opposite direction from mode 6. In this low-resolution mode there are 
only 160 columns of dots across each row, half the number provided by the 
medium-resolution modes. There are more colors, as you would expect, but 
not just twice as many, four times as many, 16 colors, the PC's full com
plement of colors. 

Because mode 8 is able to use all 16 colors at once, there are no 
annoying palette restrictions in this mode. Since this is a PCjr mode, and 
since the jr has the ability to remap colors, the colors used in this mode can 
be altered and tinkered with in many ways. In mode 4, where there is a 
limited selection of colors, there's a good reason to use this feature; to 
increase the choice of colors to be used. But in this mode (and mode 9 
following) remapping the colors has a less obvious benefit. It can be used, 
though, for special effects such as making parts of a drawing appear and 
disappear (by blending in with a same-colored background). 

Although this mode does provide more colors than any of the previous 
graphics modes, the picture quality in this low-resolution mode is so poor 
that there are few uses for it. If you have a PCjr you can see just how poor 
the resolution is for yourself by using the BASIC command SCREEN 3. 

This mode uses just as much memory as mode 4, 16K, because it has 
only half as many pixels-160 times 200, totaling 32,000--and needs just 

208 



13.2 A TOUR OF THE GRAPHICS MODES 

four bits (twice as many) to specify the colors for each pixel. The four bits 
per pixel provide 16 color-selecting values. Here we get four times the 
color choice for only twice the memory. That would be a real plus if this 
video mode were more useful. 

Mode 9 is the second of our special PCjr modes; it's medium resolu
tion but it provides the full 16 colors. This mode breaks out of the 16K 
memory mold, thanks to some special tricks concerning how the PCjr man
ages its display memory. This is one of most satisfying graphics modes, 
because it combines medium-resolution, 320 dots across, with the full use 
of the PC's color set. For this mode, 32K of display memory is needed, and 
any program using this mode must know how to perform some special 
jr-specific tricks to set aside this much display memory. In BASIC we do it 
by fIrst using the statement CLEAR ",32768 to set aside the memory, and 
then SCREEN 5 to switch to this video mode. 

Mode 1 0 is the third and last of the jr-specific modes;. it is a variation 
similar to what mode 9 provides. Mode lOis high-resolution with four 
colors. Like mode 9, this mode needs 32K of memory, double the standard 
graphics 16K. BASIC switches to this mode using the SCREEN 6 state
ment after CLEAR ",32768 to reserve enough memory. Like mode 9, and 
unlike mode 8, this is a very powerful and useful graphics mode, thanks to 
the combination of high-resolution and four colors. The four colors for this 
mode are the same as palette 1 in mode 4: the fIrst color is freely selectable, 
and the other colors are set to cyan, magenta, and white. But, since this is a 
PCjr mode, color remapping can be used to change the palette to any color 
selection. 

The next set of graphic modes are provided by the Enhanced Graphics 
Adapter. They provide a variety of special graphics capabilities that span 
most of what we find available in the other specialty adapters. 

Mode 13 is a medium-resolution, 16-color mode. It is essentially the 
same as the PCjr's mode 9. Like mode 9, is calls for 32K of display 
memory. (BASIC does not support this mode, or any of the other EGA 
modes so there's no simple way to demonstrate these modes, even on a 
computer equipped for them.) The colors can be remapped, as we're used 
to seeing for anything involving either the PCjr or the EGA. In addition, if 
this or another EGA mode is used with the EGA's special Enhanced Color 
Display, the colors of this mode can be remapped not just into the PC's 
basic 16-color set, but the ECD's extended 64-color set. 

Mode 14 is a high-resolution 16-color mode. It's similar to the PCjr's 
mode 10, but it goes even further in providing all sixteen colors, not just 
four colors, in high-resolution. Doing that requires a complement of 64K of 
display memory. 

209 



INSIDE THE IBM PC 

So far, all the modes we've seen have been intended for the standard 
types of color graphics display screens used in the PC family: RGB 
monitors, color composite screens, TV sets, and so forth. The next special 
EGA mode, though, is intended for use only with the Monochrome Dis
play, the screen normally used with the Monochrome Adapter. This is 
mode 15, IBM's version of a monochrome graphics mode. It provides a 
pixel grid of 640 dots across and 350 lines down. The total number of lines 
corresponds to the total number of scan lines used in the regular mono
chrome mode, where there are 25 character lines, and each character is 
drawn with 14 scan lines; 14 times 25 gives us 350, the number of graphics 
lines in this mode. There is one very special thing about this mode: it 
provides blinking in a very special way. Each pixel in this mode has four 
possible attributes: off (black), on, blinking-on, and bright. The main rea
son for having this unusual combination of pixel attributes is that it allows 
this monochrome graphics mode to match the features of the standard mon
ochrome text mode (which includes blinking and bright high-intensity fea
tures) while it adds a graphics capability. Since there are four possible 
attributes for each dot on the screen, the memory requirement is two bits for 
each pixel, 448,000 bits or 56,000 bytes. 

The next mode, and the final one of the EGA's special modes, also 
calls for a special display screen, but this time it's the Enhanced Color 
Display, a display screen that is able to show a full 64 distinct colors, four 
times as many as the PC's standard 16. This is mode 16. It has the same 
extra-high-resolution as mode 15--640 across and 350 down. Each pixel 
can be set to any of 64 colors, which calls for six bits to support each pixel. 
This requires a whopping 1,344,000 bits, or 168,000 bytes of display mem
ory. That's a lot of memory! But if we want to have all that color on all 
those pixels, that's the memory price that has to be paid. 

The final video mode that we'll consider is the one provided by the 
popular, but non-IBM, Hercules graphics adapter. The Hercules adapter 
pioneered graphics for the Monochrome Display, providing a mode that is 
similar to what the EGA later provided in its mode 15. There is no IBM 
mode number for this mode, since it's not IBM supported. For identifica
tion purposes, I call it simply the Herc mode. While this mode is similar to 
the EGA's mode 15, the details are different. It has a small but noticeable 
increase in the horizontal resolution, 720 pixels rather than 640, and an all 
but unnoticeable two fewer vertical lines, 348 rather than 350. The figure 
of 348 is odd because this same adapter has to provide 350 scan lines when 
it works in monochrome text mode; but that's the way it is. This display 
mode needs 250,560 bits (one for each pixel), or 31,320 bytes. That is just 
under 32K of memory. You'll note that the Herc mode provides mono

210 



13.3 GRAPHICS DETAILS 

chrome graphics as we might expect them to be, a fairly pure form of 
monochrome graphics that does not have the particular features of the mon
ochrome text mode (that is, it doesn't have either bright intensity or blink
ing as "colors"). By contrast, the monochrome graphics mode number 15, 
provided by IBM's EGA board, provides both of those special features. 

That finishes our summary of the 11 main graphics modes. What we 
have left to explore are some details of how the graphics modes use their 
memory, which is at times peculiar. We'll see that in Section 13.3. 

TECHNICAL BACKGROUND I I I ••• __________ 

13.3 Graphics Details 

Now it's time for us to explore the inner workings of how the graphics 
modes use their display memory. It's substantially trickier than it is for the 
text modes, both more complicated to understand and for most students of 
the PC family less important to our overall goal of knowing the main inner 
workings of the PC. 

The layout of the display memory for the graphics modes follows most 
of the principles that we learned when we explored the layout of the text 
modes, but some new complications are added that considerably increase 
the amount of work that a program has to do to place data into the display 
memory. 

The main complication is that while in the text modes the display data 
is laid out in one continuous lump. In the graphics modes the data is broken 
down into either two or four interleaved banks. 

For example, in video mode 4, the medium-resolution, 4-color mode, 
the 200 lines of pixels are divided into two banks, consisting of the even 
and odd numbered lines. The first bank holds the data for line number 0 
(the first line), followed by lines 2, 4, and so on to line 198, the last of the 
even numbered lines. A separate memory bank holds the odd numbered 
lines, 1, 3, 5, and so on to the very last line, number 199. Figure 13-1 
shows how this is laid out. 

There are two variations on this banking operation. One divides the 
horizontal lines of graphics pixels into two banks and the other into four 
banks. The original three graphics modes, modes 4-6, work in two banks; 
so does video mode 8, the PCjr's low-resolution mode. The other two PCjr 
modes, numbers 9 and 10, and the Hercules mode divide their lines into 
four banks. Figure 13-2 summarizes how the lines in the banks are 
interleaved. 

211 



INSIDE THE IBM PC 

Even Bank Odd Bank 

o ••••••••••••••••.• • • • • • • • •• 0 
1 1 
2 23 

4 
 3 
5 4 

5 

.•••... : 197197 . . . • • • . . . . . .. 198--+198 
• • • • • • •• 199199 

Figure 13-1. Graphics memory banks. 

Within each bank, the graphics data is laid out in a direct and compact 
manner, just as it is in the text modes. The data for the first line in each 
bank fills successive bytes from the beginning of the bank, and the second 
line in each bank immediately follows the first, without any gap. However, 
there is a small gap between the banks, just as there is between the different 
display pages in text modes. Each bank occupies somewhat less than 8K 
bytes of storage, and each bank begins on an even 8K address boundary, 
with a small amount of unused slack space between the banks. 

This arrangement of graphics data into banks is done basically for the 
convenience of the hardware. Since the display screen's picture is painted 
in two passes, with the lines of each pass interleaved, the graphics memory 
is laid out in the same fashion, so that the graphics data can be retrieved 
from memory in a way that's close to the way in which it's needed for the 
screen. This reduces the overhead involved in painting a graphics picture on 
the screen. 

The flip side to that coin is that the work involved for our software to 
create a graphics picture is considerably increased, because the address 
calculations needed to locate each dot are more complicated. The difference 

212 



13.3 GRAPHICS DETAILS 

Two bank modes: 
Bank 0: 0, 
Bank 1: 1, 

2, 
3, 

4, 
5, 

6, 
7, 

8, 
9, 

Four bank modes: 
Bank 0: 0, 
Bank 1: 1, 
Bank 2: 2, 
Bank 3: 3, 

4, 
5, 

6, 
7, 

8, 
9, 

Figure 13-2. Bank line interleaving. 

isn't enormous: after all, some arithmetic has to be done to calculate the 
location whether the lines are continuous (as they are for the text modes) or 
separated into banks (as they are for the graphics modes). However, this 
bank-separate does increase the amount of calculation that has to be done to 
work with the graphics display memory. 

While the layout of the graphics display memory is essentially the 
same for all of the modes we've been talking about (modes 4-6, 8-10, and 
the Herc mode), differing only in whether there are two or four banks on 
interleaved lines, the composition of the pixel data within the lines has 
more variation from mode to mode. This is because the different modes 
need different amounts of data for each pixel. There's also one special 
complication in one of the PCjr modes, as we'll see in a moment. 

For the 2-color modes-mode 6 and the Herc mode-there is only one 
bit for each pixel dot. The data scheme here is as simple as you would 
expect it would be. Each successive byte in the display memory holds the 
data for eight pixels; the high-order bit of the byte (bit number 7) is for the 
first pixel, and so on down the bits. For the standard 4-color modes
modes 4 and 5-there are two bits per pixel. Just as you would expect, each 
byte holds the complete data for four pixels with the bits taken in pairs: the 
first two bits of each byte, bits 7 and 6, hold the data for the first of the four 
pixels, and so on. 

But, for the other 4-color mode, the PCjr's mode 10, the bits aren't 
coded that way at all. Instead, the display memory is used in pairs of bytes, 
with each pair providing the bits for eight pixels together. The first of the 
eight pixels gets its data bits from both of the high-order bits in the two 
bytes. The next pixel gets its two bits from the next bit of each of the two 
bytes, and so on. This curious scheme was worked out so that the PCjr's 
slower operating speed could keep up with the rapid data demand of this 
video mode; it works because the PCjr has two memory circuits that sup

213 



INSIDE THE IBM PC 

port every other memory byte. By grabbing and decoding data in pairs of 
bytes, the PCjr's memory can effectively work twice as fast. 

Finally, the 16-color modes, PCjr modes numbers 8 and 9, use four 
bits for each pixel. For these modes, each display memory byte covers two 
pixels; the four high-order bits provide the data for the first of the two 
pixels, and the low-order bits the other pixel. 

When our software sets to work drawing a graphics picture, it has to not 
only calculate the memory addresses where the data is stored, but it also has 
to carefully set the appropriate bits and leave the other bits undisturbed. If the 
program is painting an entire picture, it could construct the pixel data in 

• groups of 2 or 4 or 8 pixels at a time and simply store the complete data bytes 
in place-a relatively quick operation. But if the program is controlling the 
pixels independently, then the data for the pixels that share each byte has to 
be preserved. The microprocessor's bit-manipulating operations, ANDs, 
ORs, shifts, and so forth, are used for this. If a lot of bits are being set, the 
process can become quite lengthy, which is one of the main reasons why 
graphics-oriented programs run slowly compared to their text-based cousins. 
The PC's built-in ROM-BIOS provides service routines for manipulating 
individual pixels, but that doesn't speed the operation up any-it just saves 
programmers the work of creating these services themselves. 

While it's been reasonably easy to make sense out of the graphics 
modes that we've covered so far, the special modes provided by the 
Enhanced Graphics Adapter are a world to themselves which is so compli
cated that it seems to defy description or explanation. If I tried to explain it 
in a comprehensive way, it would take up about two chapters worth of 
space here-and when I was done, I'd probably need to be locked up in an 
asylum: the EGA modes are that complex and perverse. To spare my san
ity, and yours, I'll simply summarize what makes these modes so messy. 

The first thing is that the special EGA modes require gobs of memory, 
an amount of memory that can't be fit into the available part of the PC's 
address space. (The available part is the 64K sized A-block of memory. 
While there is a 128K total of two memory blocks dedicated to display 
memory, the B-block may be in use by either of the other display adapters 
that the EGA works with-so, for its special modes the EGA has to work 
within the 64K A-block.) 

This means that the working display memory has to be switched in and 
out of the PC's address space, as needed. While normal PC memory, and 
conventional display memory, is stable in the way it's addressed, the 
EGA's memory appears and disappears from the address space, so that the 
microprocessor and our programs can gain access to every part of it, even 
though there is more than will fit into the allotted space at one time. 

214 



SOME THINGS TO TRY 

The matter is further complicated by the fact that the EGA can have 
various amounts of memory installed in it, unlike the other display adapt
ers, which come with a fixed amount of memory-just the amount that they 
need and no more. The EGA, on the other hand, can do so many different 
things that there's no one right amount of memory that it can need. But 
changing the amount of memory that's installed in an EGA doesn't just 
change the modes it can use, or the number of display pages that are 
available in those modes: it also changes how the memory is used and the 
way it's addressed. 

The circuitry of the EGA performs a remarkable juggling act with its 
memory, adjusting the way the board operates to the amount of memory 
installed and the video modes that are being used, and making the memory 
appear and disappear from the PC's working address space as the situation 
calls for. Any programs that work intimately with the EGA in these new 
video modes have to be able to perform a dance that matches the skills and 
peculiarities of the EGA, by giving the EGA commands that control the 
memory addressing. 

If you sensed that it is complicated for a program that uses the standard 
graphics modes to work out the addressing of the two (or four) banks of 
lines of graphics data, you can imagine how much more complicated it is to 
work with the EGA. 

Some Things To Try 

1. 	 Experiment with the GRAPHTXT program shown in Appendix 
A. The program stops with character code 127. What happens if it 
went further? This program assumes that the table it displays is at 
a certain memory location (FOOO:FA6E). Can you think of a rea
sonable way to recognize such a table if we had to search for it? 

2. 	 For something more ambitious, try using GRAPHTXT as a start
ing point and create a program that allows you to create your own 
character drawings in large scale. 

3. 	 Imagine that you are creating specifications for the PC's hardware 
engineers, and you want to add a cursor and the blinking feature 
to the color graphics modes. How would you have it operate? Can 
you work out the reasons why the graphics modes don't have 
blinking or a cursor? Can you think of ways to overcome these 
problems? 

215 





14 
Keyboard Magic 

Since we've just finished our look at the PC family's display 
screens, it's appropriate that the next topic be the keyboard-the 
other half of our interface with the computer. It's mostly through 
the keyboard and the screen that we interact with our computers, 

so it's very worthwhile to know the ins and outs of our computer's 
keyboard. 

It should be obvious to all of us that the display screen is a very 
complex topic-and we've seen just how complex in the last three chapters. 
Our computer's keyboard, on the other hand, seems like a very simple 
item-and it is, indeed, comparatively simple. But there are complexities 
and capabilities just under the surface of the PC's keyboard, complexities 
that make the keyboard a lot more flexible and a lot more interesting to 
explore than you might think. 

You'll see why in this chapter, and it will make it possible for you to 
understand how some programs are able to work with the keyboard in some 
very unusual ways. 

14.1 Basic Keyboard Operation 

To understand what's going on with our computer's keyboard, we 
need to understand two key things: first that it isn't what it appears to be, 
and second that keyboard information journeys through several layers of 
transformations, until it emerges as what we thought it was in the first 
place. 

It all takes place through some indirect magic. To make sense out of 
this, I'll begin by explaining why the keyboard works so indirectly, and 
then we'll see just how it works. 

We expect our computer's keyboard to work in a very crude way: we 
press the A key, and the keyboard says to the computer" A"; just that, and 
nothing more. It doesn't work that way. The reason is very simple. If the 
keyboard is assigned the task of making the A key mean the letter "A", 

217 



INSIDE THE IBM PC 

then the keyboard is in the business of giving meaning to what we do when 
we pound away on the keyboard. There are two things wrong with that. 
One is that it's not the business of the computer's hardware to assign 
meaning to what we're doing. Hardware is supposed to be like a blank 
slate-full of potential but with nothing happening. Software, on the other 
hand, is supposed to bring the computer's hardware to life, giving it activ
ity and meaning. So, the first thing that would be wrong with the keyboard 
deciding that the A key meant the letter "A" is that the hardware would be 
intruding on a job that should belong to software. 

The other thing that is wrong with the keyboard making the A key 
mean the letter"A" is that that would be inherently inflexible. You and I 
may say to ourselves that it would be stupid for the A key to mean anything 
else, but that's not the issue. As much as possible, a computer should be 
flexible and adaptable; and if the computer's hardware doesn't impose any 
meaning onto our keystrokes, so much the better. 

Those are the ideas that are behind what may seem to be a curious 
relationship between the keyboard and our computers (and the computer's 
built-in ROM-BIOS programs). 

Here is what happens when you or I press a key on our computer's 
keyboard: the keyboard recognizes that we've pressed one of the keys and 
makes a note of it. (The keys are assigned an identifying number, called a 
scan code, and that's what the keyboard makes a note of-that key number 
such-and-such has been pressed. You'll see what the identifying scan code 
numbers are for the standard PC keyboard in Figure 14-1.) 

After the keyboard has made a note of the fact that we've pressed a 
key, it tells the computer that something has happened-it doesn't even say 
what, it just says that something has happened on the keyboard. That's 
done in the form of a hardware interrupt. The keyboard circuitry gives our 
computer's microprocessor an interrupt using the particular intemlpt 
number that's assigned to the keyboard, interrupt number 9. That interrupt 
simply tells the computer that there has been a keyboard action. Interrupts, 
as we learned in Chapter 6, cause the microprocessor to put aside what it 
was doing and jump to an interrupt-handling program; in this case, one that 
is an integral part of the PC's ROM-BIOS software. 

At that point, the ROM-BIOS's keyboard interrupt handler swings into 
action, and finds out just what took place on the keyboard. It does that by 
sending a command to the keyboard to report what happened. The keyboard 
responds by telling the ROM-BIOS which key was pressed. (The command 
and the reply work through the PC's ports, which we also discussed in 
Chapter 6. The ROM-BIOS issues its command by sending a command 
code out to a port address that the keyboard responds to. The keyboard 

218 



~ 
!:Xl 

til
> 

§ 
n 

I 
o 

~ 

N...
\0 Figure 14-1. Keyboard keys and scan codes. 



INSIDE THE IBM PC 

replies by sending the scan code of the key on another port address, which 
the ROM-BIOS reads.) In a moment we'll see what the ROM-BIOS does 
with that information, but first we need to finish up looking at this first 
layer of operation, that takes place in the keyboard itself. 

The keyboard, of course, has to keep track of what key was pressed, 
waiting until the ROM-BIOS asks for it. (It isn't a long wait-usually about 
one ten-thousandth of a second; still, for computer hardware, that's a wait.) 
To do this, the keyboard has a small memory, and the memory is big 
enough to record 20 separate key actions, in case the microprocessor does 
not respond to the keyboard interrupts before more keys are pressed; that's 
rare, but the keyboard design allows for it. After the keyboard reports the 
details of a key action, it's flushed out of the keyboard's own special little 
memory, making room for new scan codes. 

There are two more things we need to know about the keyboard. The 
first one is very critical. The keyboard doesn't just note when we press a 
key-it also notes it when we release a key as well. Either the pressing or 
releasing of any key is noted in the keyboard, and each separate key action 
is recorded by the keyboard, turned into an interrupt, and fed to the 
ROM-BIOS on command. There are distinct scan codes for the press and 
release of each key, so that they can be distinguished (the press codes are 
shown in Figure 14-1; the release codes are the same plus 128, hex 80). 

That means that the ROM-BIOS is being interrupted to learn about key 
actions twice as often as we might have guessed. It also means that the 
ROM-BIOS is able to know whether a key is still being held down or 
whether it's been released, and that allows the ROM-BIOS to know, for 
example, if we're typing in capital letters because the shift key is held 
down. 

The other thing that we need to know about the keyboard is that it's 
the keyboard hardware which makes the repeat-key action work. The key
board hardware keeps track of how long each key is held down, and if it 
passes the "repeat threshold" (about half a second) then the keyboard 
hardware generates repeated key-pressed scan codes at a regular interval, 
just as if we had (somehow) repeatedly pressed the key without ever releas
ing it. These repeat key signals appear to the ROM-BIOS just like regular 
keystroke signals. If it needs to, the ROM-BIOS can distinguish them by 
the absence of the key-released scan codes in between. 

What I've been describing so far is exactly how the standard PC key
board works, but that's not exactly how the PCjr's keyboard and the AT 
keyboards work. To learn what the qifferences are, see the sidebar Key
board Differences. The next thing for us to discover is how the ROM-BIOS 
works with the keyboard's scan codes and turns them into meaning. 

220 



14.1 BASIC KEYBOARD OPERATION 

Keyboard Differences 

What we've been describing here is the standard PC keyboard, which 
fonns the basis of all keyboards for the PC family. Some models 
have keyboards that differ from the standard PC one, and they work 
their way around the differences to maintain full PC compatibility. 
That's made possible by the modular stages that the computer's 
keyboard data moves through. 

In the case of the PCjr, the keyboard has fewer keys and is unable to 
hold key action data and wait for the microprocessor to request it. 
The PCjr's keyboard transmits its key actions-with unique jr key 
scan codes-through an interrupt other than the standard keyboard 
interrupt 9. Since the jr can't wait, it signals a key action by a 
nonmaskable interrupt, number 2. The interrupt handler for that 
interrupt quickly reads the keyboard data as it is being transmitted, 
and then translates the jr scan codes into the equivalent standard PC 
scan codes, and then-in a final bit of trickery-invokes an interrupt 
number 9 to pass that to the regular ROM-BIOS routines (or to any 
program that has interposed itself before the ROM-BIOS and which 
expects to see standard PC scan codes, rather than PCjr codes.) 

The PCjr goes to great lengths to make its nonstandard keyboard and 
scan codes appear to work identically to the PC-standard through a 
quite elaborate and clever set of programming tricks. Other 
keyboards that differ from the original PCs, such as the ATs, use 
similar methods although they don't require going to quite such 
extreme lengths. 

In the standard PC keyboard, the two controlling factors of the 
repeat-key action-the time delay before it begins, and the time 
interval between generated key strokes-are fixed items. In both the 
PCjr and the AT model they can be changed. In the AT, the 
repeat-key action is a hardware feature, as it is for the PC; but the 
AT's keyboard hardware is programmable, so that we can change the 
repeat-key delay and interval. In the PCjr, the repeat-key action is 
created by the ROM-BIOS software, and it can be changed or even 
turned off entirely. 

When the ROM-BIOS's keyboard interrupt handler springs into 
action, it receives one of the scan codes from the keyboard, and it has to 
decide what the key means. The ROM-BIOS quickly goes through several 
stages of analysis to discover how it should interpret and what it should do 
to the key action. First, it tests to see if the key action applies to one of the 
shift-type keys (such as the shift keys on the left- and right-hand side of the 
keyboard, or the ALT key, or the CTRL key). If so, the ROM-BIOS makes 
a note of the shift state, since it will affect the meaning of the keys that 

221 



INSIDE THE IBM PC 

follow. Next, the ROM-BIOS tests to see if the key action is one of the 
"toggle" keys (such as the CAPS LOCK key, NUMLOCK, SCROLL
LOCK, or INS). The toggle keys, like the shift keys, affect the meaning of 
other keys, but the action is different here: the shift keys apply only when 
they are held down, and the toggle keys apply depending upon whether 
they are toggled "on" or "off". 

For both the shift keys and the toggle keys, the ROM-BIOS has to 
keep a record of the current state of things, so that it knows what's what. 
This record is kept in two bytes of low memory, at hex addresses 417 and 
418. Each of the bits in these two bytes separately records one part of the 
keyboard status, either recording if one of the keys is pressed down or 
recording whether one of the toggle states is on or off. You can inspect and 
play with these keyboard status bits using the KEY-BITS program listed in 
Appendix A. KEY-BITS demonstrates how the keyboard status is recorded, 
and also shows you some surprising things about what information the 
ROM-BIOS keeps track of. You'll see some things that you wouldn't 
expect to be recorded-such as keeping separate track of the left- and 
right-hand shift keys, or noting whether the toggle keys are pressed. Exper
imenting with KEY-BITS tells you a lot about how the ROM-BIOS works 
together with the keyboard. 

(To help you get the most from KEY-BITS, here are two tips: it takes 
a bit of time for the program to decode the keyboard bits and display them 
on the screen. Give it a few seconds to show the results of your key actions. 
Also, when you're experimenting, remember that the keys interact-if 
you're in the shift state, pressing the Ins key isn't interpreted as the Ins key, 
it means the zero key instead.) 

After the ROM-BIOS has taken care of the shift and toggle keys, it 
needs to check for some special key combinations, like the CTRL
ALT-DEL combination that reboots the computer. Another special combi
nation is CTRL-NUMLOCK, which makes the computer pause. See the 
sidebar About CTRL-NUMLOCK Print-Screen and More for more 
information. 

About CTRL-NUMLOCK Print-Screen and More 

The keyboard ROM-BIOS routines do more than supervise the raw 
keyboard input and translate it into meaningful key characters. They 
also oversee some built-in features of the PC family. 

The three best-known of the PC's features that the keyboard routines 
invoke are the system reboot (invoked by the CTRL-ALT-DEL 

222 



14.1 BASIC KEYBOARD OPERATION 

Displaying the keyboard control bits; press Enter to stop 

To see the changes in action, press these keys: 
Both shift keys, Ctrl, Alt, CapsLock, NumLock, ScrollLock, Ins 

o 1 1 0 o 0 1 0 o 

o 1111° °LL~:tI:~!~}':~ off 
PCJr click state off 

.... Hold state active off 
Scroll lock pressed ON 

Num Lock pressed ON 
.... Caps Lock pressed off 

Ins pressed off 

Right shift pressed off 

Left shift pressed ON 


Ctrl pressed off 

.... Alt pressed off 


Scroll Lock state off 

Num Lock state ON 


Caps Lock state ON 

Insert state off 


Figure 14-2. Sample screen from KEY-BITS. 

key-combination), print-screen (shift-left-asterisk), and system pause 
(CTRL-NUMLOCK). 

In the case of both reboot and print-screen, these are services that are 
always available to any program that wants to invoke them; 
print-screen, for example, is simply invoked by issuing an interrupt 
5. In the case of these two services, the keyboard routines simply 
provide us, the user, with a way of getting at a service that normally 
is only available to a program. 

The CTRL-NumLock or pause feature, however, is a special feature 
peculiar to the keyboard ROM-BIOS. When the keyboard routines 
recognize this key combination, the ROM-BIOS makes a note of it, 
and goes into a never-ending do-nothing loop-effectively 

223 



INSIDE THE IBM PC 

suspending the operation of any program that is running. When this 
pause state is in effect, the machine is not locked up, and it 
continues to respond to any hardware interrupts that occur, such as 
disk and timer interrupts. However, when any of those interruptions 
are completed, control passes back to the keyboard routine and it 
refuses to return control to the program that's been suspended. Only 
when we press one of the PC's regular keys does the ROM-BIOS 
reset its pause bit, and return the microprocessor to active duty. 
You'll see the pause bit, which the ROM-BIOS uses to keep track of 
this state, if you run the KEY-BITS program. However, KEY-BITS 
can't show the pause bit set, since when it's set, no program, 
including KEY-BITS, is running. 

On some members of the PC family there are other special services 
that the keyboard ROM-BIOS supervises. On the Compaq models, 
special key-combinations control the special Compaq display mode 
and control loudness of the the key-clicking. In the Compaq-286 
modes, another key-combination also controls the running speed. 
And in the PCjr, keyboard clicking is also controlled by a key 
combination. 

Finally, if a key action passes through all that special handling, it 
means that the key is an ordinary one which can be assigned some mean
ing-that is, if the action is the key being pressed and not released. Releas
ing a key ordinarily means nothing, if it's not one of the special shift or 
toggle keys. When we press an ordinary key, the ROM-BIOS can recognize 
it as it produces keyboard characters in the ordinary sense-such as the A 
key. To give an ordinary key meaning, though, the ROM-BIOS has to 
translate the key into its character code. This is the point where the A key 
becomes the letter "A". In this translation process, the shift -states are 
taken into account, to distinguish letter "a" from "A" and so forth. 

When a keystroke is translated into its meaning, there are two sets of 
meanings, two types of keyboard characters. The first is the ordinary ASCII 
characters, such as "A" or Control-A (ASCII code 1) or whatever. The 
second is for the PC's special keys, such as the function keys. These 
keys-which include the function keys, the cursor keys, the Home key and 
so forth-have special codes which distinguish them from the ordinary 
ASCII character keys. 

The ALT-Numeric Trick 

There is one more special trick that the keyboard ROM-BIOS 

routines perform for us that many PC users don't know about, 

something I call the ALT-Numeric Trick. 


224 



14.1 BASIC KEYBOARD OPERATION 

Most of what we want to type into our computers is right there on 
the keyboard, in plain sight: the letters of the alphabet, and so forth. 
And much of the more exotic stuff can be keyed in by combining the 
CTRL key with the alphabetic keys; for example, CTRL-Z keys in 
ASCII code 26, which is used as an end-of-file marker for text files. 
But we can't key in every one of the PC's character set that way. For 
example, if we wanted to key in the box-drawing characters that we 
saw in Chapter 4, we won't be able to do it. 

To make it possible for us to key in virtually anything, the 
ROM-BIOS provides a special way for us to enter any of the 
characters with ASCII codes I through 255. (Oddly though, we can't 
key in ASCII code 0 this way, or any other way.) 

We do it by holding down the ALT-shift key, and then keying in the 
ASCII code of the character we want; we enter the code in decimal, 
and we have to use the numeric keys on the right-hand side of the 
keyboard, not the number keys on the top row of the keyboard. When 
we key in this special way, the ROM-BIOS makes a note of it, 
calculates the code number we've keyed in, and when we release the 
ALT key, it generates an ASCII character, very much as if we had 
pressed a single key that represented that ASCII character. 

To try it yourself, you can use the ASCII code for capital A, which 
is 65. Hold down the ALT key, press and release 6 then 5 on the 
right-hand side keys, then release the ALT key. The letter A should 
appear on your screen, just as if you typed in a capital A. 

This special scheme works under most circumstances, but not all. 
BASIC changes the keyboard operation so it doesn't work when 
we're using BASIC. And keyboard enhancing programs, such as 
Prokey, may modify the scheme so it works differently. But, under 
most circumstances, we have this special ROM-BIOS facility at our 
command to enhance our ability to enter anything on the keyboard. 

To accommodate both the plain ASCII codes and the PC's special 
codes, the ROM-BIOS records its key characters as a pair of bytes. If the 
character at hand is an ASCII character, then the first of the two bytes is 
non-zero and it holds the ASCII character itself. (In this case, the second 
character can be ignored. It generally holds the scan code of the key that 
was pressed.) The special PC characters are identified by a zero in the first 
byte. When the first byte is zero, the second byte contains the code identi
fying which of the special key characters is present. 

BASIC practically gives us access to these two-byte keyboard codes 
with the INKEY$ function. With it we can inspect the keyboard codes. The 
little program below shows you how. Just run this in BASIC, and start 
pressing keys (the Enter key will stop the program): 

225 



INSIDE THE IBM PC 

100 FOR I : 1 TO 10 KEY I, "" NEXT 
110 K$ : INKEY$ 
120 L : LEN (K$) 
130 IF L : 1 THEN PRINT "ASCII character ";ASC(LEFT$ (K$, 1)) 
140 IF L : 2 THEN PRINT "Special key code ";ASC(RIGHT$(K$, 1)) 
150 IF K$ : CHR$(13) THEN SYSTEM ELSE 110 

After a "real" keystroke has been recognized and translated into its 
two-byte meaning, it's stored in the ROM-BIOS's own keyboard buffer. 
This is the second time that the keyboard information has been stored in a 
buffer--once in the keyboard's own internal memory and now in the 
ROM-BIOS's storage area. The ROM-BIOS has a buffer large enough to 
store 15 characters. If it overflows, the ROM-BIOS issues the complaining 
beep on the speaker which experienced PC users are accustomed to, and 
then it throws away the latest key data. 

Once our key actions have been received and translated into meaningful 
characters by the ROM-BIOS, they are available for our programs to use. Our 
programs can either take them directly from the ROM-BIOS-using the 
ROM-BIOS keyboard service~r they can get them from DOS-using the 
DOS keyboard services, which indirectly takes them from the ROM-BIOS. 
Either way, our programs end up using these keyboard characters that have 
been constructed from our key actions by the ROM-BIOS. 

That, anyway, is the way things work with our keyboards when things 
are proceeding in a straightforward way. But, the whole elaborate scheme 
for processing our key strokes that we've been following is intended to 
allow programs to sidestep the normal keyboard operation and start pulling 
rabbits out of hats. Next we'll see some of how that is done. 

14.2 Keyboard Tricks 

The PC's design allows our programs to work with the keyboard in 
many, many ways. Even when our programs aren't doing anything exotic, 
they have a choice of two ways of obtaining their keyboard data-either by 
obtaining it directly from the ROM-BIOS or by getting it through the DOS 
services. But that certainly isn't the only way that a program can come by 
keyboard information. 

I certainly can't give you an exhaustive rundown of keyboard tricks 
here for many reasons. One of them is that ingenious programmers are 
inventing new keyboard tricks all the time. The biggest reason is that the 
tricks are far too technical for us here. They are really advanced program
mer's tricks that have nothing to do with our goal in this book, which is to 

226 



14.2 KEYBOARD TRICKS 

understand the PC family. But, more and more, we all find ourselves using 
programs that are based on keyboard tricks, and it's very worthwhile for us 
to know basically how they work, so that we can use them comfortably, 
and not think that there is black magic going on. 

There are a number of ways that a program can respond in unusual 
ways. One of them is indirectly demonstrated in the KEY-BITS program. 
Any of our programs can, if they wish, monitor the keyboard status bytes 
and act accordingly. Here's a crude example of how: 

10 DEF SEG = 0 

20 PRINT "please press both shift keys at once! " 

30 IF PEEK (&H417) MOD 4 (>3 THEN 30 

40 PRINT "Thank you! " 


This allows a program to treat the shift-type keys in some special way. 
While ordinary programs have no good reason to do something like that, 
we're not talking about ordinary treatment of the keyboard, but special 
treatment. Often the designers of game programs will want to do something 
rather special, particularly with the shift keys. For example, the "Night 
Mission Pinball" progr~reated by Bruce Artwick, the same wizard 
who created the Microsoft Flight Simulator-uses the shift keys to control 
the pinball flippers. To do that, the program has to recognize when either of 
the shift keys is held down, which it can do simply by monitoring the 
keyboard status bits. 

One of the most interesting types of programs that we use on our PCs 
are resident programs like the popular Sidekick program, which sits inac
tive in our computer's memory until we activate it with a special key 
combination. Let's see some of the ways that this can be done. 

You'll recall from Chapter 6 that the PC has an internal clock which 
"ticks" about 18 times a second. The clock tick is made audible, so to 
speak, by a special clock-tick interrupt, interrupt number 8. Normally the 
ROM-BIOS receives that interrupt and uses it only to update its time-of-day 
record. But the ROM-BIOS also makes the ticking of the clock available to 
our programs by generating another interrupt, number 28, which does noth
ing unless one of our programs has set up an interrupt vector to receive this 
interrupt. Then, the program will be specially activated 18 times each 
second. 

Let's consider how Sidekick might use this technique to spring into 
action. The normal signal that Sidekick uses to tell that we want it to swing 
into action is that we've pressed the CTRL and ALT keys at the same time. 
One way that Sidekick could do that is simply to use the timer interrupt to 

227 



INSIDE THE IBM PC 

give it a frequent chance to check the keyboard status bits to see if we have 
both keys pressed (similar to the way our sample BASIC program above 
checks for both shift keys). If Sidekick doesn't find the bits set, it simply 
returns control from the timer interrupt, and very little time has been 
wasted. But if Sidekick does see the signal bits set, then Sidekick can keep 
running, performing its special magic. 

In this example (which is based on the way I presume Sidekick works) 
the timer interrupt does not involve interfering in any way with the normal 
flow of keyboard data. Instead, it makes use of the timer interrupt and the 
keyboard system's willingness to let our programs see the state of the shift 
keys. 

That, however, is far from the only way that a program can make 
special use of the keyboard. For even more exotic operations, a program 
can interpose itself into the middle of the keyboard data flow so that it can 
intimately monitor, and possibly modify, the information. This is what 
keyboard enhancing programs, such as Prokey and Superkey, do. 

If a program wishes to completely take control of the keyboard, or at 
least have complete access to knowledge of what's going on in the key
board, it can interpose itself into the path of the keyboard hardware inter
rupt-simply by placing an interrupt vector pointing into the program in the 
place of the standard vector, which directs keyboard interrupts to the 
ROM-BIOS. Then, when the keyboard causes a hardware interrupt, our 
new program "sees" the interrupt instead of the ROM-BIOS seeing it. 

There are two main things that such a program might do. One is 
simply to take full control of the keyboard data, so that the ROM-BIOS 
never sees it. This can be done by a program that wants to take ruthless and 
total control. Most programs which intervene in the keyboard data process, 
though, aren't interested in stopping the flow of information from the key
board to the ROM-BIOS-they merely want to monitor it and, when appro
priate, modify it, but not stop it. This sort of program inspects the keyboard 
data as it goes by, but generally allows the normal flow of information to 
proceed, passing through the normal stages of operation. That's how most 
keyboard enhancing programs, including Prokey, work. They step in to 
monitor and modify the keyboard data. To do that job, they may even have 
to replace the ROM-BIOS processing programs with their own program 
steps, but they don't stop the processing of the keyboard data in the way in 
which the ROM-BIOS normally does it. 

When we look at the wide variety of programs that are available for 
our PC family, we'll find many ways that programs treat the keyboard in 
special ways, and if we look under the surface of them, we'll find different 
degrees of programming going on. What we've discussed in considering 

228 



SOME THINGS TO TRY 

the likes of Sidekick and Prokey represents the extreme case. There are, 
however, much less radical ways to handle keyboard data in special ways. 

To see how, let's consider the example of Framework. Framework 
makes special use of the so-called grey-plus and grey-minus keys, the plus 
and minus keys that are on the far right-hand side of the PC's keyboard. For 
an ordinary program, there is no difference between the meaning of these 
plus and minus keys and the plus and minus keys that are located on the top 
row of the keyboard. However, Framework uses these grey keys to perform 
a special operation, which moves us up or down a logical level within 
Framework's data scheme. To do that, however, Framework has to be able 
to recognize the difference between a grey-plus and the other plus key. You 
might be tempted to think that Framework would have to tinker with the 
keyboard data (in the manner that, say, Prokey does), but that's not 
necessary. 

As we saw earlier, when the ROM-BIOS presents keyboard data to our 
programs, it presents it as a two-byte code where the fIrst byte indicates the 
ASCII code of the character data. If we press the grey-plus key, or the other 
plus key, this byte of information from the ROM-BIOS will be the same
ASCII code number 43. However, the second byte that the ROM-BIOS 
makes available to our programs reports the scan code of the key that was 
pressed, and so it makes it very simple for a program like Framework to tell 
the difference between when we press the grey-plus and the other plus keys; 
it can also easily tell when we generate the plus code by using the 
ALT-numeric scheme that we saw earlier in the chapter. 

Framework is able to respond to the special grey-plus and minus keys 
simply by making full use of the standard information that's available, 
without having to perform any special magic or interfere in the operation of 
the ROM-BIOS or the flow of keyboard information. 

That's an important thing for us to know, because people often assume 
that it's necessary to use special and potentially disruptive tricks to accom
plish special objectives in programs. This example with Framework illus
trates that it is possible to get everything done that's needed without trying 
to break out of the standard conventions that help keep our PC computers 
working smoothly. 

Some Things to Try 

1. 	 For the toggle keys, like the CapsLock key, the ROM-BIOS 
keeps track not only of the current toggle state, but also whether 
the key is pressed. Even though our programs have no normal use 

229 



INSIDE THE IBM PC 

for this infonnation, there is a simple logical reason why the 
ROM-BIOS records it. Can you discover why? 

2. 	 The scheme used to separate the PC's special character codes 
from the ASCII codes works quite well, but it has one technical 
flaw. Can you find it? How could you correct it? 

3. 	 There are some ways (though devious) for a program to detect the 
keyboard pause state that we discussed in the sidebar on 
CTRL-NUMLOCK. Can you think how it might be done? 

230 



15 
Other Parts: Communication, 
Printers, and More 

I n this chapter we're going to finish our round-up of the Pe family's 
hardware capabilities, by covering a miscellany of parts and hard
ware capabilities. We'll be looking at the PC's parallel and serial 
ports, which are used for printers and for remote communications. 

Then we'll move on to explore the PC's ability to generate sound, to work 
with mice, to use cassette tapes, and more. 

15.1 Printers: The Parallel Port 

One of the standard attachments to our Pes is what's called a parallel 
port. It's hard to find a PC that doesn't have one, and most of the option 
cards that we add to our computers-including the IBM Monochrome 
Adapter card, many memory expansion boards, and just about every mul
tifunction board-come with a parallel port. In fact, it's so common for the 
option boards that we install in our computers to have a parallel port that 
many Pes have two or even three separate parallel outlets even though we 
have no use for more than one. 

A parallel port is a special-purpose data outlet designed for only one 
purpose: to provide a connection to a printer. There are actually two differ
ent ways that we can connect printers to our computers: through a parallel 
port or a serial port. The parallel port, which is our topic here, is specially 
designed for printers only; the serial port-which we'll be discussing in 
Section 15.2-----can be used for many purposes, and a printer is only one of 
them. 

You'll find that what I'm calling a parallel port goes under several 
names, and you should know about them so that you don't get confused. 
IBM usually calls it a parallel printer adapter. It's called parallel because of 
the way it transfers data (more about that shortly). It's called printer 
because that's the only use that it's put to, for passing data to a printer. We 

231 



INSIDE THE IBM PC 

can call it an adapter, or a board, or an option, as we choose. People 
commonly refer to it as a port (as I have been here), using that word in the 
sense of a "data outlet." Here, though, the word port doesn't mean the 
same thing as the ports that we discussed in Chapter 6. Those ports are a 
particular feature of the PC's microprocessor, which are used for communi
cation between the microprocessor and other parts of the hardware (includ
ing parallel printer adapters). Here, when we use the word port we mean it 
in a more casual sense. Our PC's microprocessor does use its ports to talk 
to this "port," but the two uses of the same word don't mean the same thing. 
Incidentally, you may also occasionally see our parallel printer port called a 
Centronix interface, from the name of the company which established this 
standard way of communicating between a computer and a printer. 

This printer interface is referred to as parallel because it is designed to 
transmit data a byte at a time, with all eight bits of the byte passing out to 
the printer at the same time, moving out through eight separate wires, in 
parallel. 

The interface between the computer and the printer that's used in the 
parallel port is not a particularly rich or intelligent one, and it only allows 
for the transfer of a few special status signals between the printer and the 
computer. Basically the computer can only send out two things: data to be 
printed, and a special initialization signal that a printer is supposed to use to 
reset itself. Of course, all sorts of special signals can be buried in the 
printer data itself. Most printers have all elaborate set of control codes that 
can be sent to them in the stream of data that's sent out to them. But these 
control codes are specific to each printer, and they almost exclusively have 
to do with the formatting of the printed data (such as the selection of wide 
printing or underlining, etc.). In the design of the parallel interface itself, 
there is only one special signal that the computer can send to the printer, 
and that's the initialization signal. 

Similarly, there isn't a great deal that the computer can communicate 
to the computer. There are primarily three things. One is simple acknowl
edgement, which the printer uses to report that data is received properly. 
The second is a busy signal, which the printer uses to tell the computer to 
hold up sending more data, until the printer is able to handle it. The third is 
the only really printer-specific signal (since all the others could apply to any 
transmission of data), and that's an out-of-paper signal. All standard com
puter printers have a sensor that recognizes when the printer is out of paper, 
and the parallel printer interface provides a special channel just for the 
printer to pass this signal back to the computer. This out-of-paper signal is 
particular to the parallel printer interface, and it's not available with printers 
that use the serial port that we'll be discussing in Section 15.2. 

232 



15.2 COMMUNICATION LINES: THE SERIAL PORT 

The design and capabilities of the parallel printer interface have noth
ing specific to do with our PC family, because they are designed for and 
used by the entire information processing world. There is one PC-specific 
item, though, that we need to know about. The basic architecture of the 
PC's printer adapters (and the ROM-BIOS routines which support them) 
allow for up to three completely independent parallel ports to be attached to 
anyone PC computer. No more than three can be added, but there can be as 
many as three. 

This means that our computers can have as many as three parallel print
ers attached to them at once. With the right software in place, our PC's can 
drive two or three printers at once, keeping them all busy. That's what we 
might do if we were using our computers as a sort of print-engine, a central 
point to bang out lots and lots of printing. That, however, would be a very 
specialized use of the PC, and that's not the way most PC software, includ
ing DOS, is set up. The normal convention for any PC that has more than 
one printer attached to it is for us to have a choice of printers at our disposal, 
but for only one to be used at a time. Although it's not too common, some 
PC users have their systems set up just that way. Typically when that's done, 
one printer will be quick and crude, used for printing draft copies; the other 
will be slower and better, used for printing final copies. 

Since the topic of multiple printer outlets has come up, it's worth 
mentioning here-although it has nothing to do with our discussion of the 
PC's hardware-that DOS provides some ways of switching our standard 
printer output from one printer to another. The MODE command can be 
used for part of that, and the PRINT spooling command can direct print to 
different devices as well. 

Most of the printers used with our PCs come set up to be used with the 
parallel printer interface. However, some come in two models, one for the 
parallel interface and the other for the serial interface, while a few print
ers-for example, the Hewlett Packard LaserJet printer--only come in a 
serial interface model. 

While the parallel port that we've been discussing is intended specifi
cally for use with a printer, the similarly-named serial port can be used for a 
variety of purposes, as we'll see in Section 15.2. 

15.2 Communication Lines: The Serial Port 

The other main path for our computer's data is what we call the serial 
port, or serial interface. IBM more formally calls it the Asynchronous 
Communications Adapter, for reasons we'll see shortly. 

233 



INSIDE THE IBM PC 

The parallel port we discussed in Section 15.1 is basically a one-way 
path for data to be transmitted to the printer. As we saw, the link isn't 
exclusively one-way, because acknowledgment, busy, and out-of-paper 
signals can be sent back. But in terms of sending a full complement of data, 
the parallel port is outgoing only. The serial port, however, is a fully 
two-way path, which is the key to the main uses that we put it to. 

What we call our computer's serial port or serial interface is based on a 
standard that is widely used in the information handling industry, called 
RS-232. RS-232 is a standard convention for transmitting two-way, asyn
chronous serial data. The path is two-way, so data can be sent back and 
forth. It's asynchronous, which means that the transmission of data is not 
based on a predefined timing pattern. Instead, it is sent on an irregular 
catch-as-catch-can timing, with both sides prepared to handle the irregulari
ties. (There are other forms of communication-not commonly used on 
personal computers-which are synchronous, based on a standard timing 
signal.) The transmission is serial, which means that data is sent a bit at a 
time. (We'll see the complications that that introduces in a moment.) 

While the parallel interface is designed for one simple and fairly 
well-controlled use, the serial interface is designed for an enormously wide 
variety of uses. As a consequence, it is very flexible but it also has a 
confusingly wide range of parameters and variations that can be adjusted to 
suit many needs. These are called the communications parameters, and 
they are a source of considerable confusion when we try to work with the 
serial ports. 

The communication parameters are a set of specifications which estab
lish how each serial port will work. Any interface, including this serial 
interface, has two ends to it, and the equipment on each end must agree on 
the settings of the communications parameters so that they can properly 
recognize each other's signals. Since our PC's can adjust to any combina
tion of parameters, and since very often what's on the other end of the 
serial interface connection can't, the job of adjusting and matching usually 
falls to our computers, or more specifically, us. In principle that's not hard 
to do, but it assumes that we know what the parameters should be, and that 
we know how to set them in the first place. That's no technical challenge 
for an experienced and knowledgeable PC user, but many people who are 
relatively new at using PCs can be perplexed by the challenge. After all, we 
don't normally have to tell electronic things how to work-we normally 
just plug them together and they know how to get the job done. With serial 
communications that's all too often not the case, which can lead to consid
erable frustration. 

We need to get a little idea here of what the communications parame

234 



15.2 COMMUNICATION LINES: THE SERIAL PORT 

ters are. Digging into them deeply is a technical matter that needn't concern 
us here-it belongs in a specialized book on communications. But at least 
we'll see an outline of the basics here. 

The serial communications parameters begin with a baud rate, which 
determines how fast the port will run, in a measure called baud, or bits per 
second. Baud rates run from a low of 110 to a high of 9600. The most 
common rates for PCs to use is 300 (for slow telephone communications) or 
1200 (with faster modems). Lower rates are rare, but we may encounter 
higher. For telephone use, 2400 baud modems are becoming increasingly 
common, and some printers-such as the Hewlett Packard LaserJet
accept data at a 9600 baud rate. To convert a baud rate into practical terms, 
we can just knock one digit off and have the approximate data rate in 
characters (or bytes) per second. That's because transmitting a byte of data, 
complete with the overhead bits that serial communications adds, normally 
takes ten bits of transmission. 

After the baud rate comes the number of data bits for each data charac
ter. There are two choices, 7 or 8. Of course our PC's character bytes are 
eight bits long, and to be able to transmit the whole PC character set we 
have to work with an 8-bit character. But most serial communications is 
done with just the main ASCII characters, which are only seven bits long. 
That's why much serial communications is done with a 7-bit character. 

Next is the parity, or error-detection coding. RS-232 communications 
allows for three different settings: odd or even (two different ways of calcu
lating a parity check bit) or no parity checking (which cuts down on the 
communications overhead). The parity type is usually noted by its initial 
letter, so we'll run into mentions of parity setting of E (for Even), 0 (odd), 
or N (none). Finally comes the number of "stop" bits. Each character of 
data transmitted is surrounded by "start" and "stop" bits that bracket and 
punctuate the transmission of characters. We can control the number of stop 
bits by specifying either one or two stop bits. 

Actually, as you might have guessed, the full range of communica
tions parameters, including the forms of parity, are more complicated than 
what I've outlined here, but this gives us the main points. The key thing for 
us to understand is that the communications parameters are rather compli
cated and messy, but they have to be set just right, so that both ends of the 
serial connection can understand each other. At times, setting these param
eters falls on our shoulders, so we need to be able to at least recognize the 
names and common values of the parameters to help us deal with them. 

There are two main uses that we put the serial port to in our pes. One, 
which we've already mentioned, is as an alternative connection to our 
printers. This, of course, is only done with those printers that are made for 

235 



INSIDE THE IBM PC 

a serial connection-which a relatively small proportion of the printers that 
are used with PCs, though there are still plenty of serial printers. 

The other, and by far the greatest use, is for communication as we 
commonly think of it, connecting our computers to the telephone network. 
To do that we have to have quite a few other elements besides a parallel 
port. We have to have a modem, which translates computer signals into 
telephone signals, modulating (the mo of modem) the computer bits into the 
equivalent of a sound wave, and demodulating (the dem of modem) the 
telephone sound waves into computer bits. We also have to have a tele
phone line to connect to, and something that knows computer talk on the 
other end of the phone line-such as a computerized database service (like 
the Source or Compuserve) or an electronic mail service (such as MCI 
Mail), or another computer, such as another PC acting as a computerized 
bulletin board. 

Printers and telephones, however, aren't the only things that we can 
connect our PC's serial port to, they are just the most common. We can 
also use the serial port to connect our printer to other output devices, such 
as plotters (which make drawings on paper just as printers type on paper). 
The serial port can also be used for other forms of input. Some mouse 
devices (which we'll discuss again briefly in Section 15.4) use the serial 
port for their input. Also, when PCs are connected to scientific instru
ments--either to receive data or to send out commands-serial ports are the 
natural choice, since they're based on a common standard that is easy to 
design electronic equipment to use. 

As we saw in Section 15.1, the PC's basic design allows us to attach as 
many as three parallel printer interfaces; for serial communication ports, the 
design limits us to no more than two ports. This is ironic, because the serial 
ports are so much more flexible and can be used for so many more things. As 
a consequence, we're more likely to have more need for serial ports than 
parallel. In practice, though, nearly all PC users fmd that their machines can 
accommodate more equipment than they want to connect to it. 

15.3 Sound 

One of the more interesting things that our PCs can do is make 
sounds-a surprisingly wide range of sounds. Here's a very simple demon
stration of how the PC can play scales: 

10 FREQ = 130.81 
20 FOR OCTAVE - 1 TO 4 
30 FOR NOTE = 1 TO 7 

236 



15.3 SOUND 

40 SOUND FREQ, 3 
50 DIFF = 1. 1225 
60 IF NOTE = 3 OR NOTE -- 7 THEN DIFF - 1.0595 
70 FREQ = FREQ * DIFF 
80 NEXT NOTE 
90 NEXT OCTAVE 

Trying that simple program on your PC will give you a quick idea of 
the PC's ability to play just about any musical note that we want. It will 
also give you an idea of the crude yet effective sound quality of the little 
speaker that's built into our PCs. 

Most of us think of the uses of sound in PCs as mostly belonging to 
game programs. "Serious" PC programs usually don't do anything with 
sound other than to beep at us when something goes wrong. But serious 
programs can find serious uses for sound. One of the best examples that I 
know of comes from IBM's TopView program. TopView makes a special 
use of the Ctrl key to toggle between two modes of using the keyboard. To 
help us note the difference, TopView makes two different sounds when 
shifting between the modes: one is sort of a "boop-beep" and the other is 
the opposite, a "beep-boop" sound. The effect is striking, and gives us 
easy-to-understand feedback. It's an excellent example of how our pro
grams can make productive use of more than crude beeps. 

Other Uses for Sounds 

The speakers built into our PCs can serve more purposes than 
allowing our programs to make noises at us. They can also be used 
in support of the hardware. 

One example of this is as a "keyboard clicker." The standard PC 
keyboards that IBM supplies make a very satisfying click when we 
press and release them-satisfying to some folks, annoying to others. 
This click is what's called an audible feedback, a sound that helps us 
know the keys are working. This clicking can be a valuable 
unconscious helper, giving a concrete sensual reality to work that 
otherwise seems very abstract. The clicking doesn't suit everyone, 
though. 

There is nothing that we can do to change a mechanical feature like 
that on the PCs that have that sort of keyboard. But some members 
of the PC family don't have noisy keyboards. 

The PCjr and all the members of the PC family made by Compaq 
have quiet keyboards that don't make any mechanical noise. Instead, 
they supply their audible feedback by making a clicking sound on the 
speaker. It's not quite as satisfying a sound as the mechanical click 

237 



INSIDE THE IBM PC 

of the standard IBM keyboards, but it has the advantage that it can 
be changed. 

The PCjr's keyboard clicking can be turned off and on by pressing 
the Ctrl-Alt-CapsLock key combination. That sets and resets the 
clicking bit that we saw in the keyboard status bits in Chapter 14. 
The Compaq models give us an even better control over the keyboard 
sound: we can adjust the loudness of the sound, using the 
Ctrl-Alt-Grey-Plus and -Grey-Minus keys. If you're finicky about 
your sound, that can be a real benefit. 

Our computer's speakers serve other hardware purposes as well. For 
example, during the Power-On Self-Test (or POST routine), the 
speaker reports any errors found, which can help a lot if the display 
screen isn't working. Similarly, in the Compaq-286 models, one or 
two quick beeps are used to signal when the computer shifts into 
slow or fast mode. 

How our computers are able to make sounds is fairly simple. Inside 
the computer is a small speaker connected to the PC's circuitry. A speaker 
makes sound by being fed an electrical signal which is changed, or modu
lated, corresponding to the sound that's to be made. The speaker converts 
the changes or waves in the electrical signal to matching sound waves, 
which we hear. In a hi-fi system, the electrical signals are translated from a 
recording of sounds. In our computers, the electrical signals are generated 
by the circuitry under the control of our programs. 

The PC's circuits tell the speaker to pulse in and out, producing 
sounds. Our programs control the pitch or frequency of the sound by con
trolling how rapidly the in and out pulses are sent to the speaker. 

There is no volume control in the PC, since it wasn't intended to 
produce sophisticated sounds. You will notice that the loudness of the 
speaker does vary, depending on what frequency of sound we send it. You 
can hear that for yourself by trying the musical scales program above, or 
using this one, which goes through a wider range of frequencies: 

10 PLAY"MF" 
20 FOR FREQ = 100 TO 10000 STEP 100 
30 PRINT "Frequency ",INT (FREQ) 
40 SOUND FREQ, 5 
50 NEXTFREQ 

Our programs control the computer's speaker through one of the 
microprocessor's ports. We got a sneak preview of that in Chapter 6 when 
we looked at ports. Let's take another look at that program: 

238 



15.3 SOUND 


10 SOUND 500,1 
20 X = (INP (97) MOD 4) * 4 
30 PRINT "Press any key to stop this infernal noise! " 

I40 OUT 97, X + 3 turn sound on 
- I50 FOR I - 1 TO 250 NEXT I kill time 

I60 OUT 97, X turn sound off 
70 FOR I - 1 TO 250 NEXT I I kill time-
80 IF INKEY$ = "" THEN GOTO 40 

The speaker is controlled by the two low-order bits of port 97 (hex 
61). You'll see the above program reading the data that's currently stored in 
port 97 (using the INP statement). That's because the other bits of this port 
are used for other things, and we want to leave them set the way they are. 

To tum the sound on, we set the two low-order bits of port 97; to tum 
it off, we reset them. To make sure that these bits aren't already on, we use 
the arithmetic MOD 4 * 4 to set them off. 

The two port bits that control the sound also control two different 
aspects of how the sounds are made. The higher bit, the one with value 2, 
simply turns the speaker on and off. If we cycled this bit on and off, we'd 
get a sound whose frequency is set by how fast the program pulses the 
speaker by turning this bit on and off. The other bit controls the real heart 
of the PC's sound-making ability-it determines if the speaker is fed a 
signal from the PC's programmable timer. 

The PC's programmable timer-the 8253 timer chip we saw in Chap
ter 5---can be set (programmed) to produce any of a wide range of regularly 
timed signals. It's actually able to spit out two different signals. One of 
them is used to generate the "clock-tick" interrupts, 18.2 times a second; 
the other is used to generate tones on the speaker. To produce a regular 
sound, we first program the timer chip to produce the frequency that we 
want, and then we set the bits in port 97 to send the timer pulses to the 
speaker and also to activate the speaker. 

You can see that process represented in the little program above. The 
line that reads 10 SOUND 500,1 causes BASIC to set the timer frequency 
(which it needs to do to carry out the SOUND statement). Once we've set 
the timer frequency, then we can make the sound heard by turning on the 
port bits. If we only turned on the bit with value 2, we'd hear just a tiny 
click as the speaker was pulsed on. But when we tum on both bits, the 
timer's pulses are fed to the speaker, and the speaker is being driven at the 
frequency that the timer is set to. 

A program does not need to use the programmable timer to make 
sounds-it can generate sounds simply by turning on and off the bit that 
activates the speaker. Working that way, a program can make very complex 

239 



INSIDE THE IBM PC 

sounds simply by varying the time interval between when it pulses the 
speaker on and off. But doing that requires constant attention from a pro
gram, keeping the microprocessor busy. If we use the timer, our programs 
can start a sound going, and the sound will continue without any further 
attention from the program; that allows the microprocessor to pass on to 
other work. Then when the program wants the sound to stop, it can come 
back and reset the port bits, or change the timer frequency for a new sound. 
That's how BASIC is able to play music in the "background," music that 
plays while BASIC goes on with our computations. 

The PCjr's Special Sounds 

The sound skills that we've been covering in this chapter are the ones 
common to all the members of the PC family. The PCjr, though, has 
some special skills that go far beyond that. Since the PCjr was 
intended to find lots of uses in the home and in schools, where sound 
is more important, it has a greatly expanded sound capacity. 

The core of the PCjr's special skills is a special-purpose chip 
designed and made by Texas Instruments. This TI sound chip is able 
to make sounds of greater purity and range than the PC's simple 
timer circuits can. The main feature of the TI sound chip is that it 
has three independent "voices," which means that it can generate 
three separate tones at once permitting a richer polyphonic sound. To 
make it even better, the TI sound chip has a volume control, so that 
it can set how loud each of the voices is. Further, the TI sound chip 
has a "noise" feature allowing it to make many kinds of nonmusical 
sounds, just the sort of thing that is needed in game programs to 
make the sound of motors, explosions, and so forth. 

The TI sound chip isn't the PCjr's only special sound feature. In 
addition, the PCjr has a sound "pass through" feature allowing it to 
combine its own generated sounds with sound-signals from other 
sources, such as an audio cassette recorder. This feature can be used 
to add recorded sounds to learning programs; for example, a program 
to teach us foreign languages could benefit from the combination of a 
recording of what the spoken language actually sounds like and the 
computer's ability to repeat and skip around lessons. 

15.4 Miscellaneous Parts 

We've seen the main parts of the PC in our discussion so far, so we 
already know the heart of what there is to know about the PC's hardware. 

240 



15.4 MISCELLANEOUS PARTS 

But there are some more items in the PC family's kit of hardware tricks, 
and we'll finish up this chapter by looking at them. 

One thing that will help us understand these odds and ends is to realize 
that when a computer like the PC is designed, the engineers who decide 
what features to build into it must do their best to anticipate the future and 
figure out in advance what we are going to want to do with our PCs. It's an 
impossible task, of course, and so we find some loose ends appearing. 
There will be things which the engineers thought would be important that 
are hardly used. And there are things the engineers didn't anticipate, that 
get added on later. 

Through the course of this book I've made some passing references to 
things that were designed into the PC that haven't been used as the design
ers intended. We'll see some of them in this section. 

One of the most striking of the unused features of the PC is its cassette 
tape interface. The PC's designers didn't realize just how seriously the PC 
would be taken, and they thought that there might be many PCs used 
without any disk drives at all (as amazing as that must seem to us now). 
Some of the early, cheap home computers didn't have any disk drives, and 
they just used cassette tapes to record their programs and data. IBM thought 
some PC users might want to use their computers that way too, so the PC 
was designed with a cassette port. 

For all practical purposes the cassette interface was never used, and 
the port connection for it was even dropped from the more advanced mod
els of PC, such as the XT and AT. It was kept in the ill-fated PCjr, just in 
case interest in tape 110 arose. 

The cassette port is able to read and write data-in a slow and limited 
fashion-from a audio tape cassette recorder when it's plugged into the 
computer with a special adapter. The computer is able to read and write 
data, and turn the cassette motor on and off, but it isn't able to even do such 
basic things as rewind that tape-that's because most inexpensive cassette 
re~orders have to be manually switched into rewind. You can see the ele
ments of the PC's cassette feature in the BASIC MOTOR statement and 
things like OPEN "CAS 1:" . 

While the cassette interface has been almost completely ignored, two 
other features that were included in the original PC design have found their 
specialized uses, even though they aren't widespread and even though most 
PC users are as unaware of them as of the cassette port. These are joysticks 
and light pens. 

Joysticks are a special kind of input device for a PC, consisting of a 
movable rod-the stick-and two buttons-the "triggers." Joysticks are 
mostly used for game programs, and since the PC isn't a game-oriented 

241 



INSIDE THE IBM PC 

computer, few PCs have been equipped with them. Using a joystick with a 
standard PC requires the installation of a special joystick adapter board as 
well as the joysticks themselves. Since the PCjr model was home- and 
game-oriented, it had built into it the equivalent of a joystick adapter board, 
and the back of the PCjr has two connectors for joysticks to be plugged in 
and used. 

Figure 15-1. A typical joystick. 

The stick on a joystick is able to sense movements in two dimensions, 
and our programs can read the stick position in the form of X and Y coordi
nates to follow the movement of the stick. The trigger buttons can be read 
as well to sense when they are pressed. You'll see the main elements of 
how a program can work with a joystick in the BASIC statements STICK 
and STRIG. 

Another little-used feature of the PC is light pens. A light pen is a 
hand-held probe that can be touched to the display screen. Through a com
bination of hardware and ROM-BIOS software features, the computer is 
able to sense just exactly where on the screen the light pen is touched. 

The name light pen suggests that the pen writes information, but it's 
really just the opposite. It's used to read information, specifically the posi
tion on the screen where the pen is touched. Of course, if we combine the 
pen with some drawing software that follows the movements of the pen 
across the screen, then it will seem that the pen is writing on the screen. But 
light pens are really just sensing devices. 

Light pens can be used in many ways, but the most common use is 
with what's called CAD/CAM---Computer Aided Design (and its cohort, 
Computer Aided Manufacturing). Taking advantage of a light pen, a 
CAD/CAM program can let us draw on the screen, select choices from a 
menu just by touching the pen to an item, "pick up" and move parts of a 
drawing, and so forth. 

242 



15.4 MISCELLANEOUS PARTS 

Figure 15-2. A typical light pen. 

The PC's hardware and software can only sense where a light pen is 
being pressed onto the screen if the phosphors that light up the screen flash 
on and off very quickly. The phosphors used in the IBM Monochrome 
Display are called "long persistence," which makes them easier on the 
eyes, but they stay lit too long to work with a light pen. (If you have a 
Monochrome Display you've probably noticed that it takes a few moments 
for images to fade from the screen, thanks to the long-persistence 
phosphor.) 

Like joysticks, light pens require the addition of an adapter board to 
the PC as well as the pen itself, except for the PCjr model, which has a 
light pen adapter built in. The PEN statement in BASIC supports the light 
pen, and if you study its details you learn the main elements of how light 
pens are used. 

Both joysticks and light pens are special-purpose kinds of input 
devices that allow us to feed the computer position information, rather than 
the text information that the keyboard provides. There is a term for this 
general type of hardware: they are called pointing devices. Joysticks and 
light pens are the two pointing devices that IBM's engineers designed into 
the computer, anticipating that they might become popular. Instead, a com
pletely different kind of pointing device has caught on, the mouse. 

243 



INSIDE THE IBM PC 

In an abstract sense, a mouse is no different from a light pen or a 
joystick. In fact, there is an enormous similarity between a joystick and a 
mouse, since both have free two-dimensional movement and trig
ger-buttons to indicate action. But that is like saying that there's no differ
ence between a keyboard that has the keys arranged in the normal order 
(QWERTY as it's called) and one that has the keys arranged in alphabetic 
order. Functionally they are equivalent, but the difference is that the 
QWERTY keyboard is a popular standard. 

Figure 15-3. A typical mouse. 

So it is with the mouse. Despite the fact that there are other pointing 
devices, and despite the fact that IBM gave its support (in the ROM-BIOS) 
to the light pen and the joystick, it is the mouse that has become the widely 
accepted pointing device for use by our programs. 

There is a wide variety of types of mouse-some with three buttons or 
two, some that work optically (and require a special pad that they run over) 
or mechanically, some that plug into their own adapter boards, and some 
that work through a standard serial port. 

Despite the wide variety-which would tend to work against the wide
spread use of mice-mice have become very popular, and more and more 
important PC software takes advantage of mice. (I wrote the text of this 
book with the Microsoft Word program, which takes advantage of a mouse. 
After long resisting the use of a mouse, I discovered that it was very handy 
indeed.) 

To use a mouse we have to have, one way or another, BIOS support 
for it, similar to the device support that's in the ROM-BIOS for other 
devices. In some cases (for example IBM's TopView) the program that 

244 



SOME THINGS TO TRY 

uses the mouse includes the BIOS-type support. In other cases (for exam
ple, with the Microsoft mouse) the mouse comes with its own mem
ory-resident program that provides BIOS support for any program using the 
mouse. The second approach is more in keeping with the general philos
ophy that BIOS support for a device should be identified with the device 
and separate from any programs that use them. 

And that completes our roundup of the various minor parts of the the 
PC's hardware. Now we're ready to move on to our next main topic, one 
we've circled around repeatedly: the PC's built-in ROM-BIOS software. 

Some Things to Try 

1. 	 Do you think there are any important advantages or disadvantages 
to using the parallel or serial ports for a printer? Discuss. 

2. 	 How many uses can you think of for the serial ports, besides the 
ones mentioned here? 

3. 	 Write a program to experiment with the two port bits that control 
the computer's speaker. You can use the little programs in this 
chapter as a starting point. Try to tum the speaker on and off 
without using the timer bit. See how quickly you pulse the 
speaker with a BASIC command to make as high-pitched a sound 
as possible. 

245 





16 
Built-In BIOS: 
The Basic Ideas 

I n this chapter we're going to begin exploring the software heart of 
the PC, its built-in ROM-BIOS. Our task here is to understand the 
basic ideas behind the ROM-BIOS, the philosophy of how it is 
organized and what it tries to do. That lays the groundwork for 

Chapter 17, in which we'll explore the details of the services that the 
ROM-BIOS performs. 

Before we proceed any further, though, let's note one thing to avoid 
confusion. There are two things in our computer called BIOS. One is the 
ROM-BIOS, a built-in software feature of our computers; that's the topic 
for this chapter and the next. The other is the DOS-BIOS, the part of DOS 
that performs a similar service (but on a quite different level) for DOS. 

16.1 The Ideas Behind the BIOS 

The ROM-BIOS has a clumsy name that only hints at what it's all 
about: ROM-BIOS is short for Read-Only Memory Basic Input/Output Sys
tem. Ignore the name and concentrate on what it does for us. The 
ROM-BIOS is a set of programs built into the computer that perform the 
most basic, low-level and intimate control and supervision operations for 
the computer. 

Software works best when it's designed to operate in layers, with each 
layer performing some task and relieving the other layers above of any 
concern for the details within that task. Following this philosophy, the 
ROM-BIOS is the bottom-most layer, the layer that underlies all other 
software and operations in the computer. The task of the ROM-BIOS is to 
take care of the immediate needs of the computer's hardware and to isolate 
all other programs from the details of how the hardware works. 

Fundamentally the ROM-BIOS is an interface, a connector and trans
lator, between the computer's hardware and the software programs that we 

247 



INSIDE THE IBM PC 

run on our computers. Properly speaking, the ROM-BIOS is simply a pro
gram like any other. But if we want to understand the ROM-BIOS, we 
should think of it as if it weren't really just software, but some kind of 
hybrid, something halfway between hardware and software. Functionally, 
that's exactly what the ROM-BIOS is: a bridge between the computer's 
hardware and our other software. 

What makes the ROM-BIOS so special? What does it do that makes it 
seem to be midway between hardware and software? 

The answer lies in what the ROM-BIOS has to do and how it does it. 
What the ROM-BIOS has to do is to directly control the hardware and to 
respond to any demands that the hardware makes. How it does it is largely 
by use of the ports that we learned about in Chapter 6. For the most part, all 
of the PC's component parts are controlled by the process of sending them 
commands or parameter settings, through the ports, with each part of the 
circuitry having its own special port numbers that it responds to. 

Now we already know that there are many important aspects of the 
hardware that don't work through ports, such as the memory addresses that 
are used to control what appears on the display screen. Most of the excep
tions to the general rule that the hardware is controlled through the ports are 
exactly the part of the computer which it's OK for our programs to work 
with directly-that is, exactly the parts that the ROM-BIOS doesn't have to 
supervise for us. 

Now I don't want you to get the impression that the ROM-BIOS only 
concerns itself with ports: it doesn't. But ports best symbolize what is 
special about the ROM-BIOS: it's the software that works most intimately 
with the computer's hardware, and it's the software that takes care of hard
ware details (like ports) which the rest of our programs shouldn't have to 
touch. 

What's Special About the BIOS 

What's special about the ROM-BIOS is that it is written to work 
intimately with the computer's hardware, and that means that it 
incorporates lots of practical knowledge about how the hardware 
works. It isn't always obvious just what that knowledge is. 

If we study the ROM-BIOS listings that IBM publishes for the PC, 
we can readily see the obvious part of what's special about BIOS 
programming-using the right ports to send the right commands to 
the PC's circuits. What isn't anywhere near so obvious is that there 
is black magic going on as well. 

248 



16.2 HOW THE ROM-BIOS WORKS 

Not everything that it takes to make computer circuits work correctly 
is plain and clear from their basic specifications. There are many 
subtleties as well, things such as timing considerations or just how 
errors actually occur in real experience. 

For example, some circuits may be able to accept a command at any 
time, but they need a short amount of time between commands to 
digest one command before they are ready to take another. In other 
cases, two separate steps may have to be performed with as little 
intervening time as possible. Hidden inside the ROM-BIOS are subtle 
factors like that. We might see a sequence of commands that appear 
straightforward and simple, but that have a hidden element in them 
as well-such as carefully worked-out timing factors. 

This is a part of what makes BIOS programming so special, and why 
many programmers think of BIOS programming as something of a 
magical art-an art that involves not just the logical steps that all 
programs are built from but also close cooperation between the 
programs and the computer's hardware. 

16.2 How the ROM-BIOS Works 

Although the complete details of how the ROM-BIOS works are really 
only of concern to accomplished assembly language technicians, the basics 
of how it's organized and how it works is of real interest to us here to help 
us understand our machines. That's what we'll sketch out in this section. 

To start with, we need to see that the ROM-BIOS is roughly divided 
into three functional parts, diagrammed in Figure 16-1. 

The first part of the ROM-BIOS is the start-up routines, which get our 
computer going when we turn on the power. There are two main parts to 
the start-up routines: one is the Power-On Self-Test (or POST) routines, 
which test to see that the computer is in good working order. They check 
the memory for defects and perform other tests to see that the computer 
isn't malfunctioning. The other part of the start-up procedure is the 
initialization. 

The initialization involves things like creating the interrupt vectors, so 
that when interrupts occur the computer switches to the proper inter
rupt-handling routine. Initialization also involves setting up the computer's 
equipment. Many of the parts of the computer need to have registers set, 
parameters loaded, and other things done to get them in their ready-to-go 
condition. The ROM-BIOS knows the full complement of standard equip
ment that a PC can have, and it performs whatever initialization each part 

249 



INSIDE THE IBM PC 

Start-up 

- ExtensionPost Initialize .. Initialize-
Disk Boot 

Hardware 

Interrupt 

Handling 


Service 

Handling 


Figure 16-1. Organization of the ROM-BIOS. 

needs. Included in this initialization are steps that tell the ROM-BIOS what 
equipment is present. Some of that is learned by checking switch settings 
inside the computer (in the case of the original PC model) or reading a 
permanent memory that records the equipment the computer has (in the 
case of the AT model). In some cases, the ROM-BIOS can simply find out 
if equipment is installed by electronically interrogating it and checking for a 

250 



16.2 HOW THE ROM-BIOS WORKS 

response. (The PCjr model finds out about its optional equipment this 
way.) Whatever it takes, the ROM-BIOS checks for and initializes all the 
equipment that it knows how to handle. 

Of course, we can add new equipment to our PCs; people do it all the 
time. Some of this equipment is standard stuff (such as adding more mem
ory or adding serial and parallel output ports) but not all of it is. There is 
some optional equipment that isn't taken care of in the standard 
ROM-BIOS routines that needs its own special ROM-BIOS support. To 
take care of that situation, the ROM-BIOS is prepared to search for addi
tions to the BIOS (see the sidebar How to Add to the ROM-BIOS). 

How to Add to the ROM-BIOS 

The ROM-BIOS in our PCs is a fixed part of the computer's 
equipment, which leads to a fundamental problem: how do we add 
support for new options to ROM-BIOS? The answer lies in an 
automatic feature that allows for additions to the ROM-BIOS-what 
we call ROM-BIOS extensions. 

The scheme is simple: additions to the ROM-BIOS are marked so 
that the standard ROM-BIOS can recognize them, and give them a 
chance to integrate themselves into the standard part. 

Just as the main ROM-BIOS appears in memory at a specific location 
(the high part of memory, the 64K byte F-block) additions have a 
standard memory area reserved for them as well: the C, D, and 
E-blocks of memory. 

Any new equipment requiring special ROM-BIOS support-for 
example, the XT model's hard disk or the Enhanced Graphics 
Adapter's special video features-places its read-only BIOS memory 
somewhere in that block, and includes in it a special marking, hex 55 
AA in the first two bytes. The location of the ROM-BIOS can't be 
just anywhere. It has to be in a unique location that doesn't conflict 
with any other ROM-BIOS extensions, and it must begin on a 2K 
memory boundary. 

The standard (or we might say, master) ROM-BIOS, as part of its 
start-up routines, searches the ROM-BIOS extension area for the 
identifying 55 AA signature. When it finds any, it passes control 
over to the beginning of the ROM-BIOS extension. That lets the 
ROM-BIOS extension do whatever it needs to do to initialize its 
equipment and to integrate itself into the rest of the ROM-BIOS. For 
example, a ROM-BIOS extension for a new kind of display adapter 
(such as the Enhanced Graphics Adapter) might change the interrupt 
vector for video services to direct them to the ROM-BIOS extension 
rather than to the old ROM-BIOS video routines. 

251 



INSIDE THE IBM PC 

Whatever start-up and initialization work a ROM-BIOS extension 
needs to do, it performs it when the main ROM-BIOS passes control 
to it during the start-up procedures. When the ROM-BIOS extension 
is done initializing itself, it passes control back to the main 
ROM-BIOS, and the computer proceeds in the usual way. But now, 
new equipment and new ROM-BIOS support for that equipment has 
been added. 

All this is made possible by the mechanism that allows the main 
ROM-BIOS to search for and recognize ROM-BIOS extensions. 

Incidentally, the software cartridges the PCjr uses work as BIOS 
extensions. They are added to the computer's memory like any other 
BIOS extension, and they have the same identifying marking that the 
main BIOS uses to recognize them. The only thing that's somewhat 
special about them is that they're designed to be plugged in and 
taken out, while other BIOS extensions are usually installed and left 
in place. 

The very last part of the start-up routines in the ROM-BIOS is the 
"boot" routine, which tries to fire up DOS, or any other operating system 
that we have, in our computer. The boot-strap process involves the 
ROM-BIOS attempting to read a boot record from the beginning of a disk. 
The BIOS first tries drive A, and if that doesn't succeed, and the computer 
has a hard-disk drive C, it tries the hard disk. If neither disk can be read, 
then the ROM-BIOS goes into its non-disk mode (in the IBM models, that 
means activating the built-in BASIC; with other models, such as the Com
paq machines, it means showing a message saying the computer needs a 
boot-disk). 

Normally the ROM-BIOS is able to read a boot record off of the disk, 
and it hands control of the computer to the short program on the boot 
record. As we discussed in Chapters 9 and 10, the boot program begins the 
process of loading DOS (or another operating system) into our computer. 

After the start-up routines are finished, our computer is ready to go. 
The other two parts of the ROM-BIOS form a key part of the running of the 
computer. These two parts are the hardware-interrupt handling and the 
service-handling. They function as two distinct but closely cooperating 
kinds of routines. 

The service-handling routines are there solely to perform work for our 
programs (and for DOS) by carrying out whatever services the programs 
need performed. We'll see in more detail what these services are in Chapter 
17. They are things like a request to clear the display screen, or to switch 
the screen from text mode to graphics mode, or a request to read informa
tion from the disk, or write information on the printer. For the most part, 

252 



16.2 HOW THE ROM-BIOS WORKS 

the ROM-BIOS services that the service-handling routines perfonn relate to 
the computer's hardware devices-the screen, keyboard, disks, printers, 
and so forth. These are the basic input/output services that give the BIOS its 
name. But there are other services that the ROM-BIOS perfonns as well, 
which aren't input or output to 110 devices. For example, the ROM-BIOS 
keeps track of the time of day and one of the services that it perfonns is to 
report the time to our programs. 

To carry out the service requests that our programs make, the 
ROM-BIOS has to work directly with the computer's lIO devices, and 
that's where the intimate and tricky part of the BIOS comes in, including 
the use, as we mentioned before, of ports to issue commands and pass and 
receive data with the various devices of printers and disks and so forth. The 
key job of the ROM-BIOS here is to relieve our programs of the tedious 
details of how that's done. Our programs don't need to know which port is 
used to send data to the printer. Instead, our programs just ask the 
ROM-BIOS to send data to the printer, and the BIOS takes care of 
the details. That shields our programs not only from the details of how the 
printer works, but even more important it shields our programs from the 
very annoying and messy problems of error recovery. Surprisingly, the 
equipment in our computer is often balky, and it will act up temporarily. 
Part of the job of the ROM-BIOS is to check for errors, retry operations to 
see if the problem is only temporary (as it often is), and only in the case of 
stubborn failure report the problem on to our programs. 

While some of the hardware parts of our computer only require atten
tion when we want them to do something (that is, when our programs are 
requesting a service from the BIOS), other parts can call for attention that's 
completely separate from what our programs are doing. We already know 
of a few examples of this: we know that when we press a key on the 
keyboard, it generates a keyboard interrupt that needs attention from the 
ROM-BIOS. Likewise, the PC's internal clock creates clock interrupts 
every time it ticks, 18 times a second. There are other hardware interrupts 
as well: for example, the disks have an interrupt they use to signal when 
they need attention from the ROM-BIOS. To handle these needs of the 
hardware there is the final part of the ROM-BIOS, the hardware inter
rupt-handling section. 

The hardware-interrupt handling part takes care of the independent 
needs of the PC's hardware. It operates separately, but in cooperation with 
the service-handling portion. In Chapter 14, where we discussed how the 
keyboard operates, we saw a good example of how that works. The key
board-handling routines are divided into two separate but related parts that 
work together. The hardware-interrupt part of the keyboard handling 

253 



INSIDE THE IBM PC 

responds to our actions on the keyboard, recording what we do, and hold
ing the resulting keyboard characters ready for use when our programs need 
them. The service-handling part of the keyboard routines accept requests 
from our programs for keyboard data, and pass on to them the keyboard 
characters that the interrupt handler has received. These two parts face in 
different directions-one to the hardware, the other to our programs-and 
service different demands. Together, they make the keyboard work for us 
and our programs. 

That captures the essence of what the ROM-BIOS is, and what it does 
for our computers. With that groundwork in place, we're ready to go to 
Chapter 17 and see just what sort of services the ROM-BIOS can perform 
for our programs. 

Some Things to Try 

1. 	 If you have my Norton Utilities, you can use the SI-System Infor
mation program to search for the BIOS signature that identifies 
additions to the BIOS. Try using it on your computer and see 
what you find. 

2. 	 Analyze how the interrupt-handling and service-handling parts of 
the keyboard ROM-BIOS routines work with each other. How 
would you work out the details of how these two parts might 
interact safely and successfully? 

3. 	 What do you think are the special needs and requirements to ini
tialize an extension to the ROM-BIOS? How would an extension 
smoothly integrate itself into the rest of the BIOS without creating 
any disruption? 

254 



17 
Built-In BIOS: 
Digging In 

I n this chapter we're going to take a more detailed look at what the 
PC family's built-in ROM-BIOS does for us and our programs. Our 
main topic is going to be a list of the standard services that the BIOS 
provides. However, this won't be a exhaustive reference guide

that would make for rather dull reading. Instead, it'll be a guided tour of the 
powers that the BIOS puts at our command. The point here is to give you a 
sound feeling for what the BIOS can do for us to serve the overall goal of 
this book, which is understanding the PC. 

Before we begin the BIOS tour, though, we need to look at some of 
the principles and problems that underlie the services. 

17.1 Working Principles and Machine Problems 

If you want to understand the workings of the ROM-BIOS and also the 
list of the BIOS services and comments that follow in Section 17.2, it helps 
to understand some of the principles that underlie how the BIOS works, 
how it's organized, and some of the design problems that are inherent in 
any software as sensitive as the PC family's ROM-BIOS. 

The BIOS has to operate in a way that provides the maximum of 
flexibility, places the least caretaking load on the programs that use it, and 
works with the highest possible safety (safety against disrupting the work
ing of the computer). 

We've already seen some of the way the design of the BIOS works 
towards these ends, when we looked at one of the BIOS's interrupt handlers 
in Chapter 6. Part of the design considerations that the BIOS routines have 
to meet is that they suspend interrupts as little as possible. It's important not 
to shut down or even hold up interrupts, since interrupts are the driving 
force that keeps the computer running. To avoid interfering with this driv
ing force, the BIOS must suspend interrupts as little as possible, and, in the 

255 



INSIDE THE IBM PC 

dissection of the interrupt handler that we looked at in Chapter 6, interrupts 
were immediately reactivated. Sometimes this can't be done-sometimes 
it's necessary to perform a few critical steps free of the possibility of being 
interrupted, but the BIOS keeps those steps as short as possible. 

Since the BIOS performs the bulk of its work with interrupts active, 
that means other interrupt-driven BIOS service calls can be invoked while 
the BIOS is in the middle of carrying out an earlier service request. To 
avoid tripping over its own feet, or confusing the work-in-progress of one 
service call with another, the BIOS routines must be programmed following 
a special discipline called re-entrant coding. Re-entrant programs, such as 
the ROM-BIOS, are designed so that all working data and status informa
tion that pertains to each service call is kept distinct from the others. This is 
done by keeping any data either in the stack, or in registers which (by 
programming convention) will be preserved on the stack if another interrupt 
occurs. 

Although this re-entrant coding is not difficult to do, it must be done 
carefully, and it places restrictions on the ways that information can be 
passed between the BIOS and any program.requesting services from the 
BIOS. Much of the detailed design of how the BIOS works and is used all 
comes from this requirement that it be re-entrant. 

As a separate but related issue, the BIOS services need to be organized 
in a modular fashion. As we'll see in Section 17.2, when we cover the 
details of the basic BIOS services, they are organized into groups. For 
example, all the different services for the display screen are grouped 
together under one interrupt number, but no other BIOS services use that 
interrupt. 

This modular organization by group and interrupt has two obvious 
benefits. First, for the programs that use the BIOS services, the grouping 
makes it easier to deal with the complexities of the services. Second, if it's 
necessary to modify the operation of any particular kind of BIOS service 
(for example, modifying the video services to accommodate the special 
features of a new display adapter like the Enhanced Graphics Adapter) then 
it can be done in a relatively clean and uncomplicated way by simply 
replacing one interrupt handler. 

There is one fundamental complexity and difficulty that has not been 
dealt with very well in the ROM-BI~S-the problems that are created by 
the different features of different models of PC (particularly the more exotic 
ones, like the PCjr, the PC-AT, and the 3270-PC) and also by the charac
teristics of various options for the PC (such as the numerous combinations 
of display adapters that be used. Each main model of the PC family has its 
own special variations on the ROM-BIOS services, and much of the 

256 



17.2 THE BIOS SERVICES 

optional equipment for the PC family does as well. However, there is no 
simple, clean, and reliable way for us as PC users, or our programs, as PC 
software, to adapt to the many possible variations in the BIOS services that 
come with all these models and equipment. 

The matter is made more complicated by the fact that IBM keeps to 
itself whatever master plan there might be for future additions to the PC 
family-and allowing for future changes involves a lot of guesswork on the 
part of programmers. IBM's own Technical Reference manuals for the 
different models of the family add to the confusion, because each is written 
as if it were for a unique machine. A programmer studying one Technical 
Reference manual can't tell if the services described in that manual apply to 
every model of PC, or the one at hand. You have to cross-check all the 
manuals to see what's common. Partly for that reason, and partly to avoid 
getting bogged down in the peculiarities of different models, we'll cover 
only the universal ROM-BIOS services in this chapter. 

On a technical level, there is a great deal more that can be said about 
the design and workings of the ROM-BIOS, but what we've covered is 
really the most basic and important part. 

In Section 17.2 we'll cover the full list of ROM-BIOS services that are 
universal to the entire PC family, the PC's basic complement of services. 
It's a somewhat more technical treatment that some readers may want to 
skip over, but there are two real benefits of reading through it. First, you 
will learn just what services the ROM-BIOS puts at the disposal of our 
programs. This will help you understand how our programs get things done 
and it may give you ideas for how your own programs can benefit from 
these services. Second, skimming through the list of BIOS services will 
give you a feeling for their level-that is, an understanding of where they 
stand in the potential spectrum between very primitive or simple and very 
rich or complex. 

TECHNICAL BACKGROUND I I I ••• _________ 

17.2 The BIOS Services 

Now we're ready to run through a list of the services that the PC 
family's BIOS provides for our programs. As you can see by the Technical 
Background head, the material here falls into the advanced category, which 
may be skipped by readers who are only interested in the broad outlines and 
main points of the PC. But that doesn't mean that what we'll be talking 
about here is especially technical or difficult to understand. 

257 



INSIDE THE IBM PC 

The ROM-BIOS services are organized in groups, with each group 
having its own dedicated interrupt In Figure 17-1 you'll find a summary 
table of the groups. We'll cover them one by one, beginning with the most 
rich, most complicated, and most interesting: the video services. 

Interrupt Service group 

5 Print-screen 
16 Video services 
17 Equipment list 
18 Memory size 
19 Disk services 
20 Serial port (RS-232) services 
21 Cassette port services 
22 Keyboard services 
23 Parallel port (printer) services 
24 ROM-BASIC 
25 boot strap 
26 Time services 

Figure 17·1. The ROM·BIOS service interrupts. 

There are 16 separate video screen services in the basic complement of 
the PC family's ROM-BIOS services. That's quite a number, and it doesn't 
even include the substantial additions that have been made for specialty 
models (PCjr, AT) or advanced display adapters such as the Enhanced 
Graphics Adapter. These 16 are the original complement used on the very 
first PC model, and they form a base for the video services of every mem
ber of the family. The services are numbered 0 through 15. We'll go 
through the entire list so that you can see exactly what kinds of services the 
BIOS provides. 

The first service, number 0, is used to change the video mode. For 
PCs with just the standard Monochrome Adapter, there's no choice at all. 
The monochrome mode (identified, as we saw in earlier chapters, as mode 
number 7) is it. For PCs with the Color Graphics Adapter or its equivalent, 
there is a choice of seven modes: four text modes and three graphics modes, 
as we detailed in Chapter 11. This service is used by our programs to 
switch the display screen into whatever mode is needed. As we'll see later, 
there is a complementary service that lets our programs learn what the 
current mode is. 

Video service 1 is used to control the size and shape of the cursor. It 
sets the scan lines that the cursor appears on, which we also discussed in 

258 



17.2 THE BIOS SERVICES 

Chapter 11. This is the ROM-BIOS service that underlies the BASIC pro
gram statement LOCATE ",X,Y. 

Video service 2 sets the cursor location on the screen, corresponding 
to the BASIC program statement LOCATE X, Y. 

Video service 3 reports to our programs where the cursor is located 
and also the shape of the cursor. This service is the opposite of services 1 
and 2 combined. It allows our programs to record the current state of the 
cursor so that it can be restored after the program is done. We'll see an 
example of how useful that can be when we discuss the print-screen 
service. 

Video service 4 is the sole service supporting the PC's little-used 
light-pen feature. When a program invokes this service, the BIOS reports if 
the pen is "triggered," and where it's touching on the screen. Interestingly, 
the service reports the pen position in two different ways: the location in 
terms of the grid of text character positions and in terms of the graphics 
pixel locations, to make it easy for our programs to interpret the light pen 
position either way. Less interesting is the fact that light pens never caught 
on for the PC family. 

Video service 5 selects which display page is active (shown on the 
screen) for the video modes that have more than one display page in mem
ory (see Chapter 11 for more on that). 

Services 6 and 7 are a fascinating pair of services that do window 
scrolling. These two services allow us to define a rectangular "window" 
on the screen and scroll the data inside the window up from the bottom 
(service 6) or down from the top (service 7). When a window is scrolled, 
blank lines are inserted at the bottom or top, ready for our programs to 
write new information into them. The purpose of these services is to allow 
our programs to conveniently write out information on just a part of the 
screen and leave the rest of the screen intact. A wonderful idea, but one that 
has rarely been used. 

The next three video services are used to work with text characters on 
the screen. Video service 8 reads the current character (and its attribute) off 
of the screen (or rather out of the screen memory). This service is clever 
enough, in graphics mode, to decode the pixel drawing of a character into 
the character code. Video service 9 is the obvious complement to service 8: 
it writes a character on the screen with the display attribute that we specify. 
Service 10 also writes a character, but uses whatever display attribute is 
currently in place for that screen location. 

The next three services provide operations for the graphics modes. 
Video service 11 sets the color palette to be used. Service 12 writes a single 
dot on the screen, and service 13 reads a dot off the screen. 

259 



INSIDE THE IBM PC 

Video service 14 is a handy variation on the character writing service, 
number 8. This service writes a character to the screen, and advances the 
cursor to the next position on the screen, so that it's in place for the next 
character. (The other services require our programs to move the cursor as a 
separate operation.) This is a convenient service that makes it easy for our 
programs to use the display screen like a printer, and just print out informa
tion with a minimum of fuss (or flexibility). For that reason this service is 
called "write teletype." 

The final service, number 15, is the inverse of the very first. It reports 
the current video state so that our programs can adjust their operation to the 
video mode, or record the current mode to be able to go back to it after 
changing the mode. This service is the main way that programs determine if 
the computer is using a Monochrome Adapter or a Color Graphics Adapter, 
and even those programs that do all their own screen output work use this 
service to learn which display adapter is in use, so that they know which 
display memory addresses to place output in. 

All these video reading and writing services are the official approved 
way for our programs to put information on the screen. Using them has the 
advantage that output heading for the screen is handled in a standard way, 
which can be automatically adopted to new hardware (such as the Enhanced 
Graphics Adapter and other new screen options). But many programs do 
not use these services, simply because there is a disappointingly high over
head involved. Screen output can be performed much faster when our pro
grams do it themselves, rather than using these ROM-BIOS services. 

That finishes the list of basic video services. There are more, but there 
aren't any more that are generic to the PC family and apply to all the 
models. The additional extra services that apply just to some models or to 
some special display adapters are no different in kind from the ones that 
we've seen. The principles and the general level are the same. 

The next thing for us to look at is a quite special service, the 
print-screen service. This service is different from all the others. The 
majority of the ROM-BIOS services are used to work specifically with a 
peripheral device, such as the display screen or the keyboard. The remain
ing services are basically informational, handling the time of day or indicat
ing the amount of memory installed in the computer. But this print-screen 
service is a different animal. 

The print-screen service is designed to read off the screen the informa
tion that's displayed and route it to the printer. We're all familiar with this 
service because it's directly available to us with a press of the PRTSC key 
on the keyboard. What makes this service particularly interesting is the fact 
that it is completely built from other ROM-BIOS services, so that it doesn't 

260 



17.2 THE BIOS SERVICES 

do anything unique in itself. It just combines parts that we've already got to 
perform a new and useful service. 

Print-screen begins work by using video service 3 to learn the current 
cursor position, and service 15 to learn the dimensions of the screen. It 
saves the cursor position so that it can later restore it to its original position, 
and then proceeds to move the cursor through every location on the screen, 
from top to bottom. At each location, it uses video service 8 to read a 
character off the screen, and a printer output service, which we'll see later, 
to copy the character to the printer. When this service is done, it restores 
the cursor to where it was, and then returns control to the program that 
invoked it. 

And that's interesting all by itself. We mostly think of the print-screen 
service as strictly an adjunct of the keyboard, something that we get by 
pressing the PRTSC key. Not so. Print-screen is a standard ROM-BIOS 
service that can be invoked by any program, in the same way any other 
service is invoked: by issuing an INT-interrupt instruction (for interrupt 5, 
in this case). What makes the PRTSC key work is that the keyboard 
ROM-BIOS routines monitor keyboard activity for this key combination. 
When it's found, the keyboard ROM-BIOS uses interrupt 5 to request the 
print-screen service. Any other program could do the same. This nifty 
service can be placed at the disposal of any program to be used in any way 
that's handy. 

Now on to the other services. We'll go through the other device serv
ices fIrst, and then cover the information services. 

The disk services are invoked with interrupt number 19. There are six 
basic services, numbered 0-5. The fIrst, service number 0, is used to reset 
the disk drive and its controller. This is an initialization and error-recovery 
service that clears the decks for a fresh start in the next disk operation. 
Related to it is the next service, disk service 1, which reports the status of 
the disk drive so that error handling and controlling routines can find out 
what's what. 

Disk service 2 is the fIrst of the active disk services. It reads disk 
sectors into memory. The sectors don't have to be read individually. This 
service will read as many consecutive sectors as we want, as long as they 
are all on the same track. Disk service 3 does the same, writing· sectors 
instead of reading them. 

Disk service 4 "verifIes" the data written on a disk, to test that it is 
properly recorded. This is the service that underlies the DOS option "VER
IFY ON" that we see in the VERIFY command and the VERIFY feature of 
DOS's confIguration fIle (CONFIG.SYS). It's commonly misunderstood 
just what this verifIcation does. It does not check the data stored on disk to 

261 



INSIDE THE IBM PC 

see that it correctly matches data in memory (data which we might have just 
read or written). Instead, the verify service simply checks that the disk data 
is properly recorded, which means testing for parity errors and other 
recording defects. As a general rule, that assures us that our data is correct, 
but it's no guarantee. If we have the wrong data, but it's properly recorded, 
the verify service will report that it's all OK. 

Disk service 5, the last of the lot, is used to format a track of a disk. 
This is the physical formatting that underlies DOS's logical formatting of a 
disk (see the sidebar discussion in Chapter 9). This formatting service is a 
fascinating business, because it specifies, for each track as a whole, how 
many sectors there will be, how the sectors will be identified by sector 
number, the order the sectors will appear in, and the size of each sector. 
Normally all the sectors on a track are the same size (512 bytes), they are 
numbered sequentially beginning with 1, and, on floppy diskettes, they 
physically appear in numeric order (on hard disks, they don't). Modifying 
some of these standard characteristics is the basis of many copy-protection 
schemes. Even just changing the order the sectors are written in can be used 
for copy protection, because the standard DOS COpy and DISKCOPY 
commands will not transfer the unusual sector order, and a copy-protected 
program can sense the timing difference that the order of the sectors 
introduces. 

The serial port (RS-232, communications line) services are invoked by 
interrupt 20. Using the serial port is fairly simple-everything is simply 
compared to the screen and the disk drives-and there are only four serv
ices needed. Service number 0 initializes the communications port, setting 
the basic parameters that we learned about in Chapter 15, the baud rate and 
so forth. Service I is used to write a byte to the port; service 2 reads a byte. 
Service 3, the last, is used to get a status report, which indicates things like 
whether data is ready. 

Next comes a set of services for the PC's cassette tape interface, a 
feature of the original PC that has been used little and dropped from the 
design of the more advanced models of the family. There are four services, 
in two symmetrical pairs, invoked with interrupt 21. Services 0 and 1 tum 
the cassette tape motor on and off; services 2 and 3 read and write 256-byte 
blocks of data. That's all there is to it. 

The keyboard services are activated with interrupt 22. There are three of 
them. Service 0 reads the next character from the keyboard input buffer. The 
characters are reported in their full two-byte form, as we discussed in Chap
ter 14. When a character is read by service 0, it's removed from the keyboard 
input buffer. Not the case with service 1. Service 1 reports if there is any 
keyboard input ready. If there is, this service also "previews" the character 

262 



17.2 THE BIOS SERVICES 

by reporting the character bytes in the same way that service 0 does-but the 
character remains in the keyboard buffer until it's officially read with service 
O. The final keyboard service, number 2, reports the keyboard status bits, 
which indicate the state of the shift keys and so forth (which we discussed in 
Chapter 14 and saw in action in the KEY-BITS program in Appendix A). 
Although we know where to find that information in the low-memory loca
tion where the BIOS stores it, this service is the official and approved way 
for our program to learn about the keyboard status. 

The last of the device-support services are those for the parallel printer 
port, using interrupt 23. There are three simple services: 0 spits out a single 
byte to the printer, 1 initializes the printer, and 2 reports the printer status, 
showing things like whether the printer is out of paper. 

That finishes off the ROM-BIOS services that are directly used to 
support the PC's 110 peripheral equipment. It's worth noting that there are 
two other 110 devices in the PC's standard repertoire the have no support in 
the BIOS whatsoever: the speaker and joysticks. Joysticks, like the light 
pen, have turned out to be little used, but it's curious that this device, and 
the speaker as well, aren't assisted in any way by the BIOS services. 

The remaining collection of ROM-BIOS services are used to control 
information or to invoke major changes in the PC. 

Interrupt 17 is used to get the PC's official (and now rather out of date) 
equipment list information. The equipment list was designed around the 
facilities of the original PC model, and hasn't been expanded to include new 
equipment that's been added to the family-largely, I think, because it hasn't 
turned out to be necessary. The equipment list reports how many diskette 
drives the machine has (0 to 4), but says nothing about hard disks or other 
disk types. It reports the number of parallel ports (up to three) and serial ports 
(up to two). It also reports if there is a game adapter (that is, the option board 
for joysticks), but nothing about light pens. (That's ironic, since there are 
BIOS services for the light pen but not for the game adapter.) 

A companion service to the equipment list reports the amount of mem
ory the computer has. Officially, it's requested with interrupt 18. The 
amount of memory is reported in K -bytes. 

The third and last of the pure information services are for time-of-day, 
using interrupt number 26. There are two services: 0 to read the current 
clock number, and 1 to set the clock. The BIOS time-of-day clock is kept in 
the form of a long 4-byte integer, with each count representing one 
clock-tick. 

The PC's hardware clock "ticks" by generating a clock interrupt 18.2 
times a second, and the interrupt handler for the clock adds one to the clock 
count each time. The clock count is supposed to represent the number of 

263 



INSIDE THE mM PC 

ticks since last midnight. It only shows the right time (that is, the right 
count) if it has been properly set-for example, by the DOS TIME com
mand or by a hardware real-time clock, like the one built into the AT model 
or the ones that come with many multifunction boards. When we tum the 
computer on, the clock starts counting from zero, as if that time were 
midnight, until something sets the correct clock time/count. DOS converts 
the clock tick count into the time of day in hours, minutes, seconds, and 
hundredths of seconds by simple arithmetic. The BIOS routines that update 
the clock check for it passing the count, which represents 24 hours. When 
that happens, the clock is reset to 0 and and a "midnight has passed" signal 
is recorded. The next time DOS reads the clock count from the BIOS, DOS 
sees this "midnight has passed" signal and updates the record it keeps of 
the date. 

There are, finally, two more quite interesting and quite curious BIOS 
service interrupts. They are used to pass control to either of two special 
routines built into the BIOS. One is the ROM BASIC (what IBM calls 
"Cassette BASIC") and the other is the boot-strap, start-up routines. (Keep 
in mind, by the way, that only IBM's own models of the PC family have 
the built-in BASIC; other family members, such as the Compaq computers, 
do not.) We know the normal ways to activate these two special routines: 
we reboot by pressing the Ctrl-Alt-Del key combination and we get to 
ROM BASIC by booting our computers without a disk in the machine. But 
it's also possible for any program to activate either of these routines by 
simply invoking their interrupts. There is one special thing about these two 
routines: unlike the ordinary service routines which do something for our 
programs and then return processing to the program that invoked them, 
these two are one-way streets. They take full charge of the machine and 
control never returns to the program that invoked them. 

That completes our coverage of the ROM-BIOS, the PC's lowest level 
of software support. Now we're ready to move on to the next basic level of 
software, DOS itself. We'll be devoting the next three chapters to an inner 
look at OOS. 

Some Things To Try 


1. 	 What would be the effect of combining all the ROM-BIOS serv
ices under one interrupt? Or giving each service its own separate 
interrupt? 

264 



SOME THINGS TO TRY 

2. 	 Can you think of reasons why the boot-strap loader and the PC's 
built-in ROM BASIC would be invoked by interrupts? Do you 
think the reason was to make them available for use by any pro
gram, or just easier to use by IBM's own system programs? 

3. 	 At the end of Section 17.1 I mentioned that one of the reasons to 
study the BIOS services is to understand their level. Consider how 
the level of the services might be higher or lower. Take one exam
ple from the services and see how you could change its definition 
to be more primitive or more advanced. Analyze the video serv
ices and rank them in terms of relatively high or low level. 

265 





18 
The Role of DOS 

I n this chapter we begin a three-chapter tour of DOS, the last major 
part of the PC epic that we still have left to explore. The next two 
chapters will investigate how DOS goes to work for us directly and 
how DOS goes to work for our programs. But before we get into 

that, we need to set the stage with some background information on DOS, 
and that's what this chapter is for. We'll start by looking at what operating 
systems are for in the first place. Then we'll go through the history that 
shaped the character of DOS and see the ideas that formed the basis for 
DOS's design. Then we'll see how DOS can be built up and expanded in 
ways that are internal to DOS (such as device drivers) and ways that are 
external (such as visual shells). 

18.1 What Any DOS is About 

The DOS that we use on our PCs is just one example of a class of 
computer programs that are known as supervisors, control programs, or 
operating systems. Operating systems like DOS are probably the most com
plex and intricate computer programs that have ever been built. The task of 
an operating system is basically to supervise and direct the work, the opera
tion of the computer. 

It's an incredible tribute to the power and flexibility of computers that 
they are not only able to do computing work for our needs, but they are also 
able to take on the complex job of looking after their own operation. And 
it's also a marvelous irony that these most sophisticated programs aren't 
created to dispatch the work we need done but to take care of the com
puter's own work. Computers are the most powerful tool that man has ever 
created. They are So powerful, in fact, that we aren't able to use the tool 
directly ourselves. Instead, through the intermediary of an operating system 
we use the computer-tool to make itself manageable enough for us to work 
with. We give our computers the rather inward looking task of supervising 
themselves, so that we don't have to concern ourselves with the extraordi
nary problems that are involved in making a computer work. 

267 



INSIDE THE IBM PC 

When we covered the subject of interrupts in Chapter 6 we got a 
glimpse of just how demanding the task of supervising a computer can be. 
Every physical part of the computer's equipment requires some looking 
after, and some of them demand a lot. For example, the PC's clock, used to 
keep track of the time of day, demands attention with an interrupt 18 times 
each second. The keyboard, as we saw in Chapter 14, demands attention 
every time a key is pressed and again every time a key is released. When I 
type in the word "keyboard" I've caused the computer to be interrupted 16 
separate times, just to note my keystrokes. An enormous, additional load of 
work gets done after the keystrokes have been recorded. 

The task of orchestrating, coordinating, and supervising the breathtak
ing array of events that take place inside our computers falls to the operat
ing system, which for us is DOS. 

So what does the operating system, our DOS, do? Essentially, it does 
three broad categories of things: it manages devices, controls programs, 
and processes commands. 

DOS's work in managing devices-printers, disks, screens, keyboards 
and more-involves everything that is needed to keep the parts of the 
computer running properly. On the lowest level, that means issuing com
mands to the devices and looking after any errors they report. That's 
exactly the job that the PC's ROM-BIOS performs. In the broadest sense, 
any operating system that works on our PCs includes the ROM-BIOS as 
one of its key components. On a much higher level, the operating system 
performs a major organizing role for the computer's devices. This is partic
ularly evident with the disks. A key, even dominant, part of the operating 
system's work is to work out the scheme of how data is recorded on our 
disks: the management of the disk space, the efficient storage of data, and 
its quick and reliable retrieval. 

The second broad job that DOS undertakes is the control of programs. 
That involves the loading of programs from disk, setting up the framework 
for a program's execution, and also the provision of services for programs 
(as we'll discuss in Chapter 20). On more complex and sophisticated com
puter systems than our PC family, the control of programs that operating 
systems perform also involves things that aren't possible on our machines, 
such as setting the limits on what parts of memory and what parts of the 
disk storage the program can access. Because of the relative simplicity of 
our PCs, every program has full access to any part of memory and all of the 
disk storage, but on larger computers that isn't true, and one part of the task 
of controlling programs on those computers is controlling the limitations 
and restrictions that programs work within. 

The third major job that DOS performs is command processing. That's 

268 



18.2 HISTORY AND CONCEPTS OF OUR DOS 

the direct interaction that DOS has with us, the computer user. Every time 
we type something in response to DOS's command prompt, A), we are 
working with the command processing aspect of DOS. In the case of DOS 
our commands are essentially all requests to execute a program. In more 
complex operating systems, our commands can take on a wider scope, 
including. things like directing the workings of the operating system itself. 
Whatever the scope of commands that an operating system provides, a key 
task for the operating system is to accept and carry out the user's 
commands. 

That, in summary, is the heart of what any operating system, and our 
DOS in particular, does. Now it's time for us to take a look at some of the 
history of how DOS came to be like it is, and see some of the ideas that 
underlie the way DOS works for us. 

18.2 History and Concepts of Our DOS 

The real history of our DOS begins with the early planning for the 
IBM Personal Computer and the operating system that had been used with 
the generation of personal computers that preceded our Pc. 

The PC was planned and designed at a time when most personal com
puters used an 8-bit microprocessor, and the dominant operating system for 
those machines was called CP/M (which stood for Control Pro
gram/Microcomputer). Even though IBM was designing the PC to be a 
much more powerful 16-bit computer, IBM wanted to build on the base of 
experience and popUlarity of CP/M machines. Even though the PC was 
going to be a quite different critter, and even though 8-bit CP/M programs 
couldn't be directly used on the PC, making the PC's operating system 
similar to CP/M would make it enormously easier to adapt programs (and 
adapt user's experience and skills) to the new machine. 

Apparently IBM intended to have an updated, 16-bit version of CP/M, 
which became known as CP/M-86, as the PC's primary operating system, 
but that didn't work out. See the sidebar CP/M Crash Lands for one version 
of the story why. For whatever reason, IBM decided not to center the PC 
on a version of CP/M, but instead to have a new operating system created 
for the PC by Microsoft-that operating system was DOS. 

CP/M Crash Lands 

There's an interesting story that claims to explain why the PC was 
introduced with its own new operating system, DOS, rather than with 

269 



INSIDE THE IBM PC 

the 16-bit version of the existing and popular CP/M system. Truth or 
myth, it makes a fascinating legend. 

As the story goes, when IBM came shopping for CP/M, Gary 
Kildall, the man who created CP/M, intentionally kept IBM's 
representatives waiting, and fuming, while he flew his plane for 
hours in the skies overhead. Kildall, we're told, thumbed his nose at 
IBM as a customer, while Bill Gates, head of Microsoft, rolled out 
the red carpet for IBM. Gates donned his rarely-worn business suits 
for meetings with IBM to demonstrate that he was serious about 
doing business with them. 

In the 8-bit computer world, Gate's company Microsoft had been 
dominant in programming languages, and Kildall's company Digital 
Research dominated operating systems-and IBM was prepared to 
keep it that way, planning to hire each of them for their specialties. 
But Kildall played hard to get, even after IBM had Bill Gates plead 
their case for Kildall's cooperation. 

In the end, IBM turned to Microsoft for an operating system as well 
as programming languages, and Microsoft had to come up with one 
in very short order. It delivered the goods by picking up an existing 
but little-known CP/M-like operating system and polishing it to meet 
IBM's requirements. That operating system became the DOS that 
nearly every PC user works with. 

With DOS as the dominant operating system for the PC family, 
CP/M's fortunes took a nose dive. Gary Kildall's flight led to a crash 
landing for his operating system. 

Even though DOS was favored from the start, DOS was not the 
only operating system that IBM introduced with the PC. Two other operat
ing systems, which had their own base of supporters, were also introduced 
and given official IBM approval: CP/M-86, which we've already men
tioned, and the UCSD p-System, an operating system closely tuned to the 
needs of the Pascal programming language. Nobody wants to use more than 
one operating system, though, since it's very inconvenient to switch from 
one to another, and it's nearly impossible to share data, programs, or 
human skills between operating systems. For practical reasons there could 
be only one winner in the battle for operating system supremacy and that 
winner was DOS. 

Even though DOS was a competitor to CP/M for the PC-and a com
petitor which vanquished its opposition-the design and operation of DOS 
was closely based on the facilities that CP/M provided and the ideas behind 
them. DOS, as it was initially introduced, had very much the flavor and 
style of CP/M for an important and deliberate reason: to make it as conve

270 



18.2 HISTORY AND CONCEPTS OF OUR DOS 

nient as possible for computer users who were familiar with CP/M to learn 
to use DOS, and to make it easy for existing 8-bit CP/M programs to be 
adapted for the PC. 

The influence of CP/M appears from the very first thing we see when 
we use DOS, the command prompt A>. DOS shows the design influence of 
CP/M in that command prompt and many more things in the way that DOS 
works with us, the user, and even more in the way that DOS works with our 
programs. 

While experienced eyes can see the similarities between the style of 
DOS and the style of its predecessor CP/M, the most important ways that 
CP/M set the style for DOS aren't visible, because they are ideas. Foremost 
among them was the scope and use that was intended for DOS from the 
beginning. DOS was built with the most primitive concepts of personal 
computing in mind. This included the assumption that only one person 
would be using the computer and that the one user would only ask for the 
computer to do one thing at a time (not, for example, printing out one 
document while computing on something else, which would be performing 
two tasks at once). DOS was designed to be a single-user system and a 
single tasking system following the most simple concept of how a computer 
might be used. It was natural that DOS was designed this way since its 
roots came from an operating system and a family of 8-bit machines which 
weren't suited to undertake anything more ambitious. 

Our PC family, however, was born to more ambitious goals, and the 
limitations of the CP/M heritage would have severely restricted DOS's 
ability to grow with the PC. On the other hand, there was an operating 
system called UNIX that was widely admired for its broad features, and 
Microsoft, DOS's builder, had strong experience with the UNIX style from 
creating XENIX, a variation of UNIX. So, when the time came to make a 
major revision to the features and internal structure of DOS, many of the 
concepts of UNIXlXENIX were stirred into the DOS recipe. The result was 
DOS version 2.0 and all the subsequent versions that we have seen since. 

The influence of UNIX is visible to every user of DOS in the sub
directories that we use to organize and subdivide our disks. It shows even 
more in the internal structure of DOS and the services that DOS provides 
for our programs. We'll see a very important example of that in Chapter 20 
when we look at the two ways DOS provides for our programs to work with 
files, an old CP/M method and a new UNIX method. 

The DOS that we know and use today is something of a blend of the 
styles and design features of CP/M and UNIX. While DOS contains many 
of the expansive and forward-looking features of UNIX, it still suffers from 
many of the limitations of its earliest beginnings. Because DOS originally 

271 



INSIDE THE IBM PC 

gave each program that we run total control over the computer and all of the 
computer's memory, it is difficult for more advanced versions of DOS to 
impose the limitations that are needed if we want to have two programs 
actively running in our computer at the same time. Like so many other 
things, DOS has been able to grow and develop far beyond what it was in 
its earliest days, yet it still feels the restrictive tug of its beginnings. In 
Section 18.4 we'll see some of the attempts that are being made to tran
scend those limitations. First, we need to see how DOS has become a 
flexible tool. 

18.3 Installable Drivers and Flexible Facilities 

In its earliest form, DOS was a rigid creation that had predefined into 
it all of the devices and disk formats and such that it was able to work with. 
This was release number 1 of DOS, the release that was solely based on the 
model of CP/M. That version of DOS was not able to adjust itself to 
changing circumstances, or to incorporate new devices such as new disk 
formats. 

But as the PC family grew, it became important to be able to adjust 
DOS to the particular needs of each computer and computer user, and it 
also became important to be able to make DOS accept and accommodate 
new peripheral devices, particularly the many different kinds of disks that 
were being used with PCs. So, as part of the major changes that were made 
with the second release of DOS, version 2.0, which included the changes 
that added many UNIX concepts, DOS was made adaptable through a 
facility known as a configuration file. 

The configuration file is the key to DOS's flexibility and adaptability. 
When DOS first begins operation, it looks for a file on our start-up disk 
with the name of CONFIG.SYS. If it finds that file, DOS reads it, and 
follows the commands in the file that define how DOS is to be configured 
and adapted. You'll see an example of a configuration file in Figure 18-1; 
it's the actual CONFIG.SYS from my own computer. 

There are two key parts to the way that DOS can be customized, 
modified, and configured, and I've highlighted them by dividing my own 
CONFIG.SYS file into two parts, as you see in Figure 18-1. The first part 
is controlling information that directs things that DOS already knows about. 
For example, the second line in Figure 18-1 tells DOS how many disk 
sector buffers to use. Choosing the number of disk buffers involves a sim
ple tradeoff: the more buffers, the less often DOS will have to wait for 
information to be read in from the disk, but the less memory there will be 

272 



18.3 INSTALLABLE DRIVERS AND FLEXIBLE FACILITIES 

for our programs to use. On its own DOS would use a very conservative 
number of disk buffers, around two or three. After some experimentation I 
found that my computer performed much better when I gave DOS more 
buffers, 64 in all. This is a perfect example of the flexible facilities that are 
designed into DOS. If we wish to we can control some of the parameters
like the number of disk buffers-that influence the computer's 
performance. 

BREAK=ON 
BUFFERS = 64 
FlLES=20 
LASTDRlVE=E 
COUNTRY=001 

DEVlCE=MOUSE.SYS 
DEVlCE=ANSI.SYS 
DEVICE=VDISK.SYS IE 384 

Figure 18-1. A configuration file. 

The other key part of DOS's configuration file involves software that 
can be integrated into DOS, what are called installable device drivers. DOS 
has built into it, naturally enough, program support for all the standard 
types of peripheral devices that the PC family uses. But we may want to 
add other, more exotic, components to DOS, and that's what install able 
device drivers allow us to do. 

These drivers are programs that expand DOS's ability to work with the 
computer's peripherals. The device drivers themselves are written follow
ing a strict set of guidelines that allow them to work in close cooperation 
with DOS, without disrupting any other part of DOS's workings. You'll see 
three examples of these installable drivers in Figure 18-1. They are identi
fied by the lines that read DEVICE = . For each of these commands, DOS 
finds the filename that is given in the DEVICE = command and integrates 
the program stored there into DOS's inner sanctum. You'll see that I have 
three of them. Two are provided as optional parts that come with DOS: the 
ANSI.SYS driver, which provides some special screen and keyboard con
trol, and the VDISK.SYS driver, which creates a "virtual" or RAM disk in 
part of the computer's memory. The third driver which you'll see in my 
configuration file, MOUSE.SYS, is used to support a truly new item to my 
computer, a mouse pointing device. The mouse driver is a classic example 
of how installable device drivers give DOS the ability to work with hard
ware that was not designed into the basic part of DOS. The other two 

273 



INSIDE THE IBM PC 

drivers, on the other hand, illustrate how the installable driver facility can 
be used to expand the workings of existing parts of the computer. 

Whatever purpose and use installable drivers are put to, they provide a 
way for us to modify, extend, and expand the things that DOS can do, 
within the scope of DOS's basic design. There are other ways that DOS can 
be expanded or changed, though, that don't work from within DOS, and 
that's the subject of Section 18.4. 

18.4 Visual Shells: Top View and Others 

There are inherent characteristics in DOS that define how DOS looks 
to us-the sort of face that it presents to the user-and that define what 
DOS is and isn't capable of doing. As we know from familiar experience, 
DOS's user interface is based on the simple A) command prompt, and the 
way DOS accepts commands, which is that we must type them in on the 
keyboard. We also know that DOS is only able to run one program at a time 
for us. DOS doesn't give us any way of either having more than one thing 
going at a time (except for some simple exceptions, such as the PRINT 
command, which will print away while we run other programs) or of sus
pending a program in the middle of its operation-in effect putting it on 
hold-while we run another program and then return to the first one. 

However, just because DOS doesn't provide us with a way of doing 
these things, doesn't mean that they aren't desirable or can't be done. In 
fact, many of the most talented minds in the PC community have been 
working hard to provide us with programs that can add fancier facilities on 
top of DOS. 

It is possible for us to transform the operation of DOS by using any of 
a class of programs that are commonly called visual shells (although that 
only describes some of the things that are performed by this class of 
program). 

Visual shells are programs that essentially wrap themselves around 
DOS and provide facilities of one kind or another that DOS is not able to 
do. There are any number of things that such a program might undertake to 
do, but of the ones that have gotten the most attention from the PC com
munity, two functions stand out. One is providing a more appealing and 
useful "face," a nicer way to enter commands. The other is some kind of 
multi-programming that allows us to use more than one program at a time. 

The best publicized programs of this type have been IBM's TopView 
and Microsoft's Windows. I'll discuss them in summary to give you an idea 
of why this sort of program has been so much discussed and so energeti

274 



18.4 VISUAL SHELLS: TOPVIEW AND OTHERS 

cally worked on and also why, so far, they have met with only very modest 
success. These two will stand as representatives of the whole broad class of 
shell programs that have appeared and that we can expect to see more of. 

One of the reasons why there has been so much interest in the idea of 
visual shells is that DOS's command interface provides us with so little 
help in entering our commands. To run a program with DOS, we have to 
remember the name of the program and type it in, together with any param
eters that are needed. Visual shell programs, like TopView and Windows, 
on the other hand, are able to show us a list of all the commands that we 
might wish to use, and they allow us to simply select from a list of com
mands and perform them without having to type the command name in. 
Using cursor keys or a mouse, we can simply point and shoot, pointing to 
the command that we want performed and shooting it into action with a 
single press of the enter key or a mouse button. 

The command interface can be enriched even beyond that, from the 
verbal to the visual, by replacing the names of commands on the screen 
with drawings, called "icons," which represent the function that the com
mand performs. Some of the most advanced visual shell programs work in 
this way. 

But easier or more attractive command entry is not the main reason 
why there is so much interest in visual shells. Equally important is the 
ability of some of them to work with more than one program at a time. This 
can be done a variety of ways, each of which has its own unique technical 
challenges. Some actually involve having several programs in active opera
tion at the same time-as TopView does-while others involve putting 
programs on hold while other tasks are performed and then returning to the 
suspended program without having to start it from scratch. 

While there has been a great deal of interest in this variety of program 
to jump outside of many of the limitations that are inherent in DOS itself, it 
appears to me that the time has not really come for this sort of program to 
blossom. The main reason is simply that the PC's main microprocessor, the 
8088, does not provide the facilities that allow either DOS or a shell 
wrapped around DOS to protect itself from being disrupted by ill-behaved 
programs. On the other hand, the more advanced microprocessor in the PC 
family, the 80286 that is the engine driving the AT model, does have 
protection facilities that make it possible for a program like TopView to run 
any number of programs without any of them interfering with each other, or 
with TopView, or with the core of DOS. Until we see shell programs of 
this type, which make use of the 286's inherent protection features, I don't 
expect that these shell programs, or any similar extensions that might be 
integrated into DOS, will see widespread use in the PC community. Even

275 



INSIDE THE IBM PC 

tually, though, we can expect something along those lines to become the 
operating system environment that we all work with. 

Some Things to Try 

1. 	 Why is it that the PC's main microprocessor, the 8088, can't 
safely run many programs at once? How can a program like 
TopView try to overcome some of these problems? 

2. 	 If you were designing a "visual shell" for DOS, a new way of 
making it easier for the PC user to give commands, how would 
you design it? Work out the best approach that you can think of, 
and consider what compromises you might have to make, to bal
ance different needs. 

276 



19 
DOS Serving Us 

A fter beginning our tour of DOS in Chapter 18, we're ready to 

see what DOS does. In this chapter we'll look at what DOS 

does for us, in its direct interaction with the user (in Chapter 

20, we'll see what DOS does for our programs, in providing 


services that our programs can use). 

We'll begin by looking at how the DOS command processor works. 


Then we'll see how command processing is enriched and made more com

plex by batch file processing. 


19.1 Command Processing 

Of all the things that DOS does in supervising our computers, the one 
that we're most directly aware of is what's called command processing
DOS's ability to accept and act on our commands. As we've seen, the job 
of command processing falls to the one visible component of DOS's three 
key parts, the program known as COMMAND.COM. 

It's COMMAND.COM that issues the terse command prompt that 
we're used to seeing, which usually appears like this: A). (For hard disk 
users it's normally C).) When we see the command prompt, DOS (or more 
particularly, the COMMAND.COM command processor) is waiting for us 
to enter a command that DOS will carry out. 

Just what is a command? It's really nothing more than a request to run 
a program. The command that we issue-the fIrst word that we type on the 
command line-is simply the name of a program that we're asking DOS to 
run. For example, if we issue the command 

FORMAT A: IS IV 

then we're doing nothing but asking DOS to find a program named "FOR
MAT" and run it for us. All the rest, everything else that we type in the 
command line (in this case, "A: /S IV") is simply some further instructions 
to the program, telling it what to do. Those are parameters that we're giving 

277 

http:COMMAND.COM
http:COMMAND.COM
http:COMMAND.COM


INSIDE THE IBM PC 

to the program, and DOS simply passes them on to the program-but to 
DOS they mean nothing, and the command processor doesn't pay any 
attention to them. 

The programs that the command processor can carry out for us fall into 
four categories, and it's important that we understand what they are and 
how they work, because our convenient and effective use of the computer is 
based largely on how well these commands are put at our disposal. The four 
categories of commands are internal commands, and then three types of 
external commands: COM programs, EXE programs, and BAT batch com
mands. Let's start by looking at the division between the internal com
mands and the three other types of external commands. 

Mostly our programs-that is, the commands that DOS can perform 
for us-are separate entities that are stored on our disks in disk files. How
ever, not all the commands that DOS can perform for us work that way; not 
all of them are kept in their own disk files. The COMMAND. COM com
mand processor includes inside it some of the most important and fre
quently-used command programs, so it isn't necessary to fetch a program 
file from disk in order to carry out these commands. These are called the 
internal commands, because the programs that perform the command work 
are inside COMMAND.COM itself. 

The list of internal commands varies from version to version of DOS. 
Here's a typical list of internal commands: among the more commonly used 
ones are CLS, COPY, DATE, DEL/ERASE, DIR, REN/RENAME, 
TIME, and TYPE. Among the less well-known are BREAK, CD/CHDIR, 
ECHO, MD/MKDIR, PATH, PROMPT, RD/RMDIR, SET, VER, VER
IFY, and VOL. 

The command processor holds inside it a table of these internal com
mands and the program code to carry them out. When we give DOS a 
command, the first thing that COMMAND.COM does is to look the com
mand name up in its table to see if we're asking for an internal command. If 
so, COMMAND.COM can carry out the command immediately. If not, 
then COMMAND.COM must go looking on our disks for the file that holds 
the external command program. 

The command processor identifies the files that hold external com
mands by two things: first the filename of the disk file is the name of the 
command: second, the extension to the filename identifies the file as one of 
the three types of external commands: a COM file, an EXE file, or a BAT 
batch command file. 

Since the filename of the program file defines the name of the com
mand that the program file will carry out, we have a great deal of freedom 
to change the names of our commands. We can do it simply by renaming 

278 

http:COMMAND.COM
http:COMMAND.COM
http:COMMAND.COM
http:COMMAND.COM


19.1 COMMAND PROCESSING 

the files (keeping the essential extension name, but changing the filename 
part) or making another copy of the command file under another name, so 
that the command is available to us either by its original command name or 
any other names we want to give it. I do this all the time and find it one of 
the handiest DOS tricks there is. I use it mostly to abbreviate the names of 
the commands I use the most. For example, I can invoke the word proces
sor that I wrote this book with either under it's regular name, WORD, or 
with the one-letter command W. 

We can do this with any of the external commands that we have 
available simply because external commands are based on the names of the 
files that hold the command programs. We can give our commands any 
name that's allowed as a filename, and we can give them alias names 
simply by duplicating the files under different names. We can't do that, 
however, with the command processor's internal commands (unless we try 
the relatively radical operation of tinkering with the table of command 
names inside COMMAND.COM). 

Of the three kinds of external commands two-COM and EXE files
are variations on the same principle, while the other, the BAT file, is 
something else entirely. Both COM and EXE are proper program files that 
the command processor will load and execute for us. 

From the point of view of the user who fires up programs through the 
command processor, the differences between COM and EXE program files 
have no practical importance, but it's interesting to us to know what's what 
with them. Basically the difference is that COM files are a simple, 
quick-loading format, while EXE files are more complex. A COM file is 
what's sometimes called an "image" file, which means that what's stored on 
disk is an exact image of the program as loaded and run in the computer's 
memory. A COM file needs no further processing or conversion by DOS in 
order to be run; it's just copied into memory, and away it goes. 

You might think that all program files were like that, but the fact is 
that many programs require a small amount of last-minute massaging and 
preparation before they can start operation. The crux of this load-time prep
aration is the one thing that can't be known in advance when a program is 
created: the memory address where the program will be copied into. Gener
ally the various parts of a program are intensely cross-linked. Different 
sections of the executable code know where each other are (so that they can 
"call" each other) and the program code knows the memory locations of 
all the bits of data that come with the program. While any program can 
know the relative location of its parts, no program can know in advance the 
absolute memory addresses of where those parts will be. After all, where a 
program is loaded in memory depends on how much memory is being used 

279 

http:COMMAND.COM


INSIDE THE IBM PC 

by DOS and by resident programs (like Sidekick or Prokey) and that can 
change. 

It is possible for a program to automatically self-adjust to adapt itself 
to wherever it happens to be placed in memory. And that's exactly what 
COM-type programs do. Using the segment registers and careful program
ming conventions, COM programs don't need to be adjusted for where they 
are located in memory. But not all programs are able to work that way. It 
turns out, when we get into the technical details of it all, that the COM 
format is rather restrictive and many programs simply can't work that way. 
For one thing, under normal circumstances, COM can't be any bigger than 
64K in size-and that's not enough to accommodate the most sophisticated 
programs. So the EXE format exists to handle programs that can't simply 
be loaded as a pure memory image. 

When DOS loads an EXE program into memory it performs any 
last-minute processing that is needed to ready the program for execution. 
One main part of that preparation is to plug the memory address where the 
program is loaded into as many parts of the program as need it. To do that, 
the EXE file format includes a table of which parts of the program need to 
be modified, and how it should be done. That's not the only special work 
that needs to be done for EXE programs, though. There are other things, 
such as setting up the program's working stack (COM programs take care 
of that for themselves). 

There are differences in the ways that COM and EXE programs are 
loaded, and there are also differences in the way they are written-slightly 
different programming conventions are used to accommodate the different 
way they are loaded and run. Also, somewhat different steps are used by 
programmers to prepare these programs (as we'll see, in outline, in Chapter 
21). All in all, though, this is just a technical matter that concerns program 
developers. From the point of view of the computer user, there is no differ
ence between COM and EXE programs. 

When DOS runs our programs, either COM or EXE, the command 
interpreter finds the program on disk, loads it into memory (processing 
EXE as needed) and then turns control of the computer over to the pro
gram. When the program is finished, it passes control back to the heart of 
DOS, and DOS reactivates the COMMAND.COM command processor. 
While the core parts of DOS are permanently held in low-memory loca
tions, most of the command interpreter is kept in high memory, the area 
that our programs are allowed to use for their data. This is done to avoid 
permanently tying up much memory for the command interpreter. If a 
program needs to use the memory where the command interpreter is 

280 

http:COMMAND.COM


19.2 BATCH PROCESSING 

located, it simply does so (without even being aware that it is overwriting 
the command interpreter). When a program finishes and hands control 
back to DOS, DOS checks to see if the command interpreter has been 
disturbed. If it hasn't, DOS simply starts using it again; if it has, then 
DOS loads a fresh copy from disk. That's why, for PCs that don't have a 
hard disk, we sometimes need to have a copy of COMMAND.COM on 
our working diskettes beside the copy that's on the DOS system diskette 
that we start the computer with. 

That's the essence of how DOS runs programs for us, DOS's own 
internal command programs, and the command programs---of either COM 
or EXE type-that are stored on disk. But there is one more type of com
mand that DOS can carry out for us, the batch file command. That's what 
we'll look at in Section 19.2. 

19.2 Batch Processing 

Batch files represent a powerful expansion of DOS's ability to carry 
out commands for us, and they are the last of the four categories of com
mands that I said DOS performs for us. But properly speaking, batch files 
are not a fourth kind of program, in the same sense that DOS's internal 
commands and COM and EXE files are programs. Instead, batch command 
files are scripts of conventional program commands that DOS can carry out 
for us, treating all the steps in the script as a single unit, which we can ask 
DOS's command interpreter to perform by entering a single command. 

Batch files are identified by the filename extension of BAT. Inside a 
batch file is simply ASCII data, in the normal format of an ASCII text file. 
Each line of the text file is a command that the command interpreter will 
attempt to carry out for us. 

The simplest kind of batch file is simply a series of conventional 
program commands, one after another, which have been gathered into a 
batch file so that we can conveniently run them in sequence as a single unit. 
But there is much more to batch file processing than just that. 

For one thing, parameters can be used with batch files, just as they can 
with ordinary programs, and the command interpreter is able to take the 
parameters that we give with the batch command and pass them on, in 
whatever way we need, to the programs inside the batch file. But even 
more sophisticated than that is a whole batch command language, which 
enables the command interpreter to carry out logical steps for us, repeating 

281 

http:COMMAND.COM


INSIDE THE IBM PC 

the execution of programs, or skipping steps depending on errors that hap
pen, or parameters that we give, or whether the files that we need actually 
exist. 

While this isn't the place to go into the full complexities of DOS's 
batch processing command language, it's worthwhile for us to briefly note 
that it exists and that it's one of the most powerful tools that is placed into 
our hands to help us make effective use of DOS. Experienced users of DOS 
tend to do practically everything in their computers through the batch pro
cessing facility, simply because it makes it possible to avoid the work of 
repeatedly entering ina series of commands, or simply type out the stan
dard parameters that a program needs. To give you an idea of how much I 
use batch files, I just counted the number of different batch files that I've 
built for myself to use in my own computer-they total an amazing 145 in 
all! That might be a lot more than you need (I suspect it's more than I really 
need, too), but it gives you an idea of just how important batch files are to 
my use of my PC. 

If you haven't already mastered the uses of the batch file, I highly 
recommend that you take the time to do so. I would offer some advice, 
though. There are advanced parts of the batch command language that can 
be quite confusing when you first try to study them and figure out how to 
make good use of them. I'd recommend that you try to learn and take 
advantage of batch files in an incremental way, first using the simplest 
features and then, when you're comfortable with them, moving on to see if 
you have any use for the more advanced ones. 

Some Things to Try 

1. 	 Using any snooping tool that's available to you (such as DEBUG 
or my Norton Utilities), browse around inside your computer's 
COMMAND.COM and find the table of the names of internal 
commands. Do you find anything unusual? What else, besides the 
command names, does COMMAND. COM need to hold in the 
table? (For information on how to use DEBUG or my Norton 
Utilities, see Chapter 22.) 

2. 	 How do you think that a COM-type program can adjust itself to 
wherever DOS loads it into memory? What are some of the 
problems that might have to be solved, and how can a program 
overcome them? 

282 

http:COMMAND.COM


SOME THINGS TO TRY 

3. 	 If you're familiar with the ins and outs of DOS's batch command 
language, analyze it to see what you think are the strong points 
and weak points in it-particularly look for the parts that are 
awkward to use. Try inventing your own batch language. What 
features do you think would be the most useful or most powerful? 

283 





20 
DOS Serving Our Programs 

A fter we've looked at the basic ideas behind DOS and seen how 
DOS works for us, it's time to see how DOS works for our 
programs. This chapter is a parallel to Chapter 17 where we 
covered the services that the ROM-BIOS provides for our pro

grams to use, and here we do the same for DOS. The similarity is strong, of 
course, but before we progress too far into the subject, we should note the 
two key differences: one is that, as we saw in Chapter 19, DOS does much 
to serve us, the computer's users, directly, which the ROM-BIOS does not. 
The other key difference is that the ROM-BIOS provides services our pro
grams on a very low level, while many of the services that DOS provides 
for our programs are complex and on quite a high level. That's one of the 
key themes that will emerge as we tour through the DOS services. 

20.1 DOS Services and Philosophy 

The services that DOS provides for our programs are subject to a 
number of conflicting tugs that have pulled them in several directions and 
which account for some of the contradictory nature that we see in them. 

While the ROM-BIOS services that we studied in Chapter 17 were 
designed in whole, and were created afresh in the best way their designers 
could manage, the DOS services have had neither the benefit of a single 
underlying purpose nor of being built in one integrated effort. 

Four main influences have shaped the DOS services into being what 
they are today. Two of the four are other operating systems in whose image 
DOS has been formed. 

The first one, as we learned in Chapter 18, was CP/M. Because CP/M 
was the dominant operating system for the 8-bit generation of computers 
that were the PC family's predecessors, and because there was so much 
CP/M-based software available, DOS was carefully designed to be enough 
like CP/M to make it relatively easy to adapt old CP/M programs to the PC 
and DOS. The key to this was having DOS present to programs an appear

285 



INSIDE THE IBM PC 

ance very much like CP/M's. The appearance had to include identical or 
nearly identical operating system services and also a similar philosophy in 
the design of the disk architecture, so that CP/M programs would not have 
to be rethought and redesigned from scratch. So DOS's fIrst big influence 
was the near imitation of CP/M. 

The second major influence, which came later, was UNIX. Not long 
after the appearance of DOS and the PC it became clear that the CP/M 
framework had too limited a horizon to fulfIll the PC's future. The UNIX 
operating system, on the other hand was highly regarded, and DOS's crea
tor, Microsoft, had deep experience developing their own variation on 
UNIX called XENIX. When it came time to revamp DOS into something 
more forward-looking, much of the style and many of the features of UNIX 
were stirred into DOS. This became DOS's second big influence, mated 
however well or poorly with the CP/M influence. 

Two other factors have played a big part in the character and evolution 
of DOS. One was the desire to make and keep DOS as hardware nonspe
cifIc as possible, to have it be computer-independent and peripheral-device 
independent. Some of the innermost working parts of DOS must be specifi
cally adjusted to the hardware features of the machines it is working on, but 
this is isolated to a specifIcally machine-dependent part, which is called the 
DOS-BIOS (as distinct from the machine's own ROM-BIOS). Outside of 
the DOS-BIOS, DOS is basically unaware of the particular characteristics 
of the computer it's working with. This is benefIcial, since it makes DOS 
and particularly the programs that are designed to use DOS services 
machine independent. But it also has some important drawbacks, because it 
tends to remove many of the most useful machine features from the realm 
of DOS services. 

The most painful example concerns the use of the computer's display 
screen. The services provided by DOS do not give our programs a way to 
position information on the display screen, so our programs are faced with 
a choice of either using the screen in a crude teletype-fashion, or of giving 
up the machine independence that using only DOS services provides. That 
has prevented us from having a wide range of powerful programs that 
automatically work on any computer which uses DOS, even computers that 
aren't fully PC-compatible. In any event, the reluctance to give DOS fea
tures such as full-screen display output has been an important influence in 
DOS's evolution. 

The fInal major influence that has shaped DOS has been the relatively 
ad-hoc addition of features needed to support the new directions that IBM 
has taken the PC family in. In general, we can say that rather than being 
designed in a unifIed way, features have been added to DOS on an 

286 



20.2 ALL THE DOS SERVICES 

as-needed basis, so that the various parts have not fit together quite as 
smoothly as they might otherwise have. This ad-hoc approach has brought 
us versions of DOS which, for example, first had no memory management 
services at all, and then attempted to add memory management to what had 
been an unruly every-man-for-himself approach to the use of memory. The 
same has been true of the services necessary for shared resources and 
networking and for multi-programming and multi-tasking of programs. 

When we stir together these four main influences, out comes the DOS 
that we know and use in our PCs. Emerging from this DOS stew is the 
collection of services that DOS provides for our programs to use, which 
we'll look at in Section 20.2. 

TECHNICAL BACKGROUND I I I ••• 

20.2 All the DOS Services 

Now we're ready to work our way through the main list of services 
that DOS provides for our programs. As it was in Chapter 17, this section 
has a Technical Background head that identifies the more technical sections 
of the book. Read on, though, if you want to get a good impression of what 
DOS can do for our programs and thus for us. You'll find some of them 
remarkably interesting. We won't be elaborating on each one individually, 
because that would make this chapter impossibly long and test your stam
ina. Instead, we'll take an overview that hits the essence of the services that 
DOS provides. 

The DOS services routines are all invoked by a common interrupt instruc
tion, interrupt number 33 (hex 21), that is used as a master way of requesting 
the services. The specific services are requested by their service ill number 
through the simple process of loading the service number in one of the micro
processor's registers, the same way that they are used to request ROM-BIOS 
services within each service group (such as the video group). 

The DOS services are also organized into groups of related services, 
but in a more informal and less tightly defined way. We'll be covering 
them in terms of these groups, covering the services roughly in numeric 
order. One thing to bear in mind is that unlike the ROM-BIOS services
which are relatively static-there's a growing list of DOS services, with 
new ones being added for each release of DOS. That's both good and 
bad. It's good that new facilities are being added, but it's bad because 
only a fraction of PC users keep current with the latest release of DOS. 
This creates problems for programs that want to take advantage of the 

287 



INSIDE THE IBM PC 

latest DOS features, since many PCs will be using older versions of DOS. 
Along the way through our discussion we'll point out the main dependen
cies in the versions of DOS. 

We begin with the most elementary group of DOS services, ones that 
are designed for what's called "console I/O," or interaction with us, the 
user. The input services read from the keyboard and the output services 
display information on the screen, in the simplest and crudest way, treating 
the screen like a printer, just typing information away on the screen without 
any sense of position on the screen. These services are a carryover from 
DOS's predecessor operating system, CP/M. These I/O services are as 
crude as they are because they are intended to be completely 
machine-blind, to work uniformly without any awareness of the features of 
a particular display screen (which is why the screen output services aren't 
able to position information onto particular locations on the screen). 

As part of the CP/M heritage, these services are a screwy hodgepodge. 
For example, while there is a simple keyboard input service and a simple 
screen output service, there is also another service that acts as input or 
output or combines both depending upon which way you use it. All these 
CP/M-style services were provided to make it relatively easy to translate 
CP/M programs to DOS with a minimum of difficulty. That was part of an 
effort to help the PC in its early days when there was lots of CP/M software 
and little PC software. Now the thinking behind that is long obsolete, but 
these services remain. 

As a part of the same group of elementary DOS services are services 
that send output to the printer and that read and write data to the communi
cations line (the serial port). 

All of the DOS services that fall into this group are matched by similar 
or in some cases even identical services that the ROM-BIOS provides. Why 
would DOS duplicate services that the BIOS provides? The answer lies in 
the theory that programs should tum to DOS for all their services, so that 
they are not tied to the particular features of one machine. Using DOS 
services is, in principle, more adaptable and makes it possible for our 
programs to run on other machines. It also allows for a more flexible 
handling of 110, for example, by rerouting data. That's what the DOS 
MODE command does. It makes it possible for us to direct printer output to 
the serial port. If our programs used the ROM-BIOS printer services, that 
wouldn't be possible. 

Unfortunately that good principle only works well for very simple 
input and output operations with the printer, serial port, keyboard, and the 
screen when we don't care where our data appears on the screen. Most 
programs have much more sophisticated needs, though, particularly for 

288 



20.2 ALL THE DOS SERVICES 

screen output. DOS lets us down in that regard, for there are no 
screen-positioning services in DOS's basic complement of services. 

While that first group of DOS services provides essentially nothing 
more than what we already have available from the ROM-BIOS, the next 
group ventures into the realms that are naturally DOS's-high-Ievel disk 
services, particularly file input and output. 

This group of services is also related to old design features of CP/M, 
and it's based around an approach that has been obsoleted by new develop
ments in DOS. These older file services are called, in DOS's terminology, 
the "traditional file services," and they are based on the use of something 
called a File Control Block, or FCB. FCBs are used by our programs to 
provide the name and identification of the files our programs will work 
with, and the FCB also holds status information while a file is in use. When 
our programs use these traditional file services, DOS keeps its records of 
what's-what inside the FCB, which makes them vulnerable to tinkering by 
our programs. (Newer file services, which we'll see shortly, hold DOS's 
control information apart from our programs, which allows for a safer and 
more reliable operation.) 

Let's see the variety of things these FCB-oriented traditional file serv
ices can do for us. First, to track down files, there are a pair of services that 
are used to locate files, which match wild-card filenames that include the 
characters "?" and "*". One of this pair starts the searching process, and 
the other is used to continue a search. Our programs can use them either 
simply to find the first matching filename, or to find the full list of files that 
match the specification. 

Other traditional file services will "open" a file (prepare the stage for 
reading or writing data) and later "close" it. Then there are services to read 
or write a file sequentially from beginning to end, or to read and write 
randomly, skipping to any position in the file. 

The console services that we first mentioned and the traditional file 
services make up the majority of the universal DOS services, the ones that 
were available in the long-forgotten first version of DOS, version 1.00. 
There is a small handful of additional services in this universal group, ones 
that read or set DOS's record of the date and time, one to end a program, 
one to tum disk verification on and off, and a few others that are less 
interesting to describe but which perform one technical service or another. 

Since these universal services were available from the very beginning, 
they can be used with every version of DOS. The DOS services that we'll 
be discussing from this point on have been added in later releases of DOS
mostly beginning with version 2.00-so they can only be used when our 
programs operate under the appropriate DOS version. 

289 



INSIDE THE IBM PC 

The fIrst of these-and now obviously an essential service-is one that 
reports which version of DOS a program is running under. That allows our 
programs to find out if the services that are needed are there. If not, a 
program can adjust itself to what's available, or at least gracefully exit, 
reporting that it needs a different version of DOS. Since this service was 
introduced in DOS 2.00 it would appear that it came too late. Fortunately, 
thanks to the way that earlier versions of DOS work, if a program uses this 
service they will in effect report themselves as version number "0"; that's 
not exactly correct, but at least it properly indicates a pre-2.00 version. 

For fIle operations, DOS 2.00 and all later versions provide an alterna
tive to the FCB-oriented traditional fIle services. These new fIle services 
work with what is called a "handle," which is simply a two-byte number 
that uniquely identifies each fIle that is in use by a program. When a 
program opens a fIle, using these new fIle services, DOS gives the program 
the handle that's used to identify the file for all subsequent fIle operations 
until the file is closed. This use of handles allows DOS to keep all critical 
fIle-control information safely apart from our programs, which protects it 
from damage or tinkering. These handle-oriented services provide all the 
facilities that the FCB-oriented traditional services do, but in a cleaner 
fashion. Also, our programs are provided with several standard handles
one for writing ordinary information on the display screen, another for error 
messages (which will appear on the screen, even if the user tells DOS to 
reroute screen output) and so forth. 

In addition, all versions of DOS from 2.00 on provide services that are 
closely related to the extra structure that has been added to DOS disks: 
services to create and remove directories, change the subdirectory, move a 
fIle's directory entry from one directory to another, and so forth. 

There are also services that allow our programs to work more inti
mately with the computer's devices, without having to break outside of the 
DOS framework. Previously our programs could either look at devices
such as disks-in a dumb way through DOS or in a smart way entirely on 
their own. These new device control services bridge the gap. As an exam
ple, with these device services our programs can determine whether a par
ticular disk drive is fIxed (as a hard disk or RAM disk is) or removable (as a 
diskette is), and for removable drives, whether the drive can sense when 
we've switched disks (as the AT model's high-capacity diskette drives 
can). All this allows our programs to use the computer in a more sophisti
cated way. 

There are also memory services, which allow our programs to work 
together with DOS in grabbing or releasing the use of memory. Normally 
each program that runs under DOS has the exclusive use of all of the 

290 

http:pre-2.00


20.2 ALL THE DOS SERVICES 

computer's memory, but these memory services allow a broader sharing of 
memory. 

Also a part of the services provided by DOS 2.00 and later versions 
are services that allow a program to load and run subprograms and program 
overlays, and give them a degree of independence from the program that 
started them. 

Most of the additions that have been made to DOS appeared with 
version 2.00, but other things have been added in later versions. Version 
3.00 added extended error codes, which allow our programs to get a much 
more detailed explanation of what has gone wrong when an error is 
reported. The main additions that appeared in DOS 3.00 and 3.10, how
ever, concerned themselves with the special problems of using networks. 
These new services provide the "locking" and "unlocking" of access to 
all or parts of a file, which make it safe and practical for several computers 
to share access to the same file (through a network) without interfering with 
each other. There are similar network-related services that deal with the 
control and redirection of printer output. 

So far, we've just discussed the mainstream of the DOS services, but 
there are some others that are quite interesting and useful which we don't 
want to pass over. Probably the most fascinating of all are the "termi
nate-but-stay-resident" services that allow programs to embed themselves 
into the computer's memory and remain there while DOS continues to run 
other programs. 

These are the resident programs that PC users have become so familiar 
with, programs like Prokey and Sidekick, and resident parts of DOS such 
as the MODE and PRINT commands. There. are two stay-resident services 
that these type of programs use-an old one that's part of the universal 
DOS services, and a more advanced one that's part of the services intro
duced with DOS 2.00. Whichever service is used, they make it possible for 
programs to become resident in a part of the computer's memory that will 
not be used by subsequent programs that DOS runs. 

Related to the operation of these programs is a DOS service that helps 
a resident program tell if it is safe to swing into operation. In Chapter 17 we 
discussed the fact that the ROM-BIOS programs must be re-entrant, so that 
they can be suspended or doubly active without difficulty. DOS, however, 
does not work in a completely re-entrant way. That means that at certain 
times if DOS is in the middle of one operation it's not safe for a program to 
request another DOS service. There is a special DOS service tha.t is used to 
report whether or not DOS is in that dangerous state. If you use the Side
kick program and have ever had it "chirp" at you, that was the reason why. 
If we try to activate Sidekick but Sidekick finds that DOS is in its 

291 



INSIDE THE IBM PC 

don't-interrupt-me state, it reports this by making a chirping sound on the 
computer's speaker. 

Another interesting DOS service is the one used for country-dependent 
information, such as the currency symbol (dollar sign, pound sign, etc.) 
that should be used, or how numbers are punctuated (like this: 
"12,345.67" or this "12 345,67"), and so forth. DOS is designed to 
adjust to different national conventions, and it can report the coun
try-specific information to our programs so that they can automatically 
adjust, if they wish to. Not only can our programs learn the country infor
mation from DOS, they can also instruct DOS to change the country code 
that it is working with. 

There are more DOS services that we can discuss here, but what we've 
seen should give you a sound feeling for the main range of DOS services, 
as well as a peek at what some of the unusual curiosities in the services are. 
So, we're ready to pass on to our next adventure, learning how programs 
are constructed. 

292 

http:12,345.67


21 
How Programs Are Built 

A mong the most fascinating topics that we get to enjoy in cover
ing the PC family is how programs are built. Whether you plan 
on creating programs for the PC or whether you just use PC 
programs and want to have the intellectual satisfaction of 

knowing what's behind your programs, it's just wonderful to know how it's 
done: the mechanics of creating a program. That's what we'll be covering 
in this chapter. 

Naturally what we'll be doing here is only taking a brief survey of how 
programs are constructed, so that you can get a feel for what's involved. 
For deeper understanding of the steps of program building, you can tum to 
any number of specialty books on programming for the PC family, includ
ing my survey book The Peter Norton Programmer's Guide to the IBM Pc. 

21.1 A Little Talk About 
Programming Languages 

In the end, our computers only carry out the instructions that they are 
given in so-called "absolute" machine language. But people-program
mers like you and I--<lon't write programs in machine language. We write 
programs in programming languages. Programming languages are the tools 
that programmers use to create programs, just exactly as English and other 
spoken languages are what writers use to create books. 

If we want to understand programming languages, we need to know 
what they are like and also how they are, one way or another, turned into 
the machine language that the computer ultimately has to have in order to 
get anything done. In this section we'll focus on the nature and characteris
tics of the programming languages themselves. In Section 21.2 we'll con
sider how the programming languages that humans use are translated into 
the machine language that the computer uses. 

293 



INSIDE THE IBM PC 

Perhaps the first thing that we need to know about programming lan
guages is the distinction between assembly language and all other program
ming languages (which are collectively called high-level languages). 

Assembly language is essentially the same thing as the computer's 
own machine language, only it's re-expressed in a form that's easier for 
us to work with. The key thing about assembly language is that a 
programmer who writes in assembly language is writing out, one-by-one, 
all the detailed instructions that the computer will follow to carry out a 
computer program. We've had some brief tastes of assembly language 
before; for example, in the Looking at an Interrupt Handler sidebar in 
Chapter 6. You'll see some more in Figure 21-1, which shows an assem
bly language subroutine that I use in my own programs. It's one that will 
flush the keyboard buffer (an important operation that's needed before a 
program asks a safety question such as, "OK to delete this file?"; flush
ing the keyboard buffer protects against a reply being typed in before the 
question is asked). If you want to know what an assembly language sub
routine looks like, complete with all its window-dressing, you can learn a 
lot just by studying Figure 21-1. 

Assembly language is the programmer's equivalent of the computer's 
own machine language, because each individual machine language instruc
tion can be created with a few assembly language codes. While machine 
language instructions appear in almost incomprehensible hexadecimal 
codes, assembly language codes are easily intelligible to experienced pro
grammers. With just a little practice, the rest of us can make sense of at 
least some of what's written in an assembly language program. For exam
ple, the first active instruction in Figure 21-1 is MOV AH,ll, which tells 
the computer to MOVe the number 11 into the register called AH. Now I 
won't c1aimthat the meaning of MOV AH, 11 should be obvious to anyone, 
but you can see how it. shouldn't be too hard to get the hang of reading and 
even writing this kind of stuff. 

To understand what assembly language programming is all about you 
need to understand that there are essentially three parts to it. The first part is 
what we mostly think of assembly language as being: individual machine 
language instructions, written in a form that programmers can understand 
(like MOV AH,ll). In this part of assembly language, each line of program 
code is directly translated into a single machine language instruction. 

The second part of assembly language programming consists of com
mands that control what's going on, essentially setting the stage for the 
actual working part of the program. In our example in Figure 21-1, every
thing before MOV AH,ll-for example, the line that reads ASSUME 
CS:PROG-is part of this stage-setting overhead. In the case of ASSUME 

294 



21.1 A UTILE TALK ABOUT PROGRAMMING LANGUAGES 

FLUSHKEY - clears DOS keyboard input buffer 

DOS generic 


PGROUP GROUP PROG 


PUBLIC FLUSHKEY 


PROG SEGMENT BYTE PUBLIC 'PROG' 

ASSUME CS:PROG 

FLUSHKEY PROC NEAR 

TEST: 
MOV AH,ll check keyboard status 
INT 33 function call 

OR AL,AL if zero 
JZ RETURN then done 

MOV AH,7 read one byte 
INT 33 function call 

JMP TEST 

RETURN: 
RET 

FLUSHKEY ENDP 

PROG ENDS 

END 

Figure 21-1. An assembly language subroutine. 

CS:PROG, it's indicating what's happening with the CS Code Segment 
register that we learned about in Chapter 6. 

The third part of assembly language programming is a labor-saving 
device. Whenever a series of instructions is repeated, assembly language 
allows the programmer to abbreviate many instructions into the form of a 
"macro instruction," or macro for short. Figure 21-1 doesn't include any 
macros, but it could. You'll notice that a pair of instructions (MOV AH,X 

295 



INSIDE THE IBM PC 

and INT 33) appears twice, with only a slight difference between them (the 
MOV has a different number in it). These instructions can be replaced with 
a macro representing the pair of instructions in a single line of code. (The 
macro facility in assembly language is able to take care of the difference 
between our two pairs of instructions by substituting a parameter with the 
appropriate number in it; macros can handle this trick and others that are 
much more elaborate.) In a nutshell, these three elements-program 
instructions that get turned into machine language code, overhead com
mands, and macro abbreviations-are the heart of assembly language. 

Writing a program in assembly language is an exceedingly long and 
tedious process. To give you an idea of just how many instQ.lctions are 
involved in a program (not just a brief subroutine, like the one in Figure 
21-1), the NU program which is the heart of my Norton Utilities-an exam
ple of a medium-sized program-has about 20,000 machine language 
instructions in it. A large and complex program, such as Lotus 1-2-3 or 
Ashton-Tate's Framework, can easily have over 150,000 separate machine 
language instructions in it. If any of these programs are written in assembly 
language, the programmers have to write out that many separate commands 
to the computer, each of them intricate, each of them a potential "bug" if 
any detail is done wrong. Think of it; if I write this book and get any of the 
words speled rwong, it won't destroy the usefulness of the book-but each 
tiny mistake in a program potentially can destroy the value of the program. 
And when a program written in assembly language has 150,000 or even 
20,000 instructions (also called lines ofcode) in it, the possibilities for error 
are enormous. 

High-level languages--every computer language other than assembly 
languag~are designed to avoid the tedium and error-prone nature of assem
bly language, by letting the computer do as much of the work as possible of 
generating the detailed machine language instructions. High-level languages 
rely on two ideas to make this possible. One is the idea of summarizing many 
machine language instructions into a single program command. This is the 
same idea that we've already seen in assembly language macros, but applied in 
a broader way. The other idea is to remove from sight details that have to do 
with how the computer operates, but which have nothing to do with the work 
that we want to accomplish-for example, which registers are used for what in 
the computer's machine language. 

If we want a program to add three numbers together, the program will 
use one of the computer's general-purpose registers, such as AX, BX, CX, 
or OX (as we learned in Chapter 6), but it really doesn't have anything to 
do with what we're trying to accomplish. Assembly language programmers 
have to concern themselves with pointless details such as choosing which 

296 



21.1 A LITTLE TALK ABOUT PROGRAMMING LANGUAGES 

register to use for what (and using it consistently). High-level language 
programmers are spared that effort. High-level languages are characterized 
by the fact that they generate lots of machine language code for each pro
gram command (a many-for-one saving of human effort, which gives 
high-level languages their name) and by their avoidance of unnecessary 
detail (such as specifying which registers and memory addresses are used). 

Assembly language and high-level languages each have their own ben
efits and drawbacks. I've focused on some of the drawbacks of assembly 
language-mainly that it requires more work to write because it requires 
more lines of program code to accomplish the same end, and that it's more 
error-prone because it involves lots of niggling details-and there are 
others: one important one is that it requires more expertise to write than 
most high-level languages. However, there are important advantages to it 
as well: assembly language programs are usually smaller and run faster, 
because assembly language programmers use their skills to find efficient 
ways to perform each step, while high-level languages generally carry out 
their work in a plodding unimaginative way. Also, using assembly lan
guage we can tell the computer to do anything it's capable of doing, while 
high-level languages normally don't give us a way of performing all the 
tricks that the computer can do. Broadly speaking, we can say that 
high-level languages let us tap into 90 percent of the computer's skills, 
while assembly language lets us use 100 percent, if we're clever enough. 

So far, I've been talking about high-level languages as a collective 
category, as if they were all alike. They do have a lot in common, particu
larly in contrast to assembly language, but there are many important differ
ences among them. Our next step is to look at the varieties of high-level 
languages, which we can best see by talking about the specific languages 
that are most important and widely used in programming for the PC family. 
There are literally hundreds of programming languages, and easily dozens 
that are used on the PC, but we'll only talk about an important few, 
BASIC, Pascal, C, and dBASE, using them to paint a representative picture 
of all high-level languages. 

BASIC is the closest thing there is to a universal language for personal 
computers. Essentially, every personal computer comes complete with 
BASIC in one form or another, and the IBM Personal Computers even have 
BASIC built into their ROM programs so that we can use BASIC on the 
IBM PCs without using disks. You've been seeing plenty of BASIC in this 
book, since nearly all of the programming examples that I've been showing 
you are expressed in BASIC. 

BASIC isn't a real professional's programming language, but it is 
good for tinkering around (which is one of the main reasons why we've 

297 



INSIDE THE IBM PC 

been using it in our examples) and it's good enough for many program 
applications that aren't too demanding. For example, two of the programs 
that I use regularly are written in BASIC: my general ledger accounting 
program for my business records, and my communications program 
(PC-Talk) for on-line access. 

BASIC's strength is that it is easy to fiddle with, and that it includes 
features that give us easy access to most of the PC family's special features, 
such as playing music on the computer's speaker. (Most other high-level 
languages have only broad general features that can be used on any com
puter built into them. To use the PC's unique characteristics, programmers 
using those languages have to use special methods, which usually means 
tapping into some assembly language. More on that later.) BASIC has 
some major limitations, which you should know about: it runs much slower 
than other high-level languages, and it has a severe limitation on how large 
a program can be built and how much data can be handled. Also, from the 
point of view of professional craftsmanship, BASIC provides a clumsy set 
of tools that work against efforts to write well-constructed programs. 

In contrast, the Pascal and C languages are very well suited for profes
sional programming. Both languages have the features that are considered 
to be most useful in helping programmers create well-crafted programs that 
are reliable and easy to update. To let you see something of what each 
language is like, I've included two fragments of Pascal and C from my own 
working programs in Figures 21-2 and 21-3. They'll give you a quick way 
of getting a feel for what Pascal and C programs look like, and how they 
are built. 

{ A Pascal Program to Count Words } 

program count (output,input~ile); 

var 
input~ile text; 
i word; 
thousands word; 
units word; 
line lstring (255); 
alpha boolean; 
active boolean; 

procedure report; 
var 

i, x : word; 
begin 

298 



21.1 A LITTLE TALK ABOUT PROGRAMMING LANGUAGES 

write (chr(13)); 

if thousands = 0 then 


write (units: 7) 

else 


begin 

write (thousands: 3) ; 

wri te (','); 

x := units; 

for i := 1 to 3 do 


begin 

write (x div 100 1) ; 

x .- (x mod 100) * 10; 


end; 

end; 


end; 


procedure ad~to_count; 
begin 


units units + 1; 

if units >= 1000 then 


begin 

units := units - 1000; 

thousands := thousands + 1; 


end; 

if (units mod 100) = 0 then 


report; 

end; 


begin 
thousands := 0; 
units : = 0; 
reset (input-lile); 
while not eof (input-lile) do 

begin 

active := false; 

readln (input-lile, line) ; 

for i := 1 to line. len do 


begin 

if active then 


begin 
if line [i] - , , then 
active := false; 

end 

else 


299 



INSIDE THE IBM PC 

if 1ine [i] in [' a ' .. 'z' , 'A' .. 'Z'] then 
begin 

active : = true; 
adrl-to_eount; 

end; 

end; 


end; 

report; 

write (' words. '); 


end. 

Figure 21-2. A sample Pascal program. 

/* A 'e' Program to Draw a Double-Line Box Outline */ 

box () 

{ 
drow - o·, deal - 1·, vdup (205,78) ;-
drow - 24; deal - 1·, vdup (205,78) ;-

for (drow = 1; drow 24; drow++) 
{ 


deol - 0; vdup (186,1); 

deol - 79; vdup (186,1); 


} 

drow - 0; vdup (201,1); 
deol = 79; vdup (187,1);· 

drow - 24; deal = 0; vdup (200,1); 
deal = 79; vdup (188,1); 

if (TEST) 
{ 


if (swtchset ("X")) 


{ 

int i; 

unsigned x; 

char s [40]; 

int sl; 


for (i - 1; i (24; i + + ) 
{ 

sl - 0; 

300 



21.1 A UTILE TALK ABOUT PROGRAMMING LANGUAGES 

deeint (s,&sl,i,3); 

drow - i; 

deal - 77; 

vstr (s); 


} 

drow = 24; deal = 3; 

x = spstart - splowest; 

decinto (s, x) ; 

vstr (" "); 

vstr (s) ; 

vstr (" staek used "); 


deal += 2; 

deeintO (s,poolleft); 

vstr (" "); 

vstr (s) ; 

vstr (" pool left "); 


deal += 2; 

x = pool - poolsave; 

decintO (s, x) ; 

vstr (" "); 

vstr (s) ; 

vstr (" pool used "); 


deal += 2; 

x = poolends - poolend; 

decinto (s, x) ; 

vstr (" "); 

vstr (s) ; 

vstr (" heap used "); 


} 
} 

} 

Figure 21-3. A sample C program. 

Pascal and C have many similarities, including the same kind of struc
tural features that assist good programming practices. Both are very suit
able for professional use in the building of the largest and most demanding 
programs. Pascal finds its champions among those who have studied it in 
school (it is the language most favored for teaching computer science-in 

301 



INSIDE THE IBM PC 

fact, it was originally created as a language for teaching, rather than for 
professional use), and those who have the inexpensive and extremely popu
lar Turbo Pascal compiler. C is favored by programmers who are looking 
for the utmost in efficiency in a high-level language, and those who want 
their programs to be in tune with one of the directions in which personal 
computers are evolving (toward the UNIX operating system, which is 
highly oriented to the conventions of C). 

Personally I have used both Pascal and C in my own programming for 
the PC family. My popular Norton Utilities programs were first written in 
Pascal and later converted to C. I am fond of both languages. By itself I 
consider Pascal to be the better language, cleaner and less error prone; on 
the other hand, C is particularly good for writing programs that need to be 
tight and efficient and which work closely with the computer's BIOS and 
DOS. It's also worth noting that for both the Pascal and C versions of my 
programs, I had to use assembly language subroutines to perform tasks that 
couldn't be done in the high-level language. The assembly language sub
routine shown in Figure 21-1 is one of those. This illustrates an important 
point in the creation of professional-quality programs: often the best pro
gramming is done primarily in a high-level language (such as Pascal or C), 
with assembly language used as a simple and expedient means to go beyond 
the limits of the high-level language. 

My own experience points up some of the most important factors in 
the choice of which programming language should be used to create a 
particular program. Generally a programming language is chosen on very 
pragmatic grounds: which languages the programmer already knows (or can 
easily learn), and how well suited the programming language features are 
matched to the work that the program has to accomplish. Personal taste, or 
convenience, also plays a major part in the selection of a programming 
language-and why shouldn't it? 

There is one final group of programming languages that we need to 
consider, what I will call application languages. These are programming 
languages that are an integral part of major application programs, such as 
dBASE II and III, Rbase 5000, Framework (with it's "Fred" programming 
language) and so on. This sort of programming language is also sometimes 
called a very high-level language, because it involves a step up in the power 
of the features that the language provides, thanks to the application (data
base system or whatever) that it is a part of. Individually each of these 
application languages is a whole world of its own, with very little similarity 
between them in their features or programming characteristics. This is very 
much different from the group of high-level languages which as a whole 
tend to have a lot of similarity in what they can do and even how they do it. 

302 



21.2 TRANSLATING PROGRAMS 

Probably the most widely known and used kind of application lan
guage are spreadsheets, such as the famous 1-2-3 program. Spreadsheets 
basically are programming languages because they allow us to set up and 
store commands that can be used over and over again-which is the essence 
of what a programming language is. A spreadsheet programming language 
is much more specialized than most programming languages: it's more 
powerful in some ways, thanks to the features that are built into a spread
sheet, and much more limited in other ways, since it has to work within its 
own spreadsheet context. 

In a broad, general way, we can say that application programming 
languages are divided into two groups. One group, typified by 1-2-3 and 
other spreadsheets, has a narrow range of uses, restricted to the basic pur
pose of the application. The members of this group are essentially applica
tion programs made partly programmable. The other group, represented by 
dBASE III or Framework's Fred language, has broader powers, powers that 
are nearly as general and flexible as ordinary programming languages (like 
BASIC). The members of this group are essentially full-fledged program
ming languages that can take advantage of special application features 
(such as accessing a database). 

So far, we've had a short look at the nature of various programming 
languages themselves. What we need to look at next is how they are imple
mented, what turns them into usable machine language instructions that our 
PC computers can carry out. That's what we'll look at next. 

21.2 Translating Programs 

To make any program, no matter what programming language it was 
written in, come alive, it has to be translated into the only thing that our PC 
computers can actually execute: machine language instructions. Our pro
grams are all translated from the programming language that the program
mer uses into the machine language that the computer uses. There are three 
main ways that this translation is done. They are called interpreting, assem
bling, and compiling. Understanding the basics of each of these three ways 
of translating programs is important to us, because it helps us comprehend 
what is going on in our computers, and it helps us understand some of the 
important limitations of our programs and why some programs run fast and 
others quite slow. 

Interpreting is a special kind of translation, in which our programs are 
essentially translated into machine language on the fly, as the program is 
being carried out. It's quite a bit like what's done at international confer

303 



INSIDE THE IBM PC 

ences or at the United Nations, where the words of a person speaking are 
simultaneously translated into other languages. 

Basically what happens when a computer program is interpreted is 
this: the program to be interpreted-we'll call it Program-P-is worked 
over by an interpreter program, which we'll call Interpreter-I. When we use 
Program-P, what happens is that the computer is actually running Inter
preter-I, and Interpreter-I carries out the steps that Program-P calls for. 
Interpreter-I scans over the text of Program-P, and step by step, Inter
preter-I performs the work that Program-P says is to be done. In effect, 
Interpreter-I is translating Program-P word by word, step by step, and 
carrying it out (executing it) on the fly-just the way that simultaneous 
translators at the United Nations work. 

Interpreting is inherently a slow and inefficient process, but a flexible 
one. It's slow because the translation is being done at the same time the 
work of the program is being carried out-so time is being taken up per
forming two tasks (translating the program and doing the program's work) 
instead of just one. It's inefficient because the translation is done over and 
over again-not just each time the program is run, but also each time a step 
of the program is repeated. Since much of the power of programs comes 
from repeated steps (program looping as it's called) there's plenty of 
repeated translation when a program is interpreted. On the other hand, 
interpreting is also especially flexible, because an interpreted program can 
be adjusted, changed, or revised on the fly. Since the translation of an 
interpreted program is done continuously, changes to an interpreted pro
gram can be made on the spot and accommodated immediately. 

We have plenty of experience with interpreted programs. The BASIC 
that we use in our PCs, and practically all the programmable applications
spreadsheets like 1-2-3, and databases like dBASE-are interpreted. 

There is an important technical issue concerning interpreted programs 
that is useful for us to know about. When we run an interpreted program, 
such as any of the BASIC shown in Appendix A, we think of that program 
as what's running in the computer. But in a strict sense that's not true. 
From the point of view of the computer and the operating system (DOS), 
the program that is being executed is the interpreter (BASI C, or 1-2-3, or 
whatever) and what we think of as the program is just the data that the 
interpreter is working with. For a BASIC program, the actual program 
that's running is BASIC.COM, and our "program," e.g., MAZE.BAS is 
just data for the program. Of course this "data" is a very special kind of 
data-it's data that describes the steps that we want the computer to per
form, which is exactly what a program is to us. Under most circumstances 

304 

http:BASIC.COM


21.2 TRANSLATING PROORAMS 

this technical distinction is of no importance, but at times we bump into 
some of its ramifications. For example, because the BASIC interpreter is 
only designed to work with a single 64K data segment (recall our discus
sions of memory and data addressing in Chapter 7), interpreted BASIC 
programs can't be larger than a total of 64K for both the "program" (which 
is technically data to the interpreter) and the program's own data. 

While I've said that BASIC, spreadsheet programs, and dBASE pro
grams are all interpreted, they don't have to be. While the normal form of 
these languages is interpreted, there are some compiled forms as well; we'll 
come back to this later. 

Interpreted programs, as we've said, are translated on the fly, as the 
program is being run. The other two types of program translation-assem
bly and compiling-aren't done that way. Instead, they are translated in 
advance, so that they are permanently converted into the machine language 
that the computer needs to run the program. Assembly and compiling have 
more in common than they have differences, so we'll cover that first. 

Assembled and compiled programs are translated into the computer's 
machine language by the program developer, in advance, before anyone 
uses the program. For these programs, translation is part of the program 
development process. This means that the user of the program doesn't have 
to waste time translating the program and also doesn't need to have the 
translating software. Programs prepared in this way are complete in them
selves. In contrast, interpreted programs can only be used if we also have 
the interpreter as well. We can only run BASIC programs if we have the 
BASIC interpreter (the program file BASIC. COM). 

The people who design an assembler or compiler for any programming 
language have to make many decisions about how the translator will work. 
Among the decisions are the exact details of what features the programming 
language will have. We may think of some programming language-say 
Pascal-as being just one thing, but that's really not true. To anyone writ
ing programs, a programming language like Pascal is the child of the mar
riage of two elements: the general form of the programming language 
(which defines the languages main form, its syntax and principle features) 
and the specific implementation (which defines the specific features and 
modus operandi, just how it's used). In the example of Pascal, there is a 
very substantial difference between IBM's own Pascal compiler, and Bor
land's Turbo Pascal compiler. The differences involve important things 
such as how the compiler works with character string data (a language 
feature) and whether programs can be built from separately compiled parts 
(a modus operandi issue). 

305 



INSIDE THE IBM PC 

It's due to these reasons that programmers don't really write programs 
in some general programming language, they write them using the charac
teristics of a specific implementation of a general programming language. 
Programs aren't written in "Pascal" or "C," they are written specifically 
in Turbo Pascal or Lattice C, or whatever. This is an important thing to 
know, whether we're setting out to write our own programs, or we just 
want to understand how the choice of a programming language affects the 
programs we use. 

Most compilers and assemblers for our PC family follow a standard 
modus operandi that was created as part of the overall organization of 
DOS. In this standard way of operating, the translator converts our pro
grams from the language that the programmer wrote them in, into the 
computer's machine language instructions, but that doesn't mean that the 
translated version is just ready to use. Normally it's not. While it has to be 
converted into executable machine language instructions, the instructions 
aren't yet fully dressed up for action. We'll see the reason for this-and the 
additional steps that are needed to get them ready-in Section 21.3. Not all 
program language translators work that way, however. Some follow their 
own rules, and have their own conventions for how a program is finally 
dressed for work. The best-known example of this is Turbo Pascal. With 
Turbo Pascal, a program can be executed immediately after it's translated. 
The advantage of this is obvious, but there are real disadvantages as well
translators like that go their own way and don't fit into the DOS world as 
comfortably as conventional ones do. 

In the first section of this chapter we noted the distinction between 
low-level assembly language and all the high-level languages (Pascal, C, 
BASIC, etc.). In assembly language a programmer must write out the 
equivalent of every machine language instruction that the finished program 
will perform. In a high-level language, the programmer can write a pro
gram in terms of larger steps, steps that will be translated into many indi
vidual machine language instructions. In keeping with this distinction, the 
translators for assembly language are called assemblers, and the translators 
for high-level languages are called compilers. Depending upon what we can 
focus on, the distinction is either important or inconsequential. From one 
point of view, both are the same: they convert the programmer's form of 
the program (the source code) into machine language instructions (the 
object code), and there is no difference between a compiler and an 
assembler. 

From another point of view, a compiler is given the very creative and 
demanding task of deciding what kind of machine language instructions 
will be used, and making strategic decisions about how the computer's 

306 



21.2 TRANSLATING PROGRAMS 

resources are to be used (for example, deciding what the registers will be 
used for). On the other hand, an assembler performs a very mechanical and 
uncreative conversion of the programmer's instructions into the exactly 
equivalent machine instructions. From this perspective, a compiler is a very 
complex beast, and there is an enormous potential for differences in the 
quality of a compiler (one compiler might generate very efficient code, 
while another could produce lousy code), differences that just don't apply 
to assemblers. 

When a programmer works with a compiler or assembler, the 
programmer's source code is fed into the translator, it's checked for errors, 
and if it's in workable shape, out comes the machine language object code 
as a result. You can identify any object code files that you might come 
across by their filename extension, OBJ. The object code is ultimately for 
use by the computer itself, to be turned into a finished, executable program. 
For the programmer's own use, the compiler or assembler spits out any 
error messages indicating flaws in the program (not logical flaws-bugs
which are the responsibility of the programmer, but syntactical flaws, such 
as misspelled keywords, or missing punctuation, stuff like that). 

Because an assembly language programmer is working very closely 
with the computer's basic skills (it's machine language instructions), an 
assembler gives the programmer lots of technical information about the 
results of the assembly. To give you an idea of what it looks like, Figure 
21-4 shows the assembler listing for the assembly language program shown 
in Figure 21-1. One of the things that an assembly listing shows the 
programmer is the exact machine language instructions, shown in hexa
decimal. Normally a compiler does not give a programmer anywhere near 
so much technical information-after all, one of the main purposes of using 
a high-level language is to avoid working with extraneous technical details. 
But, if a programmer wants to know more about the machine language code 
that a compiler is generating, most compilers are prepared to print out an 
assembly language equivalent of the object code that has been created. This 
object code listing allows an experienced programmer to evaluate the qual
ity of the code that the compiler generates, and it can be helpful in deciding 
which way of writing a program is most efficient. 

Depending on how we look at the process of translating a program 
from source code to object code, we can think of compilers and assemblers 
as very different creatures, or two minor variations on the same theme. 
Either way, compilers and assemblers are charged with the task of con
verting what programmers write into what the computer can perform. After 
that comes the final steps of putting a program together into a working 
whole, and that's what we'll cover next. 

307 



INSIDE THE IBM PC 

FLUSlIKEY - clears DOS keyboard input buffer 

DOS generic 

!'GROUP GROUP PROG 

PUBLIC FLUSHKEY 

0000 PROG SEGMENT BYTE PUBLIC 'PROG' 

ASSUME CS:PROG 

0000 FLUSHKEY PROC NEAR 

0000 TEST: 
0000 B4 OB MOV AH,ll check keyboard status 
0002 CD 21 INT 33 function call 
0004 OA CO OR AL,AL if zero 
0006 74 06 JZ RETURN then done 
0008 B4 07 MOV AH,7 read one byte 
OOOA CD 21 INT 33 function call 
OOOC EB F2 JMP TEST 

OOOE RETURN: 
OOOE C3 RET 

OOOF FLUSHKEY ENDP 

OOOF PROG ENDS 

END 

Segments and groups: 

N a m e Size align combine class 

!'GROUP . 
PROG . 

GROUP 
OOOF BYTE PUBLIC 'PROG' 

Symbols: 

Name Type Value Attr 

FLUSHKEY . 

RETURN . 
TEST .. 

:OOOF 
NPROC 

L NEAR 
L NEAR 

0000 

OOOE 
0000 

PROG 

PROG 
PROG 

Global Length 

warning Severe 
Errors Errors 
0 0 

Figure 21-4. An assembly listing. 

308 



21.3 PUTIING PROGRAMS TOGETHER 

21.3 Putting Programs Together 

One of the key elements in practical programming, really like practi
cally anything, is the old principle of divide and conquer-any task 
becomes more manageable when it is broken down into distinct parts. Pro
gramming works that way too, and so the process of program development 
has been set up in a way that makes it practical to break a program into 
functional, modular parts, and then piece together the whole program from 
its parts. That's basically what we have to talk about in this section: the 
mechanisms that make it possible to put programs together from parts, and 
how these mechanisms work. 

Three things form the center of the idea of divide-and-conquer in 
programming: subroutines, linking, and libraries. 

Subroutines, as we know, are fragments of a program that are rela
tively self-contained. They perform some particular part of the work that's 
to be done, turned into a separate unit as part of the overall design of a 
larger program. One of the key reasons for creating subroutines is to subdi
vide and therefore simplify the task of creating a program. 

Once we decide to break a program down into logical parts and make 
those parts separate subroutines, the next logical step is to entirely remove 
the subroutines from the main program. After all, the point of subroutines 
is to reduce the logical clutter in a program by isolating work into discrete 
components, the subroutines. If we're going to sweep part of the program 
off into a logical comer (a subroutine) to tidy up the design and organiza
tion of the program, we might as well move it out of the way entirely. This 
is done by extracting the subroutine from the body of a program, and 
treating it as a separate entity. We take the subroutines out of a program, 
and treat them by themselves-which includes compiling or assembling 
them on their own. This idea of separate compilation is a key adjunct to the 
idea of creating subroutines in the fIrst place. Since we're breaking down 
our program into logical modules, distinct components, we might as well 
make them completely separate by putting the source code (what the 
programmer writes) into their own disk fIles, and compiling (or, in the case 
of assembly language, assembling) them as separate items. 

There are two main advantages to separating out our subroutines. The 
one is that it shortens and simplifies the source code for a main program. 
The other is that it makes the subroutines easily available for use by any 
program. If we had to keep our subroutines inside each program, then when 
we created a new program that could use some of our old subroutines, we'd 
have to go to the trouble of copying the source code for the subroutines into 

309 



INSIDE THE IBM PC 

the new program. By separating out our subroutines (and compiling them 
separately) we make them available to any program we create. We also 
save time and trouble by only having to compile a subroutine once and not 
over and over again each time we create or revise a program that the 
subroutine is used in. 

This whole idea of subroutines separately compiled requires, though, 
that we have a way of combining the different parts of a program-its 
separately compiled subroutines-into one piece. This is done in a process 
that's called link editing performed by a program called LINK, which 
comes as a part of DOS. The process of link editing works something like 
the way we used to build models cut out of paper-the sort of thing where 
you fit Tab A into Slot A. A program that needs to use a subroutine named 
X has in it, in effect, an empty slot marked X; and a separately compiled 
subroutine has the computer equivalent of a tab marked X. The job of the 
link-editor program LINK is to fit the two together. 

Link editing involves making all the connections between different 
pieces of a program to make them work as a whole. In the last section, we 
mentioned that compilers and assemblers generate their machine language 
instructions in a form called object code which isn't completely ready to be 
run as a program. The reason for this is that object code is set up in the 
form that's needed for link editing, with all the "tab" and "slot" mark
ings. The job of the link editor, LINK, is to gather together all the parts of 
object code, make the connections between them, and then spit out the 
results in a form that finally is ready to be run in the computer. Even when 
a program doesn't have any subroutine connections that need to be made, 
standard DOS compilers and assemblers still translate their programs in the 
object code format, just as a standard way of working. 

We can see that creating a program involves two basic steps (besides 
the little step of our writing the program in the first place): translating the 
program's source code into object code, with a compiler or assembler, and 
then converting the object code into a finished program, with the link-editor 
LINK. 

It's worth pausing to note here that we're talking about the standard 
DOS way of creating programs, which is used by most programming lan
guage versions. But not every one follows the DOS standard. For example, 
the extremely popular Turbo Pascal compiler goes its own way, and avoids 
the use of object code and linking. Instead, Turbo Pascal (and its cousins) 
directly creates executable programs, in effect combining compiling and 
linking into one step. This has the advantage of simplifying and speeding 
up the process of developing a program, but it also eliminates much of the 
flexibility that comes with separate compilation and link editing. 

310 



21.3 PUrrING PROGRAMS TOGETHER 

If we create lots and lots of subroutines, we can be faced with the 
problem of having lots and lots of separate object code files cluttering up 
our disks-which can tum into a real nuisance. There is nothing uncommon 
about a programmer developing dozens of subroutines, and for a large 
programming project, or for a programming language that makes liberal use 
of built-in subroutines, the number can easily grow into the hundreds. For 
example, my Norton Utilities are built out of approximately 175 subrou
tines and program modules-that's just too many to conveniently keep 
track of. 

The solution to that practical problem is what are called libraries of 
object modules. An object library is a single disk file that can contain the 
object code for any number of program subroutines. After a subroutine is 
written, the programmer compiles (or assembles) the subroutine into a sep
arate, distinct object code file, and then uses a special DOS program called 
LIB which takes the object code and stuffs it into a library together with 
other subroutines. LIB makes it possible for us to gather together the clutter 
of many subroutine object files into one tidy package, an object library file. 
You can identify any object libraries that you come across by their filename 
extension, which is (naturally enough) LIB. 

So far we've seen all the pieces that make up the puzzle of how 
programs are built. Now we will put the pieces together to see them in 
action. I'll run through a little example from my own programming work to 
illustrate all the main steps of the process. 

We'll begin with the assembly language subroutine that we first saw at 
the beginning of this chapter, FLUSHKEY. After FLUSHKEY has been 
written by the programmer (me), the programmer's source code is stored in 
a file named FLUSHKEY.ASM. Each programming language has its own 
standard filename extension that's used for source code and for assembly 
language, its ASM. To assemble FLUSHKEY, we use the assembler pro
gram, named MASM (which is short for Macro Assembler), with a com
mand like this: 

MASM FLUSHKEY 

That gives us an object file, named FLUSHKEY.OBJ. Next we can 
add FLUSHKEY to our object library, which I'll call OURLIB just to 
identify it: 

LIB OURLIB+FLUSHKEY 
DEL FLUSHKEY.OBJ 

You'll notice the command line for LIB had a plus sign (+) in it. 
That's our way of telling LIB to add FLUSHKEY to the library. There are 

311 



INSIDE THE IBM PC 

other operations that LIB can perform for us as well. You'll also see that 
after adding FLUSHKEY to our library I deleted the object file, since we 
no longer needed it. 

That takes care of how we work with subroutines. The next step is to 
show you how we compile and link a main program. For our example, 
we'll consider a program written in the programming language C called 
NU. The source code file for that program will be called NU.C with the 
standard filename extension for a C program. For the C compiler that I 
happen to be using, there are two steps to the compiler, named MC1 and 
MC2. It's common for compilers to be broken into separate pieces that 
work in conjunction, and this compiler is one of them. So here is how we 
would compile my NU program: 

MCI NU.C 
MC2 NU 

After both of those compiler steps are finished, we will have a pro
gram object file named NU.OBJ. To link edit it into a finished program, we 
use the LINK program. Our example actually shows both of the two ways 
that the link editor can find the parts it needs to put together to make the 
complete program. One way, as we've mentioned, is by using a library (in 
this case the library OURLIB). The other way is for us to tell LINK the 
names of some specific object files that it needs to gather together (in this 
case there will be two of them: one is our NU.OBJ object file and the other 
is a standard object file used for all C programs, called C.OBJ). So, our 
link editing goes like this: 

LINK C+NU,NU, ,OURLIB 

To fully understand what's going on here, you have to know more 
about all the details of program building. But even in this simple outline, 
we've seen the essence and all the key parts of how programs are built and 
put together. 

In Chapter 22 we'll get into the business of snooping, tinkering, and 
exploring, and that includes snooping inside of some of the programs that 
we use-it's another way of gaining insight into the subject of this chapter, 
how programs are built. 

Some Things To Try 

1. In this chapter we briefly mentioned the function of the LIB pro
gram. In order to manage a library well, LIB has to have a variety 

312 



SOME THINGS TO TRY 

of skills. What are they? Work up a list of the separate functions 
that you think LIB needs to perform for us. 

2. 	 Batch command files are the key to combining program steps like 
the ones we've mentioned here for building programs. Try your 
hand at writing a batch file to assemble a program and add it to an 
object library. Write another to compile and link a program. If 
you know how to use batch file logic, make your batch files adjust 
to any errors that occur. 

313 





22 
Exploring and Tinkering 

O n the surface of things there is only so much that we can 
discover; but when we dig down just a little, we can unearth 
wonders. That's pretty much what this chapter is about: how 
we can dig into the PC and explore and tinker with it. In this 

chapter we'll cover the good reasons why it's not just interesting but truly 
valuable to know how to dig below the surface of our PCs and we'll get 
acquainted with two of the tools that can be used to do this exploring. 

22.1 The Point of Exploring and Tinkering 

There are more reasons than you might imagine why it's to our benefit 
to know how to explore, discover, change, and tinker with our PCs, as 
we'll be discussing in this chapter. The best reason of all is the reason that 
doesn't have a direct, immediate benefit: exploring widens and deepens our 
knowledge of the PC family, and that simply makes us more proficient PC 
users, better able to use the full range of the PC's powers, better able to 
avoid problems with our PCs, and better able to deal with problems when 
they do occur. 

Among the things that we can discover in tinkering with our PCs is 
how the data is organized on our disks-both the structure of the disk itself, 
and the internal structure of the data files that our programs work with. 
Similarly, we can discover a great deal about how our programs work, how 
they manage their data, their use of memory, and other parts of the com
puter's resources by some hunting and exploring. There are often hidden 
wonders inside programs-particularly some very interesting messages
that we can unveil. 

There are also direct benefits to tinkering, as well. If our disks are 
damaged, or if the data in a file is "corrupted" so that the program 
working with that data rejects it, refusing to work with it, sometimes we 
can use our tinkering skills to repair the damage. This isn't always 

315 



INSIDE THE IBM PC 

possible, of course, but sometimes we can hammer things back into 
shape and carry on. 

So whether it's to expand our knowledge, to satisfy our curiosity, or to 
attempt emergency repairs, the ability to explore and tinker can be quite 
worthwhile. 

There are many program tools that we can use to do our exploring and 
tinkering, but we're going to focus in on just two, the two that are most 
widely available and that provide a good spectrum of features: DOS's 
DEBUG program, and the NU program from my Norton Utilities set. 

Of the two explore-and-tinker tools that we'll be looking at, DEBUG 
is the more powerful and also the harder to use. To a certain extent, of 
course, those two properties go hand in hand: powerful features almost 
necessarily are accompanied by complex and harder-to-use commands. But 
that isn't the only reason why DEBUG is the more demanding one, and we 
ought to take a moment to see the whys and wherefores of that. 

Any program tool-from 1-2-3 to the tinkering tools we're discussing 
here-is designed to serve some particular need. In the case of DEBUG, 
the technical needs of advanced programmers was the target that DEBUG 
aimed for. As a free program that's included with every copy of DOS, 
DEBUG wasn't intended to be the ultimate programmer's tool, just a good 
basic tool for prograrnmers. Since DEBUG was targeted to advanced pro
grammers, and since it wasn't planned as a top-of-the-line lUXUry tool, its 
features are technical, and its command structure and user interface is 
crude-but it gets the job done. 

While DEBUG is crude but powerful, my NU program is much sim
pler but also less powerful. NU was designed to be as slick and easy to use 
as possible for (relatively) nontechnical PC users. I made NU this way 
because I saw that most programming utility tools were designed by 
top-flight programmers for other top-flight programmers. The needs of 
these "high-end " users were being well met, but the utility needs of the 
rest of us had been neglected-and that's why I focused my NU program on 
clarity and ease of use. 

Together, DEBUG and NU give us a good example of the range of 
features that we can find in utility programs that allow us to tinker and 
explore. There are many others available, though, and you ought to know 
about them in case you want to widen your choices. Among them are 
Trace-86 from Morgan Computing, IBM's Professional Debug Facility, 
and Periscope from Data Base Decisions. These three are simply the ones 
that I'm familiar with and know to be good. A little research on your part 
(particularly in programmer-oriented sources, such as the excellent PC 
Tech Journal) will turn up others. 

316 



22.2 WORKING WITH DEBUG 

22.2 Working with DEBUG 

In this section we'll be looking at the things we can do with the 
DEBUG program to dig inside our PCs. DEBUG is one of the utility 
programs included with every version of DOS, so that everyone who has a 
member of the PC family has a copy of DEBUG to work with. 

As I explained in the last section, DEBUG is a tool that is technically 
oriented, designed to serve the needs of programmers and others who have 
no difficulty working with the ins and outs of the PC's microprocessor. 
This includes an assumption in DEBUG that we are comfortable using 
hexadecimal numbers and segmented addresses. Almost everything that we 
can do with DEBUG calls for us to specify our commands in hex, and for 
us to enter and interpret plenty of segmented addresses (also given in hex). 
Hopefully that's no barrier for you, but if it is you may want to forget about 
using DEBUG entirely. If it is, skip over this section and pass on to the 
next, where we'll look at a more civilized tool, NU. 

DEBUG is a powerful tool, with many aspects to it, and a great deal 
more power than we're interested in exploring here. You've already had a 
taste of some of that with the DEBUG U-unassemble command, which can 
be used to decode the hexadecimal of absolute machine language instruc
tions into the more intelligible assembly language format. We saw that 
feature of DEBUG when we looked at interrupt drivers in Chapter 6. There 
are also features that allow us to do the opposite of that-the A-assemble 
command, which acts as a crude assembler, turning assembly language 
statements into machine language-and features that let us trace our way 
through a program, watching it execute and seeing the results of each step. 
Those commands and more like them are fascinatingly powerful, but 
they're more than we can bite off here. Digging into them really belongs in 
a book on advanced programming techniques. 

What we will look at here are some of DEBUG's commands that allow 
us to snoop and explore. We'll begin with some background on DEBUG. 

The DEBUG program works with a minimum of fuss (and a minimum 
of help to us), which takes a little getting used to. When we fire up the 
program, with the simple command DEBUG, it responds by just giving us 
its command prompt, similar to DOS's command prompt. DEBUG's 
prompt is even more terse: it's just a hyphen: 

Whenever we see that DEBUG command prompt, DEBUG is ready 
for us to give it a command. All of DEBUG's commands are abbreviated 
into a single letter. We might as well start by learning the command that we 

317 



INSIDE THE IBM PC 

use to finish using DEBUG and return to DOS: it's the Q (for Quit) 
command. 

For snooping around with DEBUG, one of the main commands that 
we'll be using is the D-display command. D tells DEBUG to display some 
of the contents of the computer's memory. DEBUG shows it in a form that 
combines hexadecimal and character format. Here's an example of what the 
D command might show us: 

2B68:0100 66 7F 06 06 OF 00 00 OO-OA OE 00 00 7F 60 60 60 f ..... 
2B68: 0110 7E 03 03 63 3E 00 00 OO-OA OE 00 00 lC 30 60 60 .. e ) ..... 01 I 

2B68:0120 7E 63 63 63 3E 00 00 OO-OA OE 00 00 7F 63 03 06 eee) . . ... e .. 
2B68:0130 OC 18 18 18 18 00 00 OO-OA OE 00 00 3E 63 63 63 .......... ) eee 
2B68:0140 3E 63 63 63 3E 00 00 OO-OA OE 00 00 3E 63 63 63 ) eee) . . .. ) eee 
2B68:0150 3F 03 03 06 3C 00 00 OO-OA OE 00 00 00 18 18 00 ? .. < 
2B68:0160 00 00 18 18 00 00 00 OO-OA OE 00 00 00 18 18 00 ........... 
2B68:0170 00 00 18 18 30 00 00 OO-OA OE 00 00 06 OC 18 30 .... 0.......... 0 

This display information appears in three parts: on the left is the mem
ory address of the data that DEBUG is showing us; in the middle is the data 
in hex format; on the right, are the characters that correspond to the hex 
information shown. DEBUG "censors" the character data, only showing 
ordinary text characters. This has its good and bad aspects: it doesn't show 
us all the interesting characters that lurk in our computer's data, but it does 
insure that we can copy the data to a printer without accidentally sending a 
control code that makes the printer act up. (By contrast, the data displays 
generated by the NU program, which we'll cover in Section 22.3, show 
every character there is so we can see it all, but we may not necessarily be 
able to get a printed copy of it.) 

DEBUG displays any data that it has in memory, but that can be just 
about anything. As we saw in Chapter 6, it can look at the beginning of the 
computer's memory (say to look at the interrupt vectors), or at the higher 
reaches of memory where the ROM-BIOS routines are stored. We'll take a 
look at some of those shortly. In the middle, we can display DEBUG 
ordinary program data area; this is where we have DEBUG load programs 
from disk, or other disk data, so that we can inspect it. 

For example, if we want to use DEBUG to browse around inside 
DOS's command interpreter COMMAND.COM, we can tell DEBUG to 
load COMMAND.COM into memory when it starts up, and then display 
the beginning of the contents of COMMAND.COM, like this: 

DEBUG COMMAND. COM 
-D 

When we do that, we'll get a display like this (I've skipped on from 
the beginning of COMMAND.COM to a part that we can recognize): 

318 

http:COMMAND.COM
http:COMMAND.COM
http:COMMAND.COM
http:COMMAND.COM


22.2 WORKING WITH DEBUG 

2882:1180 C4 06 56 88 F2 C7 44 01-00 OD 5E CF 00 00 00 00 .. V... D... ..... 
2B82:1190 OD OA OD OA 54 68 65 20-49 42 4D 20 50 65 72 73 . . . . The IBM Pers 
2B82:11AO 6F 6E 61 6C 20 43 6F 6D-70 75 74 65 72 20 44 4F onal Computer DO 
2B82:11BO 53 OD OA 56 65 72 73 69-6F 6E 20 33 2E 31 30 20 S.. Version 3.10 
2B82: 11CO 28 43 29 43 6F 70 79 72-69 67 68 74 20 49 6E 74 (C) Copyright Int 
2B82:11DO 65 72 6E 61 74 69 6F 6E-61 6C 20 42 75 73 69 6E ernational Busin 
2B82:11EO 65 73 73 20 4D 61 63 68-69 6E 65 73 20 43 6F 72 ess Machines Cor 
2B82:11FO 70 20 31 39 38 31 2C 20-31 39 38 35 OD OA 20 20 P 1981, 1985 .. 

The DEBUG D-display command, by itself, will just show us 128 
bytes from its current work area. If we want it to show us another area, we 
can give it the address we want it to show, like this: D 1180 (which is what 
I used to show the part of COMMAND.COM that you see above), or like 
this: D 0:0 (which is what we'd do to get the very beginning of memory). 
To have it show more than 128 bytes at a time, we just add the letter L (for 
length) and indicate how many bytes we want shown, which we have to 
give in hex. For example, this command D F8oo:0 L 300 shows hex 300 
(or 768) bytes, starting high in memory in the ROM-BIOS area. 

All by itself, this D-display command can be used to explore a great 
deal of the PC's memory and disk data, but there are other DEBUG com
mands to help us find even more. 

One DEBUG command allows us to search through data, which can be 
very helpful in hunting down messages that we know are stored inside a 
program. If we know the text of one message, and use DEBUG to hunt it 
down, we're likely to find the area where other messages are stored, and 
studying these messages can tell us a lot. 

The command that this is done with is the S-search command. Like the 
D-display command, we enter the search command with the initial letter S, 
followed by whatever memory address and length we want the search to act 
over. Following that, we tell DEBUG what we want it to search for. We 
can give DEBUG that either in hex or, if we're looking for characters, the 
string of characters enclosed in quotes. To let you see what it's like, here's 
an example which I'll explain in a second: 

S FOOO:O L FFFF "1790" 

The use for that interesting little command came up when a neighbor 
of mine had his PCIAT act up. It started giving him an error message 
number 1790--but he couldn't tell just what it was for. Since the message 
appeared when his machine was first turned on, I knew that the message 
was part of the Power-On Self-Test (or POST) routines that are stored in the 
computer's ROM-BIOS. To see if we could learn more about what this 
message meant, I used DEBUG to hunt for where the message was located, 
with the command you see above, searching through all of the ROM-BIOS 

319 

http:COMMAND.COM


INSIDE THE IBM PC 

area (from address FOOO:O for a length of hex FFFF, the full 64K of the 
ROM-BIOS area) for the text "1790". DEBUG located the message, and 
told me where it was, with this message: 

FOOO:E3DB 

That told me where the message was stored. Then I used the D-display 
command to see the full message and anything around it. I gave DEBUG a 
starting address a short ways ahead of where it found the "1790", so that 
we could see more of the surrounding messages. This is the D-display 
command I entered: D FOOO:E390, and here is what DEBUG showed me: 

FOOO:E390 72 OD OA 31 37 38 30 2D-44 69 73 68 20 30 20 46 r .. 1780-Disk 0 F 
FOOO:E3AO 61 69 6C 75 72 65 OD OA-31 37 38 31 2D 44 69 73 ailure .. 1781-Dis 
FOOO:E380 68 20 31 20 46 61 69 6C-75 72 65 OD OA 31 37 38 k 1 Failure .. 178 
FOOO:E3CO 32 2D 44 69 73 68 20 43-6F 6E 74 72 6F 6C 6C 65 2-Disk Controlle 
FOOO:E3DO 72 20 46 61 69 6C 75 72-65 OD OA 31 37 39 30 2D r Failure .. 1790
FOOO:E3EO 44 69 73 68 20 30 20 45-72 72 6F 72 OD OA 31 37 Disk 0 Error .. 17 
FOOO:E3FO 39 31 2D 44 69 73 68 20-31 20 45 72 72 6F 72 OD 91-Disk 1 Error. 
FOOO:E400 OA 32 01 04 00 00 80 00-00 00 00 00 00 31 01 11 .2 ........... 1. . 

Seeing the full text of those messages, my friend was able to get a 
clearer idea of just what had gone wrong with his machine. 

This is just one real-life example of the variety of things that DEBUG 
can do for us in exploring our computers. 

If you want to learn more about what DEBUG can do for you, you'll 
have to be prepared to cope with some messy technical details, but DEBUG 
will reward your efforts with a wealth of information. While we don't have 
space here for me to explain all the wonders of DEBUG to you, I can help 
you by listing the DEBUG commands that are most important for exploring 
and tinkering. We've already seen the D-display and S-search commands. 
To make changes to data, you'll need to learn about the E-enter and F-fill 
commands. To read and write data that's stored on your disks, you'll need 
to learn about the L-load and W -write commands. If you learn the basics of 
these DEBUG commands, you'll be able to inspect and change, and 
explore and tinker with, any data in your computer. 

Now it's time for us to move on to another tool, one whose powers 
have a different dimension than DEBUG's, and one that can be quite a bit 
easier to learn to use. 

22.3 Working with NU 

NU, like DEBUG, is a program with more than a few aspects, a 
program that can show you many things about your PC's disk data. One 

320 



22.3 WORKING WITH NU 

important thing to know, though, is that NU is focused completely on your 
computer's disks-so it can't be used to explore the PC's own memory, 
and it doesn't concern itself with the computer's machine language instruc
tion set (the way DEBUG's U-unassemble and A-assemble commands do). 
But, for telling you things about your computer's disks, NU probably has 
no equal. 

To use NU, if you're not already familiar with it, you simply select 
from its menu choices by pressing the function or number keys; the Esc key 
is used to jump back to a prior menu. Within a data display, the cursor 
arrow keys and paging keys will move you around. 

While NU, like most programs, has lots of features, the part that's of 
most interest to us here is found in NU's Menu 2. We'll start by looking at 
selection 2.2, which displays technical information about any disk. You'll 
see a sample of it in Figure 22-1. 

Menu 2.2 

Display Disk Technical Information 


Drive C: 


Basic storage capacity: 

20 million characters (megabytes) 

17% of disk space is free 


Logical dimensions: 
Sectors are made up of 512 bytes 
Tracks are made up of 17 sectors per disk side 
There are 4 disk sides 
The disk space is made up of 614 cylinders 
Space for files is allocated in clusters of 4 sectors 
There are 10,405 clusters 
Each cluster is 2,048 bytes 
The disk's root directory can hold 512 files 

Press any key to continue ... 

Currently selected: No file or disk sector selected 
Drive C: Directory: PROGRAMS 

Figure 22·1. Sample of disk technical information from NU. 

What we see in menu 2.2 is an outline of all the basic information 
about a disk-its total amount of space (and the proportion that's available 
for use), plus the logical dimensions that make up the disk, which we 
learned about in Chapter 8: the size of the sectors, how many sectors per 
track, and so forth. That's absolute information about the disk. Menu 2.2 
also shows the key DOS-related information, such as how big the DOS 

321 



INSIDE THE IBM PC 

clusters are (which affects how efficiently the disk is used) and other items 
such as how many file entries the disk's root directory can accommodate. 

Menu 2.2 provides us with a small gold mine of basic information that 
we can use to discover the dimensions and working of any disk we have, 
including RAM disks. Using menu 2.2, we can unveil how each disk is 
structured. 

Even more fascinating than the disk technical information is the disk 
space map, which appears as menu selection 2.3. You'll see an example of 
that in Figure 22-2. 

The disk map gives us a representative drawing of how the entire 
space on the disk is used. Each position on the map represents a small 
portion of the whole disk storage space. (On a diskette, or any disk where 
there are fewer than 500 disk space clusters, each cluster is individually and 
exactly represented on the map. When there are more than 500 clusters, 
positions on the map represent approximate fractions of the disk space.) 
The hatched portion of the map shows the unused free space on the disk, 
while the small squares show the space that's in use. If the disk has any 
"bad-track" areas, they are shown too, as you'll see in Figure 22-2. 

Menu 2.3 

Map of Space Usage for the Entire Disk 


177. of disk space is free 

Proportional Map of Disk Space
••••••••••••••••••••••••••••••••••••••••••••••••••• B 

represents •••••••••••••••••.~.~ ••••••••••••••••••••••••••••••• represents 

space •• ··············.HH.··.··.········.··.····.······· bad
in use •••••••••••••••••••••••••••••••••••••••••••••••••• sectors 

····················B···············B·B···········
···········.BB····nnHH····················B··.··.·.................................•................ 


Press any key to continue ••• 

Currently selected: No file or disk sector selected 

Drive C: Directory: PROGRAMS 


Figure 22·2. Sample disk map from NU. 

While the map we've seen shows the status of the entire disk, we can 
get a similar map that shows the relative location on the disk of each 

322 



22.3 WORKING WITH NU 

individual file (or subdirectory, since they are stored just like files). These 
individual file maps can show us where a file is (interesting, but essentially 
useless), tell us if it's stored all together in one place or scattered over the 
disk, and also simply give us a quick visual impression of how big the file 
is. You'll see one of these individual file maps in Figure 22-3. 

Menu 2.4 

Display Information about a File 


Name: IBMBIO.COM 
Attributes: Read-Only Hidden System 

Date and time: Thursday, March 7, 1985, 1:43 pm 
Starting cluster number: 2 (sector number 115) 

Size: 9,564 bytes, occupying 5 clusters 
in 1 area of the disk 

Press any key to continue .•• 

Figure 22-3. Individual file map from NU. 

The display of infonnation about a file that shows up in menu selec
tion 2.4 is more than just a map of where the file is, as you'll see in Figure 
22-3. It also has listed all the infonnation that's available about the file 
from the file's directory entry-filename, size, date and time marking, and 
also some infonnation that's not otherwise readily available, such as the 
sector and cluster IDs where the beginning of the file is stored. 

If we want to take a look at the contents of any file on the disk, or any 
sector's data (whether it's associated with a file or not), NU will show it to 
us in menu selection 2.5. You'll see an example in Figure 22-4. 

NU can display our disk's data organized in three ways. Figure 22-4 
shows it in one of three, a combination of hex and character data, similar to 
the way that DEBUG displays data. As you'll see in Figure 22-4, the same 
data is shown twice: in hex fonnat on the left hand side, and in character 
fonnat on the right hand side. This allows us to inspect data in its most 

323 

http:IBMBIO.COM


INSIDE THE IBM PC 

absolute form (hex) and also to easily recognize any text messages that 
might be lurking there. 

The example that I chose for Figure 22-4 is one of my favorites, 
because it illustrates two of the most interesting reasons for snooping inside 
files. This data display, which is taken from an IBM utility program called 
DOS Tree Display, reveals that it's an IBM program and it even shows the 
name of the author: Robert A. Flavin. If you simply used this program, you 
won't know who wrote it, or even that IBM owns it-that's never displayed 
to the user, but it's here for us to see, through the magic of a snooping tool. 

TREED.COM sectors 27,559-27,562 Cursor at offset 0, hex 0 
E9B7020D OA444F53 20547265 65204469 73706C61 790DOA28 i7 •.• DOS Tree Display•• ( 
63292043 6F707972 69676874 20496E74 65726E61 74696F6E c) Copyright 1nternation 
616C2042 7573696E 65737320 4D616368 696E6573 20436F72 al Business Machines Cor 
706F7261 74696F6E 20313938 340DOA62 7920526F 62657274 poration 1984 .. by Robert 
20412E20 466C6176 696E2020 20524~42 4FODOAIA 00770000 A. Flavin R1BO ....w.. 
00000000 00000000 00000000 00000000 00000000 00000000 ...•...•.•.•............ 
00000000 00000000 00000000 00000000 00000000 00000000 ........•.•..•.......... 
00000000 00000000 00000000 00000000 00000000 00000000 ...•.•••.......•.....•.. 
00000000 00000000 00000000 00000000 00000000 00000000 ......•••.•••••......... 
00000000 00000000 00000000 00000000 00000000 00000000 ••••.•.......•.••••.•••• 
00000000 00000000 00000000 00000000 00000000 00000000 •••••••...•....•...••••• 
00000000 00000000 00000000 00000000 00000000 00000000 .••..•...•.....•••.••••• 
00000000 00000000 00000000 00000000 00000000 00000000 .••.••.........•....•••• 
00000000 00000000 00000000 00000000 00000000 00000000 ....••••.••••.••••.••••• 
00000000 00000000 00000000 00000000 00000000 00000000 .....•.......•.......... 
00000000 00000000 00000000 00000000 00000000 00000049 .....•.•••.••••........ 1 
6620796F 75207765 72652073 7570706F 73656420 746F2068 f you were supposed to h 
61766520 65787465 6E74696F 6E73206F 6E206469 72656374 ave extentions on direct 
6F727920 6E616D65 732C2074 68657265 20776F75 6C640DOA ory names, there would •• 
68617665 20626565 6E206578 616D706C 6573206F 66206974 have been examples of it 
20696E20 74686520 444F5320 6D616E75 616C210D OA245452 in the DOS manuall •• $TR 
45454420 2D2D2044 Press Enter for help EED -- D 

Figure 22-4. Sample of disk data display in hex from NU. 

I often find hidden information like this when I go looking inside 
programs. You'll find all kinds of interesting things. In one case I encoun
tered a salute to the wives of a program's authors. Back to the case at hand, 
we can see, at the bottom of Figure 22-4, an irritated (and misspelled) 
message from Bob Flavin, complaining about the use of filename exten
sions in directory names. Oddly enough, the program never seems to issue 
this message, but there it is to see. 

One of the things that NU lets you do with the data that's displayed as 
you see it in Figure 22-4 is to make direct changes to the disk data, by just 
typing right over it-a very convenient way to change data. All we have to 
do is to move the cursor to the part we want to change (on either the hex or 

324 

http:TREED.COM


22.3 WORKING WITH NU 

the character side of the screen) and type our changes in. This ability to 
type changes right over existing data makes NU, and other programs like it, 
a much more convenient tool for modifying disk data than DEBUG is. This 
makes "pa.tching" a disk-making changes to the data-quite convenient. 

When I first began mentioning the data display in menu selection 2.5, 
I said that there were three ways that NU can show us a disk's data. One of 
the other two ways is in pure text file format. That's similar to the character 
side of the hex-and-character display, but it shows the data divided into 
lines, just the way it appears in text files-that can be very helpful in trying 
to make sense out of text data. The third format, which you'll see in Figure 
22-5, interprets the data as directory entries. This makes it possible for us to 
easily decode the information in a subdirectory when we come across it. 

Sector 84 in root directory shown in directory format 

Filename Ext Size Date Time Cluster Attributes 
.-= -

PC-TALK Sun Jul 7 85 12:02 pm 5,136 Directory 
PNCI Sun Jul 7 85 12:02 pm 5,282 Directory 
PROGRAMS Sun Jul 7 85 12:02 pm 5,714 Directory 
SYMPHONY Sun Jul 7 85 12:06 pm 7,798 Directory 
TAPE Sun Jul 7 85 12:06 pm 8,500 Directory 
ADDRESS 640 Tue Feb 26 85 10:55 am 33 
EMPTY 1 Sat Jan 8 83 10:26 am 34 
ENDPAGE 2 Mon May 13 85 10:39 pm 35 
INFO 4,480 Fri Jun 21 85 1:07 pm 36 
MOUSE Sun Jul 7 85 9:12 pm 8,618 Directory 
FWSPOOL 005 73,779 Fri Jun 21 85 4:52 pm 40 
APPOINT APP 651 Tue Jun 4 85 4:09 pm 77 
NORTON BAK 384 Mon Jul 8 85 9:32 am 22 
NORTON PRO 384 Mon Jul 8 85 9:34 am 24 
SOCHA Mon Jul 8 85 4:29 pm 23 Directory 
WORK Tue Jul 9 85 6:58 pm 25 Directory 

- ==== 
Press Enter for help 

Figure 22-5. Disk data display in directory format from NU. 

Any data that we look at with NU can be shown in any of these three 
formats: interpreted as directory data, laid out as text data, or shown in 
absolute hex and character format. We can inspect the same data all three 
ways, simply by flipping through the three formats-which gives us a lot of 
flexibility and power in working with our data. 

Using the features of NU to display and change data, we can get into 
any part of our DOS disks, see what's there and, if we know how, tinker 
with and modify the data-either simply to change it, or to repair some 

325 



INSIDE THE IBM PC 

damage that might have happened to it. I can give you an example of why 
we might want to do this, from my own experience. 

Two DOS programs, called BACKUP and RESTORE, are used to 
make floppy diskette backup copies of hard disk data. In an early version of 
DOS, the BACKUP program sometimes recorded one of the backup disk
ettes incorrectly, with a hex 0 in place of part of one of the filenames. This 
tiny error made it impossible to restore the data that had been copied to the 
diskettes--a disaster! Fortunately, when this happened to me, I was able to 
use NU to browse around on the bad diskette, exploring until I discovered 
what the problem was. Once I discovered it, all I had to do was to replace 
the erroneous hex 0 with a proper character for the filename. It was a 
simple and easy repair job, which would have been impossible without a 
exploring and patching tool like NU. In that one case, NU saved an entire 
hard disk's data for me! This is a powerful example of why it can be very 
worthwhile to have a tool of this kind at hand, and know how to use it. 

Some Things to Try 

1. 	 Using DEBUG, search through your computer's ROM to find the 
copyright notice on the ROM-BIOS. Give DEBUG the command 
D F800:0; then follow that with the command D until you see 
what you're looking for. If you don't find the message starting at 
F800:0, try again at FOOO:O. 

2. 	 If you have the NU program, use it to look at the dimensions of 
each type of disk that you have. What do the figures tell you? 

3. 	 Again, if you have NU, make a copy of one of your diskettes, and 
experiment with making changes to it. Find the diskette's root 
directory, and change one of the filenames by typing over the 
name. Test to see if the name got properly changed. 

4. 	 Using NU's ability to show the same data in directory and hex 
format, display part of your disk's directory and then try to find 
just where each part of the directory (name, extension, date, size) 
is recorded in the hex part. Changing the hex data and then seeing 
what changed in the directory display will help you tell what's 
what. 

326 



A 
Program Listings 

MAZE-Start-to-Finish Maze (Introduction) 

1000 Little Maze Program, Copr. 1985 Peter NortonI 

1010 I 

1020 GOSUB 2000 do set-up workI 

1030 WHILE NOT. YET. DONE 
1040 GOSUB 3000 sound tone I 

1050 GOSUB 4000 choose distance I 

1060 GOSUB 5000 I move 
1070 GOSUB 6000 check for endI 

1080 GOSUB 7000 choose directionI 

1090 WEND 
1100 GOSUB 8000 report triumph and finishI 

2000 I 

2010 Subroutine to do set-up workI 

2020 I 

2030 DEFINT A-Z 
2040 KEY OFF : SCREEN 0: WIDTH 80 CLS 
2050 RANDOMIZE TIMER 
2060 NOT. YET. DONE : 1 
2070 BOX.FOREGROUND : 0 : BOX.BACKGROUND : 7 
2080 CURRENT. ROW: 1: CURRENT. COL : 1 
2090 MESSAGE$: "Start" : GOSUB 2500 
2100 CURRENT. ROW : 22 : CURRENT. COL : 68 
2110 MESSAGE$ : "Finish! " : GOSUB 2500 
2120 CURRENT. ROW : 2 : CURRENT. COL : 10 : DIRECTION: 1 
2130 SOUND. TIME : 100 : PLAY "MB" : SOUND.CANCEL : 1 
2140 SOUND. BASE : 50 
2150 LOCATE 2,9,0 : PRINT CHR$(204); 
2160 COLOR 7,0 : MOVING.CHARACTER : 205 
2170 RETURN 

2500 I 

327 



INSIDE THE IBM PC 

2510 Subroutine to draw a message boxI 

2520 I 

2530 COLOR BOX. FOREGROUND, BOX. BACKGROUND 
2540 LOCATE CURRENT. ROW, CURRENT. COL 
2550 PRINT CHR$(201);STRING$(LEN(MESSAGE$),205);CHR$(187); 
2560 LOCATE CURRENT. ROW +1, CURRENT. COL 
2570 PRINT CHR$(186);MESSAGE$; CHR$(186); 
2580 LOCATE CURRENT. ROW+2, CURRENT. COL 
2590 PRINT CHR$(200);STRING$(LEN(MESSAGE$),205);CHR$(188); 
2600 RETURN 

3000 I 

3010 Subroutine to sound tones I 

3020 I 

3030 IF SOUND. CANCEL THEN SOUND 100,0 cancel previous I 

3040 SOUND SOUND. BASE +750*RND, SOUND. TIME random toneI 

3050 RETURN 

4000 I 

4010 Subroutine to choose distance I 

4020 I 

4030 IF DIRECTION: 1 THEN LIMIT: 78 - CURRENT.COL 
4040 IF DIRECTION: 2 THEN LIMIT: CURRENT. COL - 2 
4050 IF DIRECTION: 3 THEN LIMIT: CURRENT. ROW - 2 
4060 IF DIRECTION: 4 THEN LIMIT: 23 - CURRENT. ROW 
4070 IF LIMIT < 1 THEN LIMIT : 1 
4080 DISTANCE : INT (RND * (LIMIT + 1) ) 
4090 RETURN 

5000 I 

5010 Subroutine to moveI 

5020 I 

5030 FOR I : 1 TO DISTANCE 
5040 LOCATE CURRENT. ROW, CURRENT. COL 
5050 PRINT CHR$(MOVING.CHARACTER); 
5060 GOSUB 5500 
5070 NEXT 
5080 RETURN 

5500 I 

5510 Subroutine to change to next location I 

5520 I 

5530 IF DIRECTION: 1 THEN CURRENT.COL : CURRENT. COL + 1 
5540 IF DIRECTION: 2 THEN CURRENT. COL : CURRENT. COL - 1 

328 



APPENDIX A: PROGRAM LISTINGS 

5550 IF DIRECTION: 3 THEN CURRENT. ROW : CURRENT. ROW - 1 
5560 IF DIRECTION: 4 THEN CURRENT. ROW : CURRENT. ROW + 1 
5570 LOCATE CURRENT. ROW t CURRENT. COL 
5580 RETURN 

6000 I 

6010 Subroutine to check for endI 

6020 I 

6030 IF CURRENT. ROW ( 22 THEN RETURN 
6040 IF CURRENT. COL ( 68 THEN RETURN 
6050 NOT. YET. DONE : 0 
6060 RETURN 

7000 I 

7010 Subroutine to choose direction and turn cornerI 

7020 I 

7030 RIGHT. TURN : INT (RND * 2) 
7040 RIGHT.TURN : 1 - RIGHT.TURN 
7050 IF DIRECTION:1 THEN NEW. DIRECTION:3+RIGHT. TURN 
7060 IF DIRECTION:2 THEN NEW.DIRECTION:4-RIGHT.TURN 
7070 IF DIRECTION:3 THEN NEW.DIRECTION:2-RIGHT.TURN 
7080 IF DIRECTION:4 THEN NEW.DIRECTION:1+RIGHT.TURN 
7090 IF NEW.DIRECTION:1 AND CURRENT. COL) 75 THEN GOTO 7040 
7100 IF NEW.DIRECTION:2 AND CURRENT. COL ( 5 THEN GOTO 7040 
7110 IF NEW.DIRECTION:3 AND CURRENT.ROW( 5 THEN GOTO 7040 
7120 IF NEW.DIRECTION:4 AND CURRENT. ROW) 20 THEN GOTO 7040 
7130 IF DIRECTION:1 AND RIGHT.TURN:O THEN TURN. CHAR : 188 
7140 IF DIRECTION:1 AND RIGHT. TURN: 1 THEN TURN. CHAR : 187 
7150 IF DIRECTION:2 AND RIGHT.TURN:O THEN TURN. CHAR : 201 
7160 IF DIRECTION:2 AND RIGHT. TURN: 1 THEN TURN. CHAR : 200 
7170 IF DIRECTION:3 AND RIGHT.TURN:O THEN TURN. CHAR : 187 
7180 IF DIRECTION:3 AND RIGHT. TURN: 1 THEN TURN. CHAR : 201 
7190 IF DIRECTION:4 AND RIGHT.TURN:O THEN TURN. CHAR : 200 
7200 IF DIRECTION:4 AND RIGHT. TURN: 1 THEN TURN. CHAR : 188 
7210 PRINT CHR$(TURN.CHAR); 
7220 DIRECTION: NEW. DIRECTION 
7230 IF DIRECTION ( 3 THEN MOVING. CHARACTER : 205 
7240 IF DIRECTION) 2 THEN MOVING. CHARACTER : 186 
7250 GOSUB 5500 
7260 RETURN 

8000 I 

8010 Report triumph and finishI 

8020 I 

329 



INSIDE THE IBM PC 

8030 SOUND 100,0 
8040 CURRENT.ROW : 22 : CURRENT.COL : 66 
8050 MESSAGE$ : "Finished! " 
8060 SOUND. TIME : 2 : PLAY "MF" 
8070 SOUND. BASE : 1000 : SOUND. CANCEL : 0 
8080 FOR I : 1 TO 10 
8090 BOX.FOREGROUND: 7 : BOX.BACKGROUND : 0 
8100 GOSUB 2500 
8110 GOSUB 3000 
8120 BOX.FOREGROUND: 0 BOX.BACKGROUND: 7 
8130 GOSUB 2500 
8140 GOSUB 3000 
8150 NEXT 
8160 BOX.FOREGROUND : 28 : BOX.BACKGROUND : 15 
8170 GOSUB 2500 
8180 LOCATE 12,25 : COLOR 7,0 : SOUND 100,0 
8190 PRINT "Press a key to return to DOS. .. "; 
8200 WHILE INKEY$ : "" : WEND 
8210 SYSTEM 

HEXTABLE-Generate Hex Arithmetic Tables (Chapter 3) 

1000 Hex Arithmetic Tables, Copr. 1985 Peter Norton I 

1010 I 

1020 FOR TYPE : 1 TO 2 
1030 GOSUB 2000 titleI 

1040 FOR I : 0 TO 15 
1050 FOR J : 0 TO 15 
1060 GOSUB 3000 show the value I 

1070 NEXT J 
1080 NEXT I 
1090 GOSUB 4000 pauseI 

1100 NEXT TYPE 
1110 SYSTEM 

2000 I 

2010 Ti tlesI 

2020 I 

2030 KEY OFF : SCREEN 0: WIDTH 80 CLS 

2040 LOCATE 3,20 : COLOR 1+8 

2050 PRINT "Hex "; 

2060 IF TYPE : 1 THEN PRINT "Addi tion "; 

2070 IF TYPE : 2 THEN PRINT "Multiplication"; 

2080 PRINT " Table"; 

2090 COLOR 7+8 


330 



APPENDIX A: PROGRAM LISTINGS 

2100 LOCATE 5,20 
2110 FOR I : 0 TO 15 
2120 PRINT HEX$ (I); " "; 
2130 NEXT I 
2140 FOR I : 0 TO 15 
2150 LOCATE 7+1,16 
2160 PRINT HEX$(I); 
2170 NEXT I 
2180 COLOR 7 
2190 RETURN 

3000 I 

3010 Show the valueI 

3020 I 

3030 IF TYPE : 1 THEN X : I + J 
3040 IF TYPE : 2 THEN X : I * J 
3050 SHOW$ : HEX$ (X) 
3060 ROW : I + 7 
3070 COL: J * 3 + 18 + (3-LEN(SHOW$)) 
3080 LOCATE ROW, COL 
3090 PRINT SHOW$; 
3100 RETURN 

4000 I 

4010 PauseI 

4020 I 

4030 LOCATE 25,20 : COLOR 1 
4040 PRINT "Press a key to return to continue. .. "; 
4050 COLOR 7 
4060 WHILE INKEY$ : "" : WEND 
4070 RETURN 

ALL-CHAR-Show All PC Characters (Chapter 4) 

1000 Show All Characters, Copr. 1985 Peter NortonI 

10lD I 

1020 GOSUB 2000 do set-up workI 

1030 FOR CHAR. VALUE : 0 TO 255 
1040 GOSUB 3000 show the characterI 

1050 NEXT CHAR. VALUE 
1060 GOSUB 4000 prepare to finishI 

2000 I 

2010 Subroutine to do set-up workI 

2020 I 

331 



INSIDE THE IBM PC 

2030 DEFINT A-Z 
2040 KEY OFF : SCREEN 0: WIDTH 80 : CLS 
2050 LOCATE 3,25 : COLOR 1 
2060 PRINT "The Complete PC Character Set"; 
2070 VIDEO. SEGMENT : 0 
2080 DEF SEG : &H40 : VIDEO. MODE : PEEK (&H49) 
2090 IF VIDEO.MODE : 7 THEN VIDEO. SEGMENT : &HBOOO 
2100 IF VIDEO.MODE ( 4 THEN VIDEO. SEGMENT : &HB800 
2110 IF VIDEO. SEGMENT () 0 THEN RETURN 
2120 LOCATE 12,25 
2130 PRINT "Error: unfamiliar video mode! " 
2140 GOSUB 4000 

3000 I 

3010 Subroutine to show each character I 

3020 I 

3030 ROW: CHAR. VALUE MOD 16 + 5 
3040 COL : (CHAR. VALUE \ 16) * 3 + 16 
3050 SCREEN. OFFSET : ROW * 160 + COL * 2 
3060 DEF SEG : VIDEO. SEGMENT 
3070 POKE SCREEN. OFFSET, CHAR.VALUE 
3080 RETURN 

4000 I 

4010 Finish upI 

4020 I 

4030 LOCATE 24,24 : COLOR 1 
4040 PRINT "Press a key to return to DOS. .. "; 
4050 WHILE INKEY$ : "" : WEND 
4060 SYSTEM 

REF-CHAR-Characters with Reference Numbers (Chapter 4) 

1000 Characters &Reference, Copr. 1985 Peter Norton I 

1010 I 

1020 GOSUB 2000 do set-up workI 

1030 FOR CHAR. VALUE : 0 TO 255 
1040 GOSUB 3000 show the character I 

1090 NEXT CHAR. VALUE 
1100 SYSTEM 

2000 I 

2010 Subroutine to do set-up workI 

2020 I 

2030 DEFINT A-Z 

332 



APPENDIX A: PROGRAM LISTINGS 

2040 KEY OFF : SCREEN 0: WIDTH 80 
2050 VIDEO. SEGMENT : 0 
2060 DEF SEG : &H40 : VIDEO. MODE : PEEK (&H49) 
2070 IF VIDEO.MODE : 7 THEN VIDEO. SEGMENT : &HBOOO 
2080 IF VIDEO.MODE ( 4 THEN VIDEO. SEGMENT : &HB800 
2090 IF VIDEO. SEGMENT () 0 THEN RETURN 
2100 LOCATE 12,25 
2110 PRINT "Error: unfamiliar video mode! " 
2120 GOSUB 4000 : SYSTEM 

3000 ' 
3010 ' Subroutine to show each character 
3020 ' 
3030 IF CHAR. VALUE MOD 128 ) 0 THEN GOTO 3080 
3040 COLOR 7 : CLS : COLOR 1 
3050 LOCATE 3,25 : PRINT "Reference Character Set "; 
3060 IF CHAR. VALUE : 0 THEN PRINT "1st"; ELSE PRINT "2nd"; 
3070 PRINT " Half "; 
3080 COLOR 7 
3090 RELATIVE.CHAR : CHAR.VALUE MOD 128 
3100 ROW: RELATIVE. CHAR MOD 16 
3110 COL: (RELATIVE.CHAR \ 16) * 10 
3120 SCREEN. OFFSET : ROW * 160 + COL * 2 + 814 
3130 DEF SEG : VIDEO. SEGMENT 
3140 POKE SCREEN. OFFSET, CHAR.VALUE 
3150 LOCATE ROW+6,COL+1 
3160 PRINT USING "###"; CHAR. VALUE; 
3170 PRINT " "; 
3180 IF CHAR. VALUE ( 16 THEN PRINT "0 "; 
3190 PRINT HEX$ (CHAR. VALUE) ; 
3200 IF CHAR. VALUE MOD 128 : 127 THEN GOSUB 4000 
3210 RETURN 

4000 ' 
4010 ' Pause 
4020 ' 
4030 LOCATE 24,27 : COLOR 1 
4040 PRINT "Press a key to continue. .. "; 
4050 WHILE INKEY$ : "" : WEND 
4060 RETURN 

BOXES-Box-Drawing Characters (Chapter 4) 

1000 ' Draw Line Boxes, Copr. 1985 Peter Norton 

333 



INSIDE THE IBM PC 

1010 I 

1020 GOSUB 2000 do set-up workI 

1030 FOR EXPANDED : 0 TO 1 
1040 RESTORE 
1050 FOR BOX.TYPE : 1 TO 4 
1060 GOSUB 3000 I get drawing data 
1070 GOSUB 4000 I print title 
1080 IF EXPANDED : 0 THEN GOSUB 5000 I draw box 
1090 IF EXPANDED : 1 THEN GOSUB 6000 I draw box 
1100 NEXT BOX. TYPE 
1110 GOSUB 7000 I pause 
1120 NEXT EXPANDED 
1130 SYSTEM 

2000 I 

2010 I Subroutine to do set-up work 
2020 I 

2030 DEFINT A-Z 
2040 DIM CODES (6,6) 
2050 KEY OFF : SCREEN 0: WIDTH 80 CLS 
2060 RETURN 

3000 I 

3010 I Get the drawing data 
3020 I 

3030 READ TITLE. STRING. $ 
3040 FOR ROW : 1 TO 5 
3050 FOR COL : 1 TO 5 
3060 READ CODES (ROW,COL) 
3070 NEXT COL 
3080 NEXT ROW 
3090 RETURN 

4000 I 

4010 I Display the title 
4020 I 

4030 IF BOX. TYPE: 1 THEN BASE. ROW: 1 BASE.COL: 5 
4040 IF BOX. TYPE: 2 THEN BASE.ROW: 1 BASE.COL:45 
4050 IF BOX. TYPE: 3 THEN BASE. ROW: 13 BASE. COL: 5 
4060 IF BOX. TYPE: 4 THEN BASE. ROW: 13 BASE.COL:45 
4070 LOCATE BASE. ROW, BASE. COL 
4080 COLOR 9 
4090 PRINT TITLE. STRING. $; 
4100 COLOR 7 

334 



APPENDIX A: PROGRAM LISTINGS 

4110 RETURN 

5000 I 

5010 Draw box - solidI 

5020 I 

5030 SHOW.ROW : BASE. ROW 
5040 FOR ROW : 1 TO 5 
5050 TIMES: 1 
5060 IF ROW:2 OR ROW:4 THEN TIMES : 3 
5070 FOR I : 1 TO TIMES 
5080 SHOW. ROW : SHOW.ROW + 1 
5090 LOCATE SHOW. ROW, BASE.COL+4 
5100 PRINT CHR$(CODES(ROW,l)); 
5110 FOR J : 1 TO 9 
5120 PRINT CHR$(CODES(ROW,2)); 
5130 NEXT J 
5140 PRINT CHR$(CODES(ROW,3)); 
5150 FOR J : 1 TO 9 
5160 PRINT CHR$(CODES(ROW,4)); 
5170 NEXT J 
5180 PRINT CHR$(CODES(ROW,5)); 
5190 NEXT I 
5200 NEXT ROW 
5210 RETURN 

6000 I 

6010 Draw box - expandedI 

6020 I 

6030 SHOW.ROW : BASE. ROW 
6040 FOR ROW : 1 TO 5 
6050 FOR TIMES : 1 TO 2 
6060 SHOW. ROW : SHOW. ROW + 1 
6070 LOCATE SHOW. ROW, BASE.COL+3 
6080 IF TIMES : 1 THEN GOSUB 6200 
6090 IF TIMES : 2 THEN GOSUB 6400 
6100 NEXT TIMES 
6110 NEXT ROW 
6120 RETURN 
6200 I 

6210 drawn linesI 

6220 I 

6230 PRINT " "; 

6240 PRINT CHR$(CODES(ROW,l)); 


II.6250 PRINT " , 

335 



INSIDE THE IBM PC 

6260 PRINT CHR$(CODES(ROW,2)); 

6270 PRINT" "; 

6280 PRINT CHR$(CODES(ROW,3)); 

6290 PRINT" "; 

6300 PRINT CHR$(CODES(ROW,4)); 

6310 PRINT" "; 

6320 PRINT CHR$(CODES(ROW,5)); 

6330 RETURN 

6400 ' 

6410 ' display numeric codes 

6420 ' 

6430 FOR COL : 1 TO 5 

6440 X: CODES (ROW,COL) 

6450 IF X : 32 THEN PRINT " "; 

6460 IF X () 32 THEN PRINT USING "### "; X; 

6470 NEXT COL 

6480 RETURN 


7000 ' 

7010 ' Pause 

7020 ' 

7030 LOCATE 25,1 

7040 PRINT "Press a key to continue ... "; 

7050 WHILE INKEY$ : "" : WEND 

7060 RETURN 


8000 ' 

8010 ' Box character data 

8020 ' 

8100 DATA "All Double Line: " 

8110 DATA 201, 205, 203, 205, 187 

8120 DATA 186, 32, 186, 32, 186 

8130 DATA 204, 205, 206, 205, 185 

8140 DATA 186, 32, 186, 32, 186 

8150 DATA 200, 205, 202, 205, 188 

8200 DATA "All Single Line: " 

8210 DATA 218, 196, 194, 196, 191 

8220 DATA 179, 32, 179, 32, 179 

8230 DATA 195, 196, 197, 196, 180 

8240 DATA 179, 32, 179, 32, 179 

8250 DATA 192, 196, 193, 196, 217 

8300 DATA "Double-Vertical: " 

8310 DATA 214, 196, 210, 196, 183 

8320 DATA 186, 32, 186, 32, 186 


336 



APPENDIX A: PROGRAM LISTINGS 

8330 DATA 199, 196, 215, 196, 182 
8340 DATA 186, 32, 186, 32, 186 
8350 DATA 211, 196, 208, 196, 189 
8400 DATA "Double-Horizontal: " 
8410 DATA 213, 205, 209, 205, 184 
8420 DATA 179, 32, 179, 32, 179 
8430 DATA 198, 205, 216, 205, 181 
8440 DATA 179, 32, 179, 32, 179 
8450 DATA 212, 205, 207, 205, 190 

MSG-HUNT-Hunt for ROM-BIOS Messages (Chapter 7) 

1000 ROM-BIOS Message Hunt, Copr. 1985 Peter NortonI 

1010 I 

1020 GOSUB 2000 do set-up workI 

1030 WHILE OFFSET <: 65535 
1040 GOSUB 3000 test for a message I 

1050 OFFSET: OFFSET + 1 
1060 WEND 
1070 GOSUB 5000 prepare to finishI 

2000 I 

2010 Subroutine to do set-up workI 

2020 I 

2030 KEY OFF : SCREEN 0: WIDTH 80 : CLS 
2040 LOCATE 2,1 : COLOR 7 
2050 PRINT "Searching the BIOS for apparent messages" 
2060 PRINT 
2070 OFFSET : 0 
2080 DEF SEG : &HFOOO 
2090 RETURN 

3000 I 

3010 Subroutine to test for a message I 

3020 I 

3030 MESSAGE. $ : "" 

3040 COLOR 7 

3050 PRINT "Searching at FOOO: "; 

3060 PRINT HEX$ (OFFSET); 

3070 LOCATE ,1 

3080 BYTE : PEEK (OFFSET) 

3090 WHILE ((BYTE> :ASC (" ")) AND (BYTE <:ASC ("z ") ) ) 

3100 MESSAGE. $ : MESSAGE. $ + CHR$(BYTE) 
3110 OFFSET: OFFSET + 1 
3120 BYTE: PEEK (OFFSET) 

337 



INSIDE THE IBM PC 

3130 IF LEN (MESSAGE. $) ) 100 THEN RETURN 
3140 WEND 
3150 IF LEN (MESSAGE. $) ) 4 THEN GOTO 4000 
3160 RETURN 

4000 I 

4010 Print the message foundI 

4020 I 

4030 COLOR 7 
4040 PRINT "At FOOO: "; 
4050 PRINT HEX$(OFFSET); 
4060 PRINT " this was found: "; 
4070 COLOR 1 
4080 PRINT MESSAGE. $; 
4090 COLOR 7 
4100 PRINT 
4110 RETURN 

5000 I 

5010 Finish upI 

5020 I 

5030 COLOR 1 
5040 PRINT 
5050 PRINT "Press a key to return to DOS. .. "; 
5060 WHILE INKEY$ : "" : WEND 
5070 SYSTEM 

VID-MODE-Video Mode Demonstration (Chapter 11) 

1000 Experiment with Video Modes, Copr. 1985 Peter Norton I 

1010 I 

1020 following step needed for PCjr I 

1030 ON ERROR GOTO 1130 : CLEAR" ,32768 
1040 GOSUB 2000 do set-up workI 

1050 FOR MODE : 0 TO 10 
1060 GOSUB 3000 I describe mode 
1070 GOSUB 9000 I pause 
1080 GOSUB 5000 I set mode 
1090 GOSUB 7000 I check results 
1100 GOSUB 9000 I pause 
1110 NEXT MODE 
1120 SYSTEM finishI 

1130 RESUME NEXT 

2000 I 

338 



APPENDIX A: PROGRAM LISTINGS 

2010 Subroutine to do set-up workI 

2020 I 

2030 KEY OFF : SCREEN 0: WIDTH 80 : CLS 
2040 LOCATE 2,10 : COLOR 7 
2050 PRINT "Experimenting with Video Modes" 
2060 PRINT 
2070 PRINT "As we begin the video mode is "; 
2080 DEF SEG : 0 
2090 PRINT PEEK (&H449) 
2100 PRINT 
2110 RETURN 

3000 I 

3010 I Describe mode to be set 
3020 I 

3030 PRINT "About to attempt to switch to mode "; MODE; " which is" 


3040 ON MODE+1 GOTO 

4000,4010,4020,4030,4040,4050,4060,4070,4080,4090,4100 

3050 RETURN 

4000 PRINT "Color-graphics, text, 40-column, no-color" 

4005 RETURN 

4010 PRINT "Color-graphics, text, 40-column, with color" 

4015 RETURN 

4020 PRINT "Color-graphics, text, SO-column, no-color" 

4025 RETURN 

4030 PRINT "Color-graphics, text, 80-column, with color" 

4035 RETURN 

4040 PRINT "Color-graphics, graphics, medium resolution, with color" 

4045 RETURN 

4050 PRINT "Color-graphics, graphics, medium resolution, no-color" 

4055 RETURN 

4060 PRINT "Color-graphics, graphics, high resolution, two color" 

4065 RETURN 

4070 PRINT "Standard monochrome text mode" 

4075 RETURN 

4080 PRINT "PCjr, graphics, low resolution, with color" 

4085 RETURN 

4090 PRINT "PCjr, graphics, medium resolution, extra color" 

4095 RETURN 

4100 PRINT "PCjr, graphics, high resolution, extra color" 

4105 RETURN 


5000 I 

5010 I Attempt to set the mode 

339 



INSIDE THE IBM PC 

5020 ' 
5030 ON ERROR GOTO 5060 
5040 ON MODE+1 GOTO 
6000,6010,6020,6030,6040,6050,6060,6070,6080,6090,6100 
5050 RETURN 
5060 RESUME 5050 
6000 SCREEN 0,0 WIDTH 40 
6010 SCREEN 0,1 WIDTH 40 RETURN 
6020 SCREEN 0,0 WIDTH 80 RETURN 
6030 SCREEN 0,1 WIDTH 80 RETURN 
6040 SCREEN 1,0 RETURN 
6050 SCREEN 1,1 RETURN 
6060 SCREEN 2 RETURN 
6070 SCREEN 0 RETURN 
6080 SCREEN 3 RETURN 
6090 SCREEN 5 RETURN 
6100 SCREEN 6 RETURN 

7000 ' 
7010 Check the active modeI 

7020 I 

7030 CURRENT. MODE : PEEK (&H449) 

7040 PRINT "The current mode is "; CURRENT. MODE 

7050 PRINT "Which is"; 

7060 IF MODE () CURRENT. MODE THEN PRINT " NOT"; 

7070 PRINT " the desired mode" 

7080 RETURN 


9000 ' 

9010 ' Pause 

9020 ' 

9030 PRINT 

9040 PRINT "Press a key to continue. .. "; 

9050 WHILE INKEY$ : "" : WEND 

9060 PRINT : PRINT 

9070 RETURN 


COLORTXT-Show All Text Color Combinations (Chapter 12) 

1000 COLOR-TXT Show Text Colors, Copr. 1985 Peter NortonI 

1010 I 

1020 GOSUB 2000 do set-up workI 

1030 FOR ATTRIBUTE : 0 TO 255 
1040 GOSUB 3000 ' show the attribute 
1050 NEXT ATTRIBUTE 

340 



APPENDIX A: PROGRAM LISTINGS 

1060 SYSTEM 

2000 I 

2010 Subroutine to do set-up workI 

2020 I 

2030 DEFINT A-Z 
2040 KEY OFF : SCREEN 0, 1 : WIDTH 80 
2050 VIDEO. SEGMENT : 0 
2060 DEF SEG : &H40 : VIDEO. MODE : PEEK (&H49) 
2070 IF VIDEO. MODE : 7 THEN VIDEO. SEGMENT : &HEOOO 
2080 IF VIDEO. MODE < 4 THEN VIDEO. SEGMENT : &HE800 
2090 IF VIDEO. SEGMENT <) 0 THEN RETURN 
2100 LOCATE 12,25 
2110 PRINT "Error: unfamiliar video mode! " 
2120 GOSUB 4000 : SYSTEM 

3000 I 

3010 Subroutine to show each attributeI 

3020 I 

3030 IF ATTRIBUTE MOD 128 ) 0 THEN GOTO 3080 
3040 COLOR 7 : CLS : COLOR 1 
3050 LOCATE 3,25 : PRINT "Text Color Attribute Set "; 
3060 IF ATTRIBUTE : 0 THEN PRINT "1st"; ELSE PRINT "2nd"; 
3070 PRINT " Half"; 
3080 COLOR 7 
3090 RELATIVE. CHAR : ATTRIBUTE MOD 128 
3100 ROW: RELATIVE. CHAR MOD 16 
3110 COL: (RELATIVE.CHAR \ 16) * 10 
3120 SCREEN. OFFSET : ROW * 160 + COL * 2 + 814 
3130 DEF SEG : VIDEO. SEGMENT 
3140 POKE SCREEN. OFFSET, 88 " letter X 
3150 POKE SCREEN. OFFSET +1, ATTRIBUTE 
3160 LOCATE ROW+6,COL+l 
3170 PRINT USING "###";ATTRIBUTE; 
3180 PRINT " "; 
3190 IF ATTRIBUTE < 16 THEN PRINT "0 "; 
3200 PRINT HEX$(ATTRIBUTE); 
3210 IF ATTRIBUTE MOD 128 : 127 THEN GOSUB 4000 
3220 RETURN 

4000 ' 
4010 PauseI 

4020 ' 

4030 LOCATE 24,27 COLOR 1 


341 



INSIDE THE IBM PC 

4040 PRINT "Press a key to continue. .. "; 
4050 WHILE INKEY$ : "" : WEND 
4060 RETURN 

GRAPHTXT-Graphics Mode Text Characters (Chapter 13) 

1000 ' GRAPH-TXT Graphics Characters, Copr. 1985 Peter Norton 
1010 ' 
1020 GOSUB 2000 'do set-up work 
1030 FOR CHAR. CODE : 0 TO 127 
1040 GOSUB 3000 show the characterI 

1050 NEXT CHAR. CODE 
1060 GOSUB 4000 
1070 SYSTEM 

2000 ' 
2010 ' Subroutine to do set-up work 
2020 ' 
2030 DEFINT A-Z 
2040 KEY OFF : SCREEN 0,1 WIDTH 80 
2050 PAUSE : 0 
2060 VIDEO. SEGMENT : 0 
2070 DEF SEG : &H40 : VIDEO. MODE : PEEK (&H49) 
2080 IF VIDEO.MODE : 7 THEN VIDEO. SEGMENT : &HBOOO 
2090 IF VIDEO. MODE ( 4 THEN VIDEO. SEGMENT : &HB800 
2100 IF VIDEO. SEGMENT (> 0 THEN RETURN 
2110 LOCATE 12,25 
2120 PRINT "Error: unfamiliar video mode! " 
2130 GOSUB 4000 : SYSTEM 

3000 ' 
3010 ' Subroutine to show each character 
3020 ' 
3030 CLS 
3040 LOCATE 2,5 
3050 PRINT "Displaying the Graphics Text Character Drawings" 
3060 LOCATE 5,5 
3070 PRINT "For character code "; CHAR. CODE 
3080 LOCATE 6,5 
3090 PRINT "Character" 
3100 DEF SEG : VIDEO. SEGMENT 
3110 POKE 828, CHAR. CODE 
3120 DEF SEG : &HFOOO 
3130 FOR SCAN. LINE : 0 TO 7 
3140 BIT. CODE: PEEK (&HFA6E + SCAN. LINE + CHAR. CODE * 8) 

342 



APPENDIX A: PROGRAM LISTINGS 

3150 LOCATE 8tSCAN. LINE, 5 
3160 FOR BITS : 1 TO 8 
3170 IF BIT. CODE ( 128 THEN SHOW$ -" "ELSE SHOW$ : "XX" 
3180 PRINT SHOW$; 
3190 IF BIT. CODE ) 127 THEN BIT. CODE : BIT. CODE - 128 
3200 BIT. CODE : BIT. CODE * 2 
3210 NEXT BITS 
3220 NEXT SCAN. LINE 
3230 LOCATE 18,5 
3240 WHILE INKEY$ <) "" : WEND ' flush key buffer 
3250 PRINT "Press any key to stop ... "; 
3260 FOR WAIT.A.SECOND : 1 TO 2 
3270 OLD.TlME$: TIME$ 
3280 WHILE OLD. TIME$ : TlME$ : WEND 
3290 NEXT WAIT.A.SECOND 
3300 IF INKEY$ : "" THEN RETURN 
3310 LOCATE 18,5 
3320 PRINT "Now press any key to CONTINUE ... "; 
3330 WHILE INKEY$ : "" : WEND 
3340 RETURN 

4000 ' 
4010 ' Pause 
4020 ' 
4030 LOCATE 18,5 
4040 PRINT "Press a key to return to DOS. .. "; 
4050 WHILE INKEY$ : "" : WEND 
4060 RETURN 

COLOR-4-Demonstrate Graphics Mode Color (Chapter 13) 

I1000 Color-4: Demonstrate Mode 4, Copr. 1985 Peter Norton 
1010 I 

1020 GOSUB 2000 , do set-up work 
1030 GOSUB 3000 stage 1 I 

1040 GOSUB 4000 , stage 2 
1050 GOSUB 5000 stage 3 I 

I1060 GOSUB 6000 stage 4 
1070 SYSTEM 

2000 I 

2010 ' Subroutine to do set-up work 
2020 ' 
2030 DEFINT A-Z 
2040 KEY OFF : SCREEN 0,1 WIDTH 40 

343 



INSIDE THE IBM PC 

2050 DEF SEG : &H40 : VIDEO. MODE : PEEK (&H49) 
2060 IF VIDEO. MODE : 7 THEN GOTO 2230 
2070 LOCATE 3 
2080 PRINT "Color-4: demonstrate video mode 4" 
2090 PRINT 
2100 PRINT 
2110 PRINT "This program works in four stages: " 
2120 PRINT 
2130 PRINT "stage 1: Show pre-defined palettes" 
2140 PRINT 
2150 PRINT "Stage 2: Show selectable color" 
2160 PRINT 
2170 PRINT "Stage 3: Appear and disappear" 
2180 PRINT 
2190 PRINT "Stage 4: Rattling the palettes" 
2200 PRINT 
2210 GOSUB 7000 
2220 RETURN 
2230 PRINT "This program does not work in monochrome mode" 
2240 GOSUB 7000 
2250 SYSTEM 

3000 I 

3010 Stage 1 - Show pre-defined palettesI 

3020 I 

3030 SCREEN 1,0 
3040 COLOR 1,0 : CLS 
3050 FOR C.NUM : 0 TO 3 
3060 LOCATE 5 + C.NUM * 5, 1 + C.NUM * 5 
3070 PRINT" Color"; C.NUM 
3080 CIRCLE (90+60*C.NUM,45+30*C.NUM) ,40,C.NUM 
3090 PAINT (90+60*C.NUM,45+30*C.NUM) ,C.NUM 
3100 NEXT C. NUM 
3110 FOR TIMES : 1 TO 10 
3120 FOR PAL.NUM : 0 TO 1 
3130 COLOR ,PAL.NUM 
3140 LOCATE 2,10 
3150 PRINT " Showing palette"; PAL. NUM 
3160 NOW$ : TIME$ 
3170 WHILE TIME$ : NOW$ : WEND 
3180 NEXT PAL.NUM 
3190 NEXT TIMES 
3200 LOCATE 22 
3210 GOSUB 7000 

344 



APPENDIX A: PROGRAM LISTINGS 

3220 RETURN 

4000 I 

4010 stage 2 - Show selectable colorI 

4020 I 

4030 SCREEN 1,0 : CLS 
4040 COLOR 0,1 
4050 FOR COLOR.NUM : 0 TO 15 
4060 LOCATE 3+COLOR.NUM,2+COLOR.NUM 
4070 COLOR COLOR.NUM 
4080 PRINT" Selected color "; COLOR. NUM; 
4090 NOW$: TIME$ 
4100 WHILE TIME$ : NOW$ : WEND 
4110 NEXT COLOR.NUM 
4120 COLOR 0 
4130 LOCATE 22 
4140 GOSUB 7000 
4150 RETURN 

5000 I 

5010 Stage 3 - Appear and disappear I 

5020 I 

5030 SCREEN 1,0 
5040 CLS 
5050 COLOR 4,1 
5060 PAINT (1,1),1 
5070 CIRCLE ( 80, 50),20,0 
5080 CIRCLE ( 80,150),20,0 
5090 CIRCLE (240, 50),20,0 
5100 CIRCLE (240,150),20,0 
5110 PAINT (80, 50),0 
5120 PAINT (80,150),0 
5130 PAINT (240, 50),0 
5140 PAINT (240,150),0 
5150 LOCATE 13,8 
5160 PRINT " Appear and Disappear! " 
5170 FOR I : 1 TO 50 
5180 COLOR 3 + I MOD 2 
5190 FOR J : 1 TO 250 NEXT J 
5200 NEXT I 
5210 LOCATE 22 
5220 GOSUB 7000 
5230 RETURN 

345 



INSIDE THE IBM PC 

6000 ' 
6010 ' stage 4 - Rattling the palettes 
6020 ' 
6030 SCREEN 1,0 : CLS 
6040 COLOR 0,0 
6050 CIRCLE (160,100),80,3 
6060 PAINT (160,100),3 
6070 CIRCLE (160,100),60,2 
6080 PAINT (160,100),2 
6090 CIRCLE (160,100),40,1 
6100 PAINT (160,100),1 
6110 CIRCLE (160,100),20,0 
6120 PAINT (160,100),0 
6130 LOCATE 13,17 
6140 PRINT " Boom! "; 
6150 FOR I : 1 TO 100 
6160 COLOR,I MOD 2 
6170 FOR J : 1 TO 50 NEXT J 
6180 NEXT I 
6190 LOCATE 22 
6200 GOSUB 7000 
6210 RETURN 

7000 ' 
7010 'Pause 
7020 ' 
7030 PRINT 
7040 PRINT "Press a key to continue. .. "; 
7050 WHILE INKEY$ : "" : WEND 
7060 RETURN 

KEY-BITS-Display the Keyboard Control Bits (Chapter 14) 

1000 ' KEY-BITS Keyboard control bits, Copr. 1985 Peter Norton 
1010 ' 
1020 GOSUB 2000 'do set-up work 
1030 WHILE CONTINUING 
1040 GOSUB 3000 ' show the data 
1050 WEND 

2000 ' 
2010 ' Subroutine to do set-up work 
2020 ' 
2030 KEY OFF : SCREEN 0,1 : WIDTH 80 
2040 CONTINUING: 1 : LOCATE ,,0 

346 



APPENDIX A: PROGRAM LISTINGS 

2050 DIM MSG.$ (16) 
2060 MSG. $ ( 1) - "Insert state" 
2070 MSG. $ ( 2) - "Caps Lock state" 
2080 MSG. $ ( 3) - "Nurn Lock state" 
2090 MSG. $ ( 4) - "Scroll Lock state" 
2100 MSG.$ ( 5) - "Alt pressed" 
2110 MSG. $ ( 6) - "Ctrl pressed" 
2120 MSG.$ ( 7) - "Left shift pressed" 
2130 MSG. $ ( 8) - "Right shift pressed" 
2140 MSG.$ ( 9) - "Ins pressed" 
2150 MSG.$ (10) - "Caps Lock pressed" 
2160 MSG.$ (11) - "Nurn Lock pressed" 
2170 MSG. $ (12) - "Scroll Lock pressed" 
2180 MSG. $ (13) - "Hold state active" 
2190 MSG. $ (14) - "PCjr click state" 
2200 MSG. $ (15) - "(not used) " 
2210 MSG. $ (16) - "(not used) " 
2220 CLS 
2230 LOCATE 1,5 
2240 PRINT "Displaying the keyboard control bits; press Enter to 
stop" 
2250 LOCATE 3,5 
2260 PRINT "To see the changes in action, press these keys: "; 
2270 LOCATE 4,7 
2280 PRINT "Both shift keys, Ctrl, Alt, "; 
2290 PRINT "CapsLock, NumLock, ScrollLock, Ins"; 
2300 FOR I : 1 TO 16 
2310 FOR J : 1 TO I 
2320 LOCATE 24 - I - I \ 9, 5 + J * 2 + J \ 9 
2330 PRINT CHR$(179); 
2340 NEXT J 
2350 NEXT I 
2360 FOR J : 1 TO 8 
2370 LOCATE 15, 5 + J * 2 
2380 PRINT CHR$(179) 
2390 NEXT J 
2400 RETURN 

3000 I 

3010 Subroutine to show the data stateI 

3020 I 

3030 DEF SEG : 0 
3040 BITS: PEEK (&H417) * 256 + PEEK (&H418) 
3050 FOR BIT : 1 TO 16 

347 



INSIDE THE IBM PC 

3060 STATE$: "0" 
3070 IF BITS ): 32768 THEN STATE$ : "1" BITS: BITS - 32768 
3080 BITS: BITS * 2 

3090 LOCATE 6,5 + BIT * 2 + BIT \ 9 
3100 PRINT STATE$; 
3110 LOCATE 24 - BIT - BIT \ 9, 5 + BIT * 2 + BIT, \ 9 
3120 PRINT CHR$ (192); ") "; MSG. $ (BIT); 
3130 IF STATE$ : "0" THEN PRINT " off"; ELSE PRINT " ON "; 
3140 NEXT BIT 
3150 WHILE CONTINUING 
3160 END.TEST$: INKEY$ 
3170 IF END. TEST$ : CHR$ (13) THEN SYSTEM 
3180 IF END. TEST$ : "" THEN RETURN 
3190 WEND 

348 



B 
Narrative Glossary 

T his narrative glossary is intended to provide a very brief rundown 
of the most common and fundamental terminology used in dis
cussing computers. You can use this narrative glossary in two 
ways-either by reading it all, or by skimming through to find 

the terms you are interested in, and then reading the surrounding 
discussion. 

Numbers and Notation 

Computers work only with binary numbers. These are numbers made 
up of zeros and ones (Os and Is). Binary digits are called bits for short. No 
matter what a computer is doing, it is working with bits. Even if the subject 
matter is alphabetic characters, or decimal arithmetic, the method is binary 
numbers. 

Writing many bits-for example, 01010100111010101O1-is incon
venient, so several shorthand notations have been developed. The most 
common is hexadecimal, or base-16, notation. Hexadecimal digits have 16 
possible values, from 0 through 15; they are written as 0 through 9, fol
lowed by A (representing the value ten), B (for 11), and C through F (with 
values 12 to 15). Hexadecimal digits, also called hex, represent four binary 
digits, or bits, at a time. (Another notation-rarely used with personal 
computers--called octal uses the digits 0 through 7 and represents 3 bits at 
a time.) 

The bits that a computer uses are grouped into larger units. A group of 
eight bits is called a byte. Since hex notation represents four bits at a time, 
it takes two hex digits to represent the value stored in a byte (hex digits are 
sometimes whimsically called nibbles, or nybbles). A byte can be used to 
store 2 to the eighth power (28) of values-256 different values. The values 
can be interpreted as numbers or as characters (such as letters of the 
alphabet). One byte can hold one character, and therefore the terms bytes 
and characters are sometimes used interchangeably. The letters of the 

349 



INSIDE THE IBM PC 

alphabet and the ten digits, together, are called the alphanumerics, 
although the term is sometimes used loosely to mean any text data. 

When bytes are used to hold characters, some code must be used to 
determine which numeric value will represent which character. The most 
common code is the American Standard Code for Information 
Interchange (ASCII). In ASCII, the capital letter "A" has the decimal 
value 65 (in hex notation, 41), "B" is decimal 66, and so forth. ASCII 
includes codes for letters, numbers, punctuation and special control 
codes. ASCII proper has only 128 different codes, and needs only seven 
bits to represent it. Since ASCII characters are almost always stored 
inside 8-bit bytes, there is room for the 128 ASCII codes, and another 
128 codes. The other codes are sometimes called extended ASCII. 
ASCII codes are standardized, but extended ASCII will vary from com
puter to computer. 

Traditionally the principle IBM computers have not used ASCII cod
ing to represent characters. Instead, they use EBCDIC (the Extended 
Binary Coded Decimal Information Code). We encounter EBCDIC on our 
PCs only in special circumstances-for example, in data that has been 
transferred from a large IBM "mainframe" computer, or in a few programs 
that use EBCDIC, such as some versions of IBM's DisplayWrite word 
processing programs. 

ASCII data, or an ASCII file, is data which consists of text-that is, 
letters of the alphabet, punctuation, and so forth-rather than numbers or 
other data. Sometimes the term ASCII is used loosely to mean any text 
data. Properly speaking, an ASCII file not only contains the ASCII codes 
for letters, spaces, punctuation, and so forth, but also contains the standard 
ASCII codes for formatting, such as carriage-return and end-of-file. 

When a byte is used to represent a number, the 256 different byte 
values can be interpreted as either all positive numbers ranging from 0 
through 255, or as positive and negative numbers, ranging from -128 
through 127. These are referred to as unsigned (0 to 255) or signed (-128 
to 127) numbers. 

To handle larger numbers, several bytes are used together as a unit, 
often called a word. On different computers different meanings are given to 
the term "word," but most often it means either two bytes (16-bits) or four 
bytes (32-bits). For personal computers, like the IBM PC, a word usually 
means a two-byte, 16-bit, number. 

A two-byte word has two to the 16th (216) power different possible 
values. These can be used as unsigned numbers, with a range of 0 through 
65,535, or signed numbers, with a range of -32,768 through 32,767. You 
may often encounter these specific numbers when learning about the limits 

350 



APPENDIX B: NARRATIVE GLOSSARY 

of your programs (such as how many records a database program can 
accommodate) . 

Integers, or whole numbers, are not satisfactory for some tasks. 
When fractional numbers are needed, or a very wide range of numbers is 
needed, a different form of computer arithmetic is used, called float
ing-point. Floating-point numbers involve a fractional portion, and an 
exponent portion, similar to the "scientific notation" used in engineering. 
To work with floating-point numbers, computers interpret the bits of a word 
in a special way. Floating-point numbers generally represent approximate, 
inexact values. Often more than one format of floating-point numbers is 
available, offering different degrees of accuracy; common terms for this are 
single-precision and double-precision. Floating-point numbers are some
times called real numbers. 

Due to the nature of computer arithmetic and notation, items are often 
numbered starting from zero for the first element; this is called zero-origin. 
Counting from zero is especially done when figuring a memory location 
relative to some starting point. The starting point can be called many 
things, including base and origin. The relative location is most often 
called an offset. Starting from any base location in memory, the first byte is 
at offset zero, and the next byte is at offset one. 

Computer Fundamentals 

All of the mechanical and electronic parts of a computer system are 
called hardware. The programs a computer uses are called software. 

The idea of a computer starts with the concept of memory or storage. 
A computer's memory consists of many locations, each of which has an 
address, and can store a value. For most computers, including the IBM PC 
family, each location is a byte; for others, each location is a word. 

The addresses of the locations are numbers. The values stored in each 
location can be either discovered (read) or changed (written). When our 
programs read or write a value, they must specify the address of the mem
ory location. 

Some computers organize their memory storage into large modular 
units, often called pages. The IBM PC does not use pages, but for address
ing purposes it does divide its memory into units of 16 bytes, called 
paragraphs (a term that was chosen to suggest a smaller division than a 
page). The memory addressing mechanism for the IBM PC uses two 
parts-a segment value, which points to a paragraph boundary, and a 
relative value, which points to a byte located at some displacement, or 

351 



INSIDE THE IBM PC 

offset, from the segment paragraph. The two values, segment and displace
ment, are needed to specify any complete address. Together, they are 
sometimes called an address vector, or just a vector. 

Amounts of computer memory are frequently referred to in units of 
1,024, because 1,024 is a round number in binary notation, and almost a 
round number in decimal notation. The value 1,024 is known as K, for 
kilo; 64K is 64 units of 1,024, or exactly 65,536. 

When referring to general capacity, K almost always means 1,024 
bytes. However when referring to semiconductor "chips," K means 1,024 
bits. When magazine articles refer to 16K and 64K chips, they mean 16K 
bits (equivalent to 2K bytes) or 64K bits (equivalent to 8K bytes). 

A computer has the ability to perform operations on the values stored 
in its memory. Examples of these operations are arithmetic (addition and 
subtraction) and movement from location to location. A request for the 
computer to perform an operation is called an instruction, or command. 

A series of computer instructions which together perform some work, 
is called a program. Programs are also called code. 

The part of the computer which interprets programs and performs the 
instructions is called the processor. A very small processor, particularly 
one which fits onto a single computer "chip," is called a microprocessor. 
The development of microprocessors made personal computers possible. 
Properly speaking, a computer is a complete working machine which 
includes a processor and other parts; but the processor part of a computer is 
sometimes also called a computer. 

The memory of a computer is used to store both programs and data. 
To the memory there is no difference between programs and data. To the 
processor, however, only those stored values which represent valid instruc
tions can be a program. The processor reads and writes from its memory 
both to carry out a program, and to access the data that the program uses. 

To help it carry out its work, a computer may have a small amount of 
very specialized memory, which does not have addresses. This specialized 
memory is referred to as registers. Registers are used to make arithmetic 
more efficient, or to assist in handling addresses. 

Many modem computers, including the IBM PC, use a push-down 
stack to hold status information. Data is pushed onto and popped off of the 
top of a stack, on a last-in-first-out (or LIFO) basis. 

When a computer uses a common data path-a special set of circuit 
wires-to pass data from one part to another, this path is called a bus. 

The memory and processor are internal parts of a computer. There are 
many external parts, generally called peripheral equipment, or peripher
als. Most peripherals must be connected to a computer through some sup

352 



APPENDIX B: NARRATIVE GLOSSARY 

porting electronic circuitry, called an adapter. For a complex peripheral, 
such as a diskette drive, the adapter will include some special logical 
circuitry called a controller. A controller is often a specialized computer in 
its own right. 

Peripherals may be of many kinds, but they fall into a few simple 
categories. Storage peripherals are used to hold programs and data that 
can be moved into the computer's internal memory. Examples of peripheral 
storage devices are "floppy" diskettes, cassette tape recorders, and 
high-capacity hard disks, or fIXed disks. 

Other peripheral equipment is used to communicate with people. The 
equipment used to communicate between people and computers are usually 
called terminals. A terminal most often consists of a typewriter-style key
board, and a TV-like display screen, called a CRT (for cathode-ray tube). 
A printer of some kind may be used instead of a CRT. A display screen is 
called a monitor, or simply a display. A color display may accept its color 
signal information in a combined form, called composite, or separated into 
its red, green, and blue components, called RGB. 

Large computers may have many terminals, but small personal com
puters usually work with only one terminal, which may be built right into 
the computer system. Having only one terminal is a large part of what 
makes a personal computer personal. 

Other kinds of peripherals, besides storage and terminals, are printers 
and telephone connections. Connections between computers and tele
phones are referred to by the names of some of their parts, such as modems 
and asynchronous adapters. All of these terms, in general use, refer to the 
entire computer-telephone connection, which is generally called communi
cations. The most common format for communications connections fol
lows a design standard known as RS-232. The speed, or data rate, of a 
communications line is measured in baud, which is bits-per-second. It 
takes approximately ten bits per second to transmit one byte per second 
(including the data bits and some overhead). The most common speeds for 
personal computer communications are 300 and 1200 baud, which transmit 
about 30 or 120 characters per second. On personal computers, an RS-232 
connection is also called a serial connection or serial port, since it trans
mits data one bit at a time. A parallel connection can transmit more than 
one bit at a time; the printer adapter on the IBM PC is a parallel connection. 

Computer printers come in many varieties. The most common printer 
for the IBM PC is a dot-matrix printer, which creates its printed results by 
writing a series of dots. Letter-quality printers produce results compar
able to good typewriters. Most letter-quality printers use a print element 
that is either a flat disk, called a daisy-wheel, or one that is shaped like a 

353 



INSIDE THE IBM PC 

large thimble. There are also many other kinds of printer technologies, 
including ink-jet (which squirts ink onto the page), thermal transfer (used 
in the IBM Quietwriter), and laser printers (which print on paper the same 
way photocopiers do). 

An interface is a connection between any two elements in a computer 
system. The term interface is used both for connections between hardware 
parts, and software parts, as well as the human interface. 

Much of the equipment that can be connected to a computer is gener
ally referred to as input/output equipment, or I/O. 

The smallest physical parts that make up a computer may be called 
chips. Chips and other parts are wired together electrically, and held 
mechanically on boards. If there is one principal board, it is called the 
system board, or mother board. Openings for the addition of more boards 
are called expansion slots, into which are placed memory boards, disk 
boards, asynch comm boards (telephone connections), and other expansion 
or peripheral boards. 

A microprocessor interacts with its world through three means: mem
ory accesses, interrupts, and ports. Ports have a port number, or port 
address, and are used for passing data to or from peripheral devices. Inter
rupts are used to get the computer's attention. There are three kinds of 
interrupts (although all three are handled the same way). An external inter
rupt is from the outside world (for example, from a diskette drive). An 
internal interrupt reports some exceptional logical situation (for example, 
division by zero). A software interrupt is a request from a program for 
some service to be performed. A software interrupt is an alternative to 
using a "call" to activate a subroutine. Memory accesses are used to read 
or write from the computer's memory. 

The computer's memory can be of several types. Ordinary memory, 
which can be read or written to, is called RAM (random-access memory). 
Memory that contains permanent data is ROM (read-only memory). Mem
ory can be dedicated to some use; for example, to hold the data that appears 
on the computer's display screen. If a display screen uses the computer's 
memory to hold its information, then it is a memory-mapped display. 

Programs and Programming Languages 

Series of computer instructions are called programs. Parts of pro
grams that are partially self-contained are called subroutines. Subroutines 
may be procedures if they only do some work, or functions, if they also 
result in a value ("open the door" is analogous to a procedure; "tell me 

354 



APPENDIX B: NARRATIVE GLOSSARY 

your name" is analogous to a function). Subroutines are also called sub
programs, and routines. 

Many subroutines use parameters to specify exactly what work is to 
be done; for example, a subroutine that computes a square root needs a 
parameter to specify what number to use. Many subroutines will indicate 
how successful their operation was, through a return code. 

Computers can only execute programs which appear in the detailed 
form known as machine language. However, for the convenience of peo
ple, programs may be represented in other forms. If the details of a machine 
language program are replaced with meaningful symbols (such as the terms 
ADD or MOVE), then the programming language is know as assembly 
language (also called assembler, symbolic assembler, or macro 
assembler). 

Assembler is called a low-level language, because assembly programs 
are written in a form close to machine language. Other forms of program
ming languages are more abstracted, and produce many machine instruc
tions for each command written by the programmer. These are called 
high-level languages; examples are BASIC, Pascal, FORTRAN, Cobol, 
PL/I, C, and Forth. Programs that translate high-level language programs 
into a form usable by the computer, are called compilers; for low-level 
languages, the translators are called assemblers. There is no real difference 
between a compiler and an assembler-they both translate from a human 
programming language to a form of machine language. 

When a person writes a computer program, the form it takes is called 
source code, or source. When the source code is translated (by an assem
bler or compiler), the result is called object code. Object code is nearly 
ready to be used, but it has to undergo a minor transformation, performed 
by a link editor, or linker, to produce a load module, which is a finished, 
ready-to-use program. 

An error in a program is called a bug, and the processing of trying to 
find errors, or trying to fix them, is called debugging. 

There are usually many ways to accomplish an objective with a com
puter program. The scheme, formula, or method that a program uses, is its 
algorithm. For many tasks--even as simple a one as sorting data into 
alphabetic order-there are dramatic differences in the efficiency of differ
ent algorithms, and the search continues for better and better methods. 

A program works with symbolic entities called variables. In effect, a 
variable is the name of a place that can hold data of some type. Specific 
data can be moved into and out of a variable, and the purpose of the 
variable is to provide a mechanism for manipulating data. Variables usually 
have a fixed type, which indicates what sort of data they can accommodate; 

355 



INSIDE THE IBM PC 

for example, integer type, single and double-precision floating-point, and 
string (a collection of text characters). In a program, a file is just a special 
kind of variable, one that can be connected to a diskette file or some 
device, such as the display screen. 

Human Roles 

On a personal computer, one person may do everything that is to be 
done. However, in traditional, large computer systems, there is a division 
of labor, separating human involvement with a computer into various roles. 
Users of personal computers may wonder about the meaning of various job 
titles used. 

The user, or end-user, is the person for whom computer work is 
done. 

The systems analyst, or analyst, determines the details of the work 
that the end-user needs done, and decides on the general strategy of how a 
computer will perform the work. 

The programmer converts the analyst's general strategy into the 
detailed tactics and methods to be used. This usually includes writing (and 
testing) the actual program. However, actually writing and testing the pro
gram is sometimes left to a coder. 

The coder turns the programmer's detailed methods into the program 
instructions. 

The operator runs the program on the computer, to produce the results 
needed by the user. 

Data Organization 

Data is organized and viewed differently, depending upon who or 
what is looking at it. To the computer itself, data consists of just bits and 
bytes. To programmers who manipulate data, there are some traditional 
logical boundaries for data. A complete collection of related data is a file 
(as an example, a mailing list file). One complete unit of the information 
that is in a file, is called a record; in a mailing list file, all of the informa
tion connected with one address would be a record. Finally, within a record 
are fields, the information of one type; for example, the zip code would be 
one field, in an address record, in a mailing list file. 

The records that a program reads or writes are logical records. Logi
cal records are placed in the storage medium's physical records--which 

356 



APPENDIX B: NARRATIVE GLOSSARY 

are the pieces actually read or written to a diskette. A program sees logical 
records, while the operating system performs any translating necessary 
between logical and physical records. On a diskette, a physical record is 
called a sector. 

The terms database and database manager are used, and abused, so 
widely that they have no precise meaning. When data is large, complex, 
and spread across several files, it might be called a database. A database 
manager is a program-usually large and complex in itself-that can con
trol and organize a database. Full-scale database management is far beyond 
the capabilities of a personal computer. 

Disk Vocabulary 

Data on a disk is stored in sectors, which can be individually read or 
written; in the IBM PC family, a standard-sized sector holds 512 bytes. 
Sectors are the disk's physical records-the units that are actually read or 
written. A track is the collection of sectors that fits into one circle on a 
disk; for ordinary diskettes, there are eight or nine sectors in a track; on a 
hard disk or high-capacity diskette, you'll find around 15 sectors per track. 
If there is more than one surface on a disk or diskette drive, then a cylinder 
is all of the tracks that are the same distance from the center. Sectors that 
are in the same cylinder can be read without moving the disk drive's 
read-write mechanism. Moving the read-write heads from one track or cyl
inder to another is called seeking, and it is relatively slow. 

Diskettes may be single-sided or double-sided, depending on whether 
they are recorded on one or both sides. Also, diskettes may be either dou
ble-density, as our normal PC-family diskettes are, or quad-density (sin
gle-density diskettes are an obsolete type). On a double-density diskette there 
are 40 tracks of data; on a quad-density there are 80, giving twice the storage 
capacity; ordinarily double- and quad-density diskettes have the same number 
of sectors recorded on each track. High-capacity diskettes have the same 
number of tracks as quad density, but they go one step further: they pack more 
sectors into each track, 15 instead of the customary 8 or 9. 

A diskette needs a table of contents for its files, called a directory. 
Some means must be used to keep track of used and unused space on a 
diskette; it's done with the FAT (File Allocation Table). The first sector of 
each diskette is dedicated to holding the first part of the operating system's 
start-up program, called the boot-strap loader, or boot record. So, on 
each diskette there are four different uses for sectors-boot record, FAT, 
directory, and data space (where files are stored). 

357 



INSIDE THE IBM PC 

A diskette is flexible, thus it is called a floppy. A hard disk has a rigid 
platter in place of the flexible plastic of a floppy; the rigid shape allows 
more precise data recording, and thus higher density and more capacity. 
The sort of hard disks installed on personal computers today use a collec
tion of methods called Winchester technology, so they are also called 
Winchester disks. Because hard disks are fixed in place and not removable 
(as diskettes are), IBM refers to hard disks as fixed disks. 

There are also cartridge hard disks that can be plugged in and 
removed nearly as easily as a floppy diskette. 

Operating Systems 

An operating system is a program that supervises and controls the 
operation of a computer. Operating systems are complex and consist of 
many parts. 

One element of an operating system is its BIOS, or Basic 
Input-Output System. The BIOS is responsible for handling the details of 
input-output operations, including the task of relating a program's logical 
records to a peripheral device's physical records. At the most detailed level, 
the BIOS contains routines tailored to the specific requirements of each 
peripheral device; these routines are called drivers, or device handlers. 

Usually an operating system is organized into a hierarchy of levels of 
services. At the lowest level, the device handlers insulate the rest of the 
operating system from the details of each device. At the next level, relating 
logical data to physical data is performed. At a higher level basic services 
are provided-such as accepting output data from a program to be placed 
into a file. 

Besides device and data handling, an operating system must supervise 
programs, including loading them, relocating them (adjusting their internal 
addresses to correspond to their exact location in a memory), and recover
ing them from any program errors, through an error handler. 

Another element of an operating system is the command processor, 
which accepts and acts on commands given by the computer's user. Com
mands usually amount to a request for the execution of some service 
program. 

358 



c 
Products and Trademarks 

N 
umerous products are mentioned in this book and most of the 
names of these products are trademarked. Here is a list of the 
products, their producers, the trademark owners, and-for the 
products that aren't widely available-how to contact the 

producers. 

• 	 IBM heads the list, of course. IBM is a registered trademark of 
International Business Machines Corporation. Most of the IBM 
products mentioned in this book are available from any authorized 
dealer of IBM Personal Computers, including IBM's own "IBM 
Product Center" stores, ComputerLand stores, and many, many 
others. IBM also publishes a series of inexpensive PC programs 
called "Personally Developed Software"; these programs are not 
available from dealers. To get a catalog of these programs, or to 
order them, write Personally Developed Software, P.O. Box 3280, 
Wallingford, CT, 06494, or call 1-800-IBM-PCSW. Other IBM 
products whose names are trademarks are IBM Personal Computer, 
Personal Computer AT, PCjr, TopView, Displaywrite, Profes
sional Debug Facility, WordProof, and Quietwriter. 

• 	 Compaq is a registered trademark and Deskpro and Deskpro-286 
are trademarks of Compaq Computer Corporation. 

• 	 Data General/One is a trademark of Data General. 

• 	 Hercules is a trademark of Hercules Computer Technology. 

• 	 Microsoft and XENIX are registered trademarks and Multiplan and 
Word are trademarks of Microsoft Corporation. 

• 	 Periscope (a marvelous debugging tool for PC software) is a trade
mark of Data Base Decisions, 14 Bonnie Lane, Atlanta, GA 
30328. Data Base Decisions also publishes "Peeks and Pokes" 
mentioned in Appendix D. 

359 



INSIDE THE IBM PC 

• 	 CP/M and CP/M-86 are trademarks of Digital Research. 

• 	 UCSD p-System is a trademark of the Regents of the University of 
California. 

• 	 Bernoulli Box-a remarkable cartridge semi-hard disk-is a trade
mark of IOMega Corporation, 1821 West 4000 South, Roy UT 
84067. 

• 	 Trace-86, and Advanced Trace-86, software tracing tools, are prod
ucts of Morgan Computing, 10400 N. Central Expressway, Suite 
210, Dallas, TX 75231. 

• 	 dBASE II, dBASE III, Framework, and Fred (the Framework pro
gramming language) are trademarks of Ashton-Tate. 

• 	 Sidekick, Turbo Pascal, and Superkey are trademarks of Borland 
International. 

• 	 Prokey is a trademark of Rosesoft. 

• 	 Lotus, 1-2-3, and Symphony are trademarks of Lotus Development 
Corporation. 

• 	 Volkswriter is a trademark of Lifetree Software Inc. 

• 	 Multimate is a trademark of Multimate International. 

• 	 Intel is a registered trademark and Above Board a trademark of 
Intel Corporation. 

• 	 PC-Talk III is a product of the Headlands Press, P.O. Box 862, 
Tiburon, CA 94920. 

• 	 WordStar is a trademark of Micropro. 

• 	 Mel Mail and MCI are registered trademarks of MCI. 

• 	 CompuServe is a trademark of CompuServe Incorporated. 

• 	 The Norton Utilities is a trademark of Peter Norton. 

360 



D 

Oth.er Sources of Information 


T
his book is a book of understanding, designed to help you com
prehend the IBM PC family. To avoid burying you in too many 
facts, I've left out many details. Here are some sources you can 
use to find out more about this remarkable family of computers. 

The ultimate source of most information about the PC family is IBM's 
series of Technical Reference manuals. IBM has published separate manu
als for the original PC model, the XT, the PCjr, and the AT. There is also 
unified Technical Reference manual for the PC family's options and adapt
ers. Periodic updates are available for this manual by subscription. There is 
also a series of Technical Reference manuals for DOS and you'll find some 
specialty manuals as well, such as the one for the PC Network. 

For information in greater depth about programming for the PC fam
ily, see The Peter Norton Programmer's Guide to the IBM PC (Microsoft 
Press, 1985). 

For excellent and easy-to-understand coverage of the details of the 
PC's 8088 microprocessor, see The 8086 Primer by Stephen P. Morse 
(Hayden, 1980). For greater depth, tum to The 8086 Book by Russell 
Rector and George Alexy (Osborne/McGraw-Hill, 1980). 

For specific details on the AT's microprocessor, the 80286, go straight 
to the source, a series of manuals by the chip's designer Intel: Introduction 
to the iAPX 286, iAPX 286 Programmer's Reference Manual, iAPX 286 
Hardware Reference Manual, and iAPX 286 Operating Systems Writer's 
Guide, all available from Intel Corporation, Literature Dept, 3065 Bowers 
Ave, Santa Clara, CA 95051. 

For more on the 87s, the PC family's high-speed math coprocessors, 
see the book 8087 Applications and Programming by Richard Startz 
(Brady, 1983). 

For more on assembly language programming see IBM PC & XT 
Assembly Language by Leo J. Scanlon (Brady, 1985) or the really excellent 
book Assembly Language Safari by a very talented PC programmer (and 
admired friend of mine) John Socha (Brady, 1984). 

361 



INSIDE THE IBM PC 

For an inside view of specialty programming see Games, Graphics 
and Sound for the IBM PC by Dorothy Strickland, Dennis Rockwell and 
Kevin Bower (Brady, 1983). 

Other useful sources are Expanding Your IBM PC by Bil. Alvernaz 
(Brady, 1985); A Comprehensive Guide to the IBM Personal Computer by 
George Markowsky (Prentice-Hall, 1984); Interfacing to the IBM Personal 
Computer by Lewis C. Eggebrecht (Howard W Sams, 1983). 

Another nifty and interesting source of information on the PC is Peeks 
and Pokes by Brett Salter, available from Data Base Decisions, 14 Bonnie 
Lane, Atlanta, GA 30328. 

There are many periodicals that provide excellent sources of informa
tion about the PC family. Two magazines dominate in providing general 
coverage of the PC: "PC Magazine" (which features a regular column by 
me) and "PC World." For more technical information, tum to "PC Tech 
Journal". For hot programmer's tips, look to "Dr. Dobb's Journal" or the 
excellent but relatively little known "Programmer's Journal" (P.O. Box 
30160, Eugene, OR, 97403). Finally, there is "PC Week" (which also 
features a column by me), a magazine that serves the needs of PC users in 
large organizations. PC Week is a controlled circulation magazine, avail
able free only to qualified subscribers (for information write to PC Week, 
Ziff Davis, 1 Park Ave, New York, NY, 10016). 

362 



Index 

A 
Absolute address, 103 

Adapters, 63-65 

Addition, 74, 75, 102 

Address, 100, 103 


space, 106-111, 114 

ALL-CHAR program, 41,331-332 

ALT Numeric Trick, 224-225 

American Standard Code for 


Information Intelligence, see 

ASCII 


ANSLSYS driver, 273 

Apage, 195 

Application languages, 302-303 

Applications program, 19,93 

Arithmetic, 13, 14, 29, 74-78, 102 


87 math compressor chip, 78-82 

ASCII 


characters, 42-43 

codes, 202 

control characters, 46, 48-52, 


52-53, 145, 146, 183 

extended, 52-53 

ordinary, 42f, 43-48 


text files, 144-147 

Assembler, 305, 306, 307 

Assembling, 303 

Assembly language, 74, 306 


assembler listings for, 307, 308f 

commands, 83 

program, 294-297 

subroutine, 311-312 


Asynchronous Communications 

Adapter, 233 


AT,3 

bus, 62 

features, 6-7 

keyboard, 220, 221 


system board, 70f 

370, 7-8 


Attribute, 140-141, 159 

archive, 141 

byte, 190 


Audible feedback, 237-238 

Auxiliary processors, See Coprocessor 


B 
Backup program, 159, 326 

"Back-words," 101 

Bank-switched memory, 117-120 

Banking operation, 211-213 

Base Pointer (BP), 85 

BASIC, 297-298 

BASIC Input/Output Services, see 


BIOS, ROM-BIOS 

Batch commands, 278, 281 

Batch files, 143, 281-282 

Baud rate, 235 

Bernoulli Box, 150 

Binary, 14,27-28, 75 

BIOS, 20, 255 


services, 257-264 

working principles and machine 


problems, 255-257 

see also DOS-BIOS, ROM-BIOS 


Bits, 23, 24, 27, 32 

manipulating operation, 214 


Blank-space character, 46 

Blinking, 200 

Boot, boot records, 139, 154-156,252 

Box-drawing characters, 54, 55f 


program, 333-337 

Branch, 76, 77, 78 

Buffers, disk, 272-273 

Bus, 60-62, 69, 83 

Bus connectors, 60, 61 


363 



c 

INSIDE THE IBM PC 

Bus controller chip, 69 

Byte, 24, 25-26 


C language, 297, 298, 3OOf-30lf, 301, 

302,306 


Calculations, 35-36 

Carat notation, 49-50 

Cartridge disks, 132 

Cassette tape interface, 241, 262 

Cassette port, 241 

Cathode ray tube (CRT), 6845, 70 

Central processing unit (CPU), 15 

Character 


attribute, 183-184 

positions, 182-183 

writing, 260 


Character box, 192-193 

Character bytes, 37 

Character set, 41-43, 183 


ASCII, see ASCII characters 

Character string, 100 

Chips 


8087,35 

8088, 73 

80286, 10-11 

80287, 35-36 

key, 67-71 


Click, 237-238 

Clock, 94-95, 263-264 

Clock generator chip, 68 

Closed system, 60 

Clusters, 139-140, 156 

Code, coding, 76, 190-193 

Color, 170,200 


capacities, 206-210 

Color Graphics Adapter (CGA), 63, 


64, 170-171, 172, 173, 174, 175, 

184, 186, 187, 188, 190, 191, 

193-194, 195,203,204,207, 

258,260 


Colorless modes, 174 

COLORTXT program, 340-345 

Column mode, 174 

COM programs, 278, 279, 280 

Command(s) 


categories, 278 


processing, 268-269, 277-281 

COMMAND.COM,318-319 

Command interpreter, 280-281 

Communication, 51, 83, 231, 232 


parameters, 234-235 

serial port, 223-236 


Compaq Computer Corporation, 2-3, 

10,57 


Compaq Plus, 3, 7 

DeskPro, 3, 6, 7, 10, 11 

display adapter, 171-172, 173 

portable 286, 7, 11 


Compilation, 303, 309-310 

Compiler, 305, 306-307, 312 

Conditional branch, 76, 77, 78 

Computer 


fundamentals, glossary, 349-352 

parts of, 15-20 


Configuration file, 272-274 

Constraints, 4-5 

Control characters, 50, 51,147 


see also ASCII, control characters 

Coprocessor(s), 35-36, 68, 78 


87 chip, 78-82 

Copy protection, 161-163 

CP/M, 269-270, 271, 285-286, 289 

CRT, see Cathode ray tube 

CTRL-NUMLOCK, 222, 223-224 

Cursor, 189-190 


graphics, 201-202 


D 
Data, 17,23 


changing of, 324-325 

inspection, 323-324 

organization, glossary, 354-355 


Data display, 325, 325f 

Data files, contents, 143 

Data formats, see File formats 

Data General One (DG-l), 7 

Data interchange file (DIF), 146 

Data space, 160-161 

Date stamp, 113 

dBASE,297 

DEBUG command, 177, 178 

DEBUG program, 316, 317-320 

Decimals, 14, 26, 36, 42, 75 


364 



INDEX 

conversion to hex, 30-31 

Delimiter, 39 

Demodulating, 326 

Destination index (DI), 85 

Device control services, 290 

Direct Memory Access (DMA), 69 

Disk(s), 6, 121 


design scheme, 122-126 

detailed structure, 154-161 

DOS, see DOS disk 

features and partitions, 149-154 

formatting, 136-138 

nonstandard formats and copy 


protection, 161-163 

sizes of parts, 160f, 161-162 

services, 261-262 

storage, 6, 16, 19, 121-126 

varieties, 126-132 


Disk buffers, 272-273 

Disk cartridge, 66 

Disk data display, 324, 324f 

Disk drives, 60 


adapters, 65 

types, 65-66 


Disk map, 322, 322f 

Disk vocabulary, glossary, 355-356 

Diskette(s), 123 


formatting of, 128-130 

jacket, 127 


Diskette drive, 65, 127, 128 

Display adapter, 63-65, 166-167, 


170-177, 185-189, 202-203 

Display memory, 110-111, 165-166, 


185-189, 194,213 

Display pages, 193-196 

Display screen, see Screen 

Division, 75 

DMA, see Direct Memory Access 

DOS, 121, 133, 150,267,277,285, 


310 

ASCII text files, 144-147 

batch processing, 281-282 

command processing, 277-281 

features, 267-269 

history and concepts, 269-272 

install able drivers and flexible 


facilities, 272-274 

programs, 326 


services and philosophy, 285-292 

visual shells, 274-276 


DOS-BIOS, 247, 286 

DOS disk, 133 


file formats, 142-144 

partitions, 151-152 

structure, 138-142 

overview, 133-138 


Drawing characters, see Graphics 

characters 


E 
EGA, see Enhanced Graphics Adapter 

87 math coprocessor chip, 78-82 

Error 


detection coding, 235 

recovery, 253 


Enhanced Color Display, 210 

Enhanced Graphics Adapter (EGA), 


64-65, 172-173, 174, 175-176, 

184-185, 186, 193, 195,205, 

206-207,209-210,214-215 


ESCAPE instruction, 80 

European languages, 53 

EXE programs, 278, 279, 280 

Expanded memory, 118-120 

Exploring and tinkering, 315-316 


working with DEBUG, 317-320 

working with NU, 320-326 


Extended memory, 95, 114-117, 118 

Extension fields, 158 

External commands, 278, 279 


F 
FAT, see File Allocation Table 

FDC, see Floppy Disk Controller 

FDISK program, 152 

FE code, 113 

File Allocation Table (FAT), 139, 140, 


141, 14lf, 154, 156-158 

File attribute, 140-141, 159 

File Control Block (FCB), 289 

File extensions, 143 

File formats, 142-144 

File-name, 158 

File operations, 290 


365 



INSIDE THE IBM PC 

File services, 289 

Fixed disk, see Hard disk 

"Fixed length records," 143 

Flag(s),77 

Flag Register, 85-86 

"Flippies," 127 

Floating point, 34-35, 36-37, 79-80 

Floppy Disk Controller (FDC), PD765, 


70-71 

Floppy diskettes, 6, 65, 126-130 

Foreign characters, 47, 53-54 

Fonnat(s), nonstandard, 161-163 

Fonnatting, 136-138,262 


G 
General-purpose registers, 85, 296 

Gigabyte, 95 

Glossary, 347-356 

Graphics characters, 54-56 

Graphics modes, 169-170, 174, 175, 


199,259 

details, 211-215 

outline, 199-204 

summary, 204-211 


GRAPHTXT program, 203 


H 
Hard disk, 6, 65-66, 130, 131-132, 


150 

Hardware, 57, 190 


breakdown, 57-63 

interrupts, 89, 90, 252, 253-254 

key chips, 67-71 

multi-tasking, 11 

options and adapters, 63-67 

tricks, 240-245 


Herc card, see Hercules Graphics 

Adapter 


Hercules Graphics Adapter, 64, 172, 

173, 176, 186, 205, 210-211, 213 


Hex, see Hexadecimal 

Hexadecimal, 27-31 

HEXTABLE program, 330-331 

Hidden attributes, 141 

Hidden files, 159 

High-level languages, 296, 297 


High-resolution mode, 174, 207 

Human roles, glossary, 354 


I 

110, see Input/Output 

IBM 


personal computer, see PC 

Quietwriter, 43 


ID code, 113-114 

Individual file map, 322-323 

Infonnation 


services, 263 

sources, 359-360 

see also Data 


Initialization, 232, 249, 250-251 

Initiation, see Modeling 

Input/Output (110), 15, 16 


devices, 18-19, 288 

operations, 288-289 

services, 288 

see also BIOS, ROM-BIOS 


Installable device drivers, 273-274 

Instruction Pointer, 85 

Integers, 32, 33 

Intel 


8086 family, 9, 11, 73 

8088 microprocessor, 8, 9, 10 

8016 microprocessor, 10 

80188 microprocessor, 10 


Interface, 19 

Internal commands, 278 

Interpreting, 303-306 

Interrupt(s), 93-94, 263-264, 268, 287 

Interrupt handler, 90-93 

Interrupt vector tables, 106-107, 


109-110 

Interruptions, 69, 70 


J 
Joysticks, 241-242, 243 


K 
KEY-BITS program, 223f, 227, 


345-346 

Key chips, 67-71 


366 



L 

Keyboard, 57, 217, 268, 288 

basic operation, 217-226 

services, 262-263 

tricks, 226-229 


Keyboard interrupt handler, 218, 220, 

221-222 


Kilobyte (K), 26-27 


Libraries, 309 

Light pens, 242-243, 259 

Link editing, 310 

Linking, 309 

Load-time operation, 279 

Logic operations, 76 

Logical formatting, 136, 137, 138 

"Long persistence" phosphors, 243 

Looping, 77, 304 

Lotus 1-2-3,37, 177 


M 

Machine language, 74, 293, 294, 307 

Magnetic recording, 121-123 

, 'Mainstreaming, " 3 

Math, see Arithmetic 

MAZE program, x-xii, 327-330 

Memory, 15, 16, 17-18,63,82,90 


bank-switched and expanded, 

117-120 


display, 110-111, 165-166, 185-189, 

194, 213 


extended, 10-11,95, 114-117 

low, 177 

organization, 105-114 

overview, 99-101 

segmented addresses, 102-104 

services, 290-291 

virtual, 10,95,114-117 


Memory models, 104 

Microcomputer, 8 

Microdiskette, 130, l3lf 

microprocessor, 15, 17-18, 68, 73 


87 chips, 78-82 

functions performed, 73-78 

interrupts, 87-90 


INDEX 

memory, ports, registers and stacks, 

82-87 


286 microprocessor chip, 94-98 

See also Intel 


Microsoft's Window, 274 

MODE command, 178 

Modeling, 13-15 

Modulating, 236 

Monochrome Adapter, 63-64, 170, 


171, 172, 173, 174, 176, 185, 

186, 187, 190, 191, 193, 

195-196, 205, 210, 258, 260 


Monochrome Display, 176, 243 

Monochrome graphics mode, 176-177, 


210 

Monochrome text mode, 175 

Mother board, 59 

Mouse, 243-245 

MOUSE.SYS driver, 273 

MSG-HUNT program, 112-113, 


337-338 

Multi-function boards, 67 

Multi-tasking, 95-96 

Multiplication, 75 


N 
Night Mission Pinball program, 227 

Norton Utilities programs, 302 

Notation glossary, 347-349 

NU program, 316, 320-326 

Nulls, 42f, 43f-44f, 46, 47, 48 

Numbers, 13, 14, 26, 75 


double precision, 33, 35 

extending range of, 34-37 

glossary, 347-349 

negative, 32-34 

single precision, 33, 35 

standard, 31-34 


Numeric coprocessor, 35-36, 68, 78, 

79 


Numeric Data Processor (NDP), see 

Numeric coprocessor 


o 
Object code, 306, 307, 310, 311 

Object library, 311 


367 



INSIDE THE IBM PC 

Operating systems, 267 

glossary, 356 


Option(s), 62 

Option boards, 60, 63-67 

Option slots, see Bus connectors 

Overscan, 168 


p 

Page fault, 116 

Page frame, 118 

Paragraph boundaries, 103 

Parallel ports, 66, 231-232, 234, 263 

Parity, 235 

Pascal, 297, 298-3OOf, 301, 302, 305, 


306 

PAUSE key, 51 

PC 

clones, 1,7,9 

family tree, 5f 

features, 6 

historical perspective, 1-4 

system board, 69f 

3270,7 

understanding of, viii-ix 

variations, 7 


PCjr, 3, 5 

bus, 62 

display adapter, 186 

features, 6 

graphics mode, 209, 213-214 

keyboard, 220, 221 

special sounds, 240 


PD765 Floppy Disk Controller (FDC), 

70-71 


Peripheral devices, 16 

Picture elements, see Pixels 

Pixels, 169, 199-200, 205 

Plotters, 236 

Pointing devices, 243-245 

Port(s), 82-84, 218, 232, 248 

Portables, 7, 57 

POST routine, 319 

Power supply, 58, 59, 60 

PPI, see Programmable Peripheral 


Interface 

Practical convention, 200 

Print-screen service, 260-261 


Printer(s), 43, 231, 236, 288 

codes, 51-52 

parallel port, 231-232 

services, 288 


"Private paging," 196 

Processor, 15 


see also Microprocessor 

Products and trademarks, 357-359 

Professional Graphics Adapter, 173, 


204 

Program(s), 17-18, 19 


control of, 268 

glossary, 352-354 

listings, 327-347 

putting together of, 309-312 

sample, ix-x 

translating of, 303-308f 


Program counter, 85 

Programmable Peripheral Interface 


(PPI),70 

Programming languages, 293-303 


glossary, 352-354 

Prokey, 229, 291 

Protected mode, 94, 114-115 

Protection, 95 

Punctuation character, 46 


Q 

Quad-density diskettes, 123 

Quotes, 46-47 


R 

Random Access Memory (RAM), 108, 

123 


Random files, 143-144 

Raster scan, 167 

Read Only Memory (ROM), 20 

Read-Only Memory Basic Input/Output 


System, see ROM-BIOS 

Real mode, 94, 114 

Re-entrant coding, 256 

REF CHAR program, 42, 332-333 

Registers, 84-86 

Repeats, 76 

Resolution., 169 

RESTORE program, 326 


368 



INDEX 

Reverse-quote, 47 

ROB monitor, 171 

ROM (Read Only Memory), 20 

ROM-BIOS, 20, 204, 247, 255, 285, 


288, 319-320 

adding to, 251-252 

functional features, 249-254 

ideas behind, 247-249 

keyboard, 221-226, 228, 229 

keyboard interrupt handler, 218, 


220,221-222 

messages, hunt for, program, 


337-338 

program, 111-113, 177,202,203 

services, 188-189 


ROM extension area, 111 

Root directory, 139, 140, 158 

RS-232 communications, 235 


s 
Scan codes, 219f 

Scientific character group, 56 

Screen, 57, 165 


border area, 167-168 

functional features, 165-168 

modes, see Video modes 

see also Video 


SCREEN command, 178 

Scrolling, 259 

Sectors, 124, 124f, 125-126, 133-135 

Segment registers, 85, 103-104 

Segmented addresses, 102-104 

Separate compilation, 309-310 

Serial interface, see Serial port 

Serial port, 66, 223-236, 262, 288 

Service-handling routine, 252-253, 254 

Shifted addition, 102 

Sidekick program, 42, 227-228, 229, 


291 

Sign flag, 77 

Signed numbers, 75 

64K limits, 104-105 

Slack sectors, 161 

Software, 89, 90, 218 

Sound, 236-240 

Source code, 306, 307 

Source Index (SI), 85 


Spaces, 42f, 43f-44f, 46, 47-48 

Spreadsheet, 79, 144, 303 

Stack(s), 84, 86-87 

Stack segment register, 85 

Starting cluster number, 140 

Stress relief notches, 127 

String, 37-39 

Subdirectories, 142, 159-160 

Subroutines, 309-312 

Subtraction, 74, 75 

Swapping in, 117 

Swapping out, 116-117 

System attributes, 141 

System board, 59 

System files, 159 

System formatted disk, 139 

System(s) programs, 19, 20, 93 

System unit, 57, 58, 59, 59f 


T 
Telephones, 236 

Temporary real, 79-80 

Test(s), 76 

Test branch, 77 

Text, writing of, 202-204 

Text characters, 259 

Text color combinations, program, 


340-345 

Text data, 37, 51 

Text files, ASCn, 144-147 

Text mode, 169, 170, 175, 181, 200 


details, 185-193 

outline, 181-185 

tricks, 193-197 


Timer chip, 68, 239-240 

TopView, 274, 215 

Track, 123-126, 133 

Trademarks, 357-359 

Transcendental operations, 80 

Translating circuit, 66-67 

Translating programs, 303-308f 

Transportables, see Portables 

Turbo Pascal, 306, 310 


u 
UCSD p-System, 270 


369 



v 

INSIDE THE IBM PC 

UNIX, 271, 286 

User memory area, 107-108 


VDISK, 115, 116 

VDISK.SYS driver, 273 

Verification, 261-262 

VID-MODE program, 338-340 

Video 


graphics mode, see Graphics mode 

services, 258, 259-260 

text mode, see Text mode 

see also Screen 


Video adapter, see Display adapter 

Video controller, 63 

Video modes, 165, 167, 177-178 


demonstration, program, 338-340 

overview, 168-177 


Virtual memory, 10, 95, 114-117 

Visual shells, 274-276 

Vpage, 195 


w 
Window(s), 118 


scrolling, 259 

Word(s),26 


size, 26 

storage, 100-10 1 


Word processing programs, 37 

Write-protect notch, 127 


x 

XENIX, 271, 286 

XT model, 3, 6, 62 


370, 7-8 


z 
Zero flag, 77 


370 



______________________________________________________ _ 

Related Resources Shelf 

Creating Utilities with Assembly Language: 10 Best for the IBM PC & XT 
Stephen Holzner 

With assembly language as its foundation, this book explores the most popular utility 
programs for the IBM PC and XT. For the more advanced user, this book unleashes the 
power of utilities on the PC. Utilities created and discussed include PCALC, ONE KEY, 
CLOCK, FONT, DBUG SCAN, DSKWATCH and UNDELETE. The author is a regular 
contributor to PC Magazine. 
D 1985/352 pp/paper/0-89303-584-X/$19.95 

Artificial Intelligence for Microcomputers: A Guide for Business Decision Makers 
Mickey Williamson 

This book discusses artificial intelligence from an introductory point of view and takes a 
detailed look at expert systems and how they can be used as a business decision-making 
tool. Includes step-by-step instructions to create your own expert system and covers applica
tions to cost/benefit analysis, personnel evaluations and software benchtesting. 
D 19851224 pp/paper/0-89303-483-5/$17. 95 

Assembly Language Programming with the IBM PC AT Leo J. Scanlon 
Author of Brady's best-selling IBM PC & XT ASSEMBLY LANGUAGE: A GUIDE 

FOR PROGRAMMERS (recently revised and enlarged), Leo Scanlon is the assembly lan
guage authority. This new book on the AT is designed for beginning and experienced 
programmers, and includes step-by-step instructions for using the IBM Macro Assembler. 
Also included is a library of 30 useful macros, a full description of the 80286 microproces
sor, and advanced topics like music and sound. 
D 1985/464 pp/paper/0-89303-484-3/$21.95 

Programmer's Problem Solver for the IBM PC, XT and AT Robert Jourdain 
The best complete reference guide to the facts, numbers and procedures needed to control 

hardware control over the PC family of microcomputers. Designed for the practicing 
programmer, this exceptional volume contains detail of direct programming of peripheral 
chips, operating system interrupts and their controllers, timers, calendar chips, and all hard
ware components in a typical advanced configuration. Sections are also included on disk 
layout, memory management, and printer control. 
D 1985/480 pp/paper/0-89303-877 -7/$22. 95 

To order, simply clip or photocopy this entire page, check your order selection, and com
plete the coupon below. Enclose a check or money order for the stated amount or include 
credit card information. Please add $2.00 per book for postage & handling, plus local sales 
tax. 

Mail To: Brady Computer Books, Simon&Schuster, Box 500, Englewood Cliffs, NJ 
07632. 

You may also order from Brady directly by calling 800-624-0023 (800-624-0024 if in New 
Jersey). 

Name ___________________________________________________________ 

Ad~ess 

City/State/Zip _____________________________________________________ 

Charge my credit card instead: D MasterCard DVisa 

Credit Card Account # ________________________ Expiration Date-----1__ 

Signature ______________________________________________________ 
Dept. Y D5831-88 
Prices subject to change without notice. 

http:pp/paper/0-89303-484-3/$21.95
http:pp/paper/0-89303-584-X/$19.95




DISKETTE USER'S MANUAL 


User's Manual 

for 

the Diskette Accompanying 

Inside the IBM PC 

Revised and Enlarged 

by 

Peter Norton 

Table of Contents 

Introduction 
What's Here ........................................................ 375 

How to Use the Diskette ................................... 375 

More Information .............................................. 376 


The Four Special Programs 

CI-Country Information ................................... 379 

DI-Disk Information ......................................... 381 

LD-List Directories ............................................ 384 

SI-System Information ..................................... 385 


373 



INSIDE THE IBM PC 


(C) Copyright Peter Norton 1985, 1986 

All rights reserved. 

No part of this publication may be reproduced, transmitted, 
transcribed, stored on a retrieval system, or translated into any 
language or computer language, in any form or by any means, 
electronic, mechanical, magnetic, optical, chemical, manual, or 
otherwise, without the prior written consent of Peter Norton. 

Mr. Norton makes no representations or warranties with respect 
to the contents hereof and specifically disclaims any implied 
warranties of merchantability or fitness for any particular purpose. 
Further, Mr. Norton reserves the right to revise this publication and 
to make changes from time to time in the content hereof without 
obligation of Mr. Norton to notify any person of such revision or 
changes. 

The Norton Utilities is a trademark of Peter Norton. 

Program license agreement: 
The programs contained in this package are licensed for use on 

a single machine. The programs may be copied, but solely for the 
purpose of backup in support of their use on a single machine. 

374 



DISKETTE USER'S MANUAL 


What's Here 

This Diskette contains the program source code listings 
appearing in Inside the IBM PC Revised and Enlarged, plus several 
ready-to-use programs that will assist you in learning about and 
understanding your computer. 

The files on this diskette are divided into four groups: 
1. two help-files that describe and help you use the programs 
2. the 	11 lengthier programs that appear in Appendix A of the 

book 
3. 	 17 shorter program fragments that appear in the body of 

the book 
4. 	 four special programs to help you learn more about your 

computer, including two from the Norton Utilities set and 
two specially prepared for this set. 

You'll find a more complete description of each item in the 
More Information section of this manual. 

Note: This diskette is intended primarily to make it easier to 
use and explore the book's program listings. It is entirely unlike the 
diskette set that accompanied the first edition of Inside the IBM PC. 
The previous set, called the "Access Tools," provided interface 
subroutines for use by programmers. That set has been made 
obsolete by subsequent developments for the IBM PC family. 

How to Use the Diskette 

To use this diskette, you must be familiar with the IBM 
Personal Computer and its DOS operating system, and you must 
know how to run DOS programs and BASIC programs. 

This program set will work on any model of the IBM Personal 
Computer family, including all fully PC-compatible computers. The 
set will work with the most minimal computer equipment: a single 
diskette drive, 64K bytes of memory, any standard display screen, 
and any version of DOS. 

Copy these program files to other disks of your own and 
safeguard the original diskette. In order to use the BASIC programs 
in this set you will need to combine them with the interpreter 
program for BASIC, named BASICA. COM. The four ready-to-use 
programs, named CI. COM, DI. COM, LD. COM, and SI. COM, do 
not require any other program to be used. You may find that the 
LD program is handy to you in your everyday use of your 
computer, particularly if you have a hard disk in your computer. 
recommend that you place a copy of LD. COM wherever you keep 

I 

375 



INSIDE THE IBM PC 

your miscellaneous programs (such as the DOS commands CHKDSK 
and FORMAT). 

More Information 

Here is a complete list of the files on the diskette; they are 
described after the list: 

READ.ME 

DEMO.BAT 


MAZE.BAS 
HEXTABLE.BAS 
ALL·CHAR.BAS 
REF·CHAR.BAS 
BOXES.BAS 
MSG-HUNT.BAS 
VID-MODE.BAS 
COLORTXT.BAS 
GRAPHTXT.BAS 
COLOR-4.BAS 
KEY ·BITS.BAS 

CH-03-01.BAS 

CH-03-02.BAS 

CH-06-01.BAS 

CH-06-02.BAS 

CH-07-01.BAS 

CH-07·02.BAS 

CH-l1-01.BAS 

CH-11·02.BAS 

CH-13·01.BAS 

CH-14-01.BAS 

CH·14-02.BAS 

CH-15-01.BAS 

CH-15-02.BAS 

CH-15-03.BAS 

CH-21-01.ASM 

CH-21-02.PAS 

CH-21-03.C 


SI.COM 

LD.COM 

DI.COM 

CI.COM 


The first two files on the disk, READ. ME and DEMO. BAT, are 
intended simply to help you use these programs. READ. ME 
contains a short description of the files. DEMO. BAT is a batch file 
that will execute, in sequence, the 11 programs found in Appendix 
A of the book. If you copy this batch file onto a diskette together 
with the BASIC interpreter, BASICA. COM, and the 11 program 

376 



DISKETTE USER'S MANUAL 


files, you will be able to run and experiment with these programs in 
a convenient way. 

The main part of this diskette consists of the 11 program files 
which appear in appendix A of the book. These programs 
demonstrate various aspects of the IBM PC family'S features and 
capabilities. Here is a summary of each of these programs. 

MAZE. BAS (introduction) This program creates a hunting maze 
that randomly searches out a path from "START" to 
"FINISH." It's a whimsical demonstration of the path we 
take in learning about our computers, and you can use it as 
your own way of showing others the circuitous route that we 
sometimes have to take to accomplish our goals. 

HEXTABLE. BAS (chapter 3) This program creates two tables 
of hexadecimal arithmetic, one for addition and one for 
multiplication. 

ALL-CHAR. BAS (chapter 4) This program shows the complete 
PC character set, together in one screen image. 

REF-CHAR. BAS (chapter 4) This program also shows the 
complete PC character set, combined with the decimal and 
hexadecimal codes for each character. 

BOXES. BAS (chapter 4) This program demonstrates the box
drawing characters that are part of the PC's character set. 
First it shows what the boxes look like, then it gives the 
decimal character codes for each character used. 

MSG-HUNT. BAS (chapter 7) This program searches through 
your computer's ROM-BIOS memory for messages that may 
be interesting. This program takes some time to run, so be 
patient if you want to see it all. If you wish to interrupt the 
operation of this program, you can do so by pressing the Ctrl 
Break key combination, and then entering the command 
SYSTEM to finish the program. 

VID-MODE. BAS (chapter 11) This program demonstrates all 
the PC's video display modes, as much as the BASIC language 
permits. It informs you of which modes can be used on your 
computer, and lets you inspect the appearance of each one. 

COLORTXT. BAS (chapter 12) This program shows the 
complete set of color (and monochrome) display attributes that 
can be used with text characters. 

GRAPHTXT. BAS (chapter 13) This program shows, in enlarged 
form, the drawings of the PC's text characters that are used in 
the graphics modes. This program does not require the 

377 



INSIDE THE IBM PC 


graphics mode to work, so it can be used on every PC, 
including those without a graphics display adapter. 

COLOR-4. BAS (chapter 13) This program demonstrates the 
colors and operation of the PC's four-color medium resolution 
graphics mode. Using it requires the color-graphics display 
adapter (or its equivalent) in order to work. 

KEY-BITS. BAS (chapter 14) This program displays and 
demonstrates the bits that control and reflect the operation of 
the PC's keyboard, showing, for example, whether either of 
the shift keys are pressed. 

The next 17 files contain the source code for the short programs 
and program fragments that appear in the body of the book. The 
files are given names to indicate their location in the book. For 
example, CH-03-02. BAS is the second listing from Chapter 3. In 
some cases these programs can be usefully employed just as they 
are; in other cases they simply illustrate how some programming 
might be done. The last three examples, CH- 21- 01. ASM, 
CH-21-02. PAS, and CH-21-03. C, appear simply to illustrate 
the form and style of the three main programming languages used 
for the PC: assembly language, Pascal, and C. 

The final group of four files contain four ready-to-use 
programs, two from the Norton Utilities set and two specially 
prepared for this diskette. All four programs can be used to explore 
and discover more information about your computer. You will find 
each one discussed in detail in the following pages. 

378 



DISKETTE USER'S MANUAL 


CI - Country Information 

Purpose 

Lists the country-dependent information that DOS provides to 
guide our programs. 

Format 

CI 

Remarks 

DOS provides a way for our programs to automatically adjust to 

the various conventions of different countries. This program 

displays the information that is available. This country-dependent 

information is provided in two levels of service. For DOS-2 

versions and later, a program may request that DOS provide it with 

the current country-dependent information. For DOS-3 versions 

and later, programs can also set the country code among the codes 

known to the particular version of DOS. 


This CI program displays the current country information and 
also shows all the codes that your version of DOS supports. Here is 
an example of how the CI program displays this country-dependent 
information; each item will be explained below: 

Code 0/1 Money 12,345 1.0 mId h:m $11 $1.00 12/24 A,B Rsrvd 
1 USA $ $1 2 12 


31 Eur f $1 2 24 

32 Eur F / 1 $ 2 24 

33 Eur F / 1$ 2 24 

39 Eur Lit. / 1$ 0 24 

41 Eur Fr 1$ 2 24 

44 Eur £ $1 2 24 

45 Eur OKR / 1$ 2 24 

46 Swe SEK 1$ 2 24 

47 Eur KR / 1$ 2 24 

49 Eur OM $1 2 24 

61 Eur $ $1 2 24 


The first field, Code, shows the identifying country code that 
is used to identify each country. Code 1 is used for the United 
States. 

379 



INSIDE THE IBM PC 


The second field, D/T, indicates which format should be used 
to display the date. There are three standard formats: The USA 
standard shows the date as month/day/year; the European standard 
shows the date as day/month/year; the Japanese standard shows it 
as year:month:day. (Close study of the table above will show the 
Japanese standard used for Sweden.) 

The third field, Money, shows the currency symbol used. 
Where possible, a currency symbol from the PC's special character 
set is used, such as the British pound, £, and the French franc, f. 
For many countries the currency symbol is represented by 
conventional letters of the alphabet, such as the Italian lira, Lit., 
or the Swedish kronor, SEK. 

The fourth and fifth fields show how numbers are displayed. 
Under the heading 12, 345 is the punctuation used to separate 
thousands. Under the heading 1.0 is the punctuation used as a 
decimal point. 

The sixth and seventh fields show how the date and time is 
punctuated. Under the heading mid is the symbol used for dates. 
Under h: m is the symbol used for time. 

The next two fields are used for currency. Under the heading 
$1? is shown whether the currency symbol appears before or after 
the amount. Under the heading $1. 00 is the number of decimal 
places used with the currency. In the example shown, all have two 
decimal places except for the Italian lira. 

The next field, 12/24, shows whether the time should be 
shown in 12- or 24-hour notation. 

The last active field, A, B, shows the punctuation used to 
separate items in a list. 

In addition to the information shown here, ten bytes are 
reserved for further fields that can be added in the future. If your 
DOS reports any information in this area, it will be shown under the 
heading Rsrvd. 

380 



DISKETTE USER'S MANUAL 


DI - Disk Information 

Purpose 

Lists and compares the information available about a disk from 
two sources - the DOS drive table and the disk's own boot record. 

Format 

DI [d:] 

Remarks 

Programs like my Norton Utilities, that need to work intimately 
with disks, need to find out key technical information about the 
disk formats that they work with. There are two sources of this 
information. One is provided by DOS in the form of a drive table 
entry that describes the disk. The other is embedded in the disk's 
boot record for all disk formats except those introduced with 
versions of DOS before version 2.00. This DI program displays the 
complete information available from both sources for you to study. 
Where the same information is available from both sources, it is 
shown for comparison. The following is an example taken from a 
PC AT's 20-megabyte disk. Each item is discussed below. 

Information from DOS Information from the boot record 

system id ' IBM 3.1' 
format id (hex) F8 

2 drive number 
2 driver id number 

512 sector size in bytes 512 
4 sectors per cluster 4 
2 reserved sectors 1 
2 number of FATs 2 

512 root directory entries 512 
41 sectors per FAT 41 

10,406 number of clusters 
number of sectors 41,735 

1 offset to FAT 
83 offset to directory 

115 offset to data 
sectors per track 17 

sides 4 
special reserved sectors 17 

381 



INSIDE THE IBM PC 


The system id is an 8-byte description of either the disk 
format or of the DOS version that created the disk format. It only 
appears in the disk's boot record and, to the best of my knowledge, 
is not used for anything. 

The format id is a standard DOS identifier of the disk 
format. The standard location for this id byte is the first byte of 
the disk's FAT (File Allocation Table), but it is also duplicated here 
in the boot record. This format id can be used to identify the disk 
format, but not every DOS disk format has a unique id byte; some 
are used for more than one format. 

The drive number identifies the disk drive - ° indicates 
drive A, 1 drive B, and 2, in the example here, drive C. 

The driver number identifies which software driver 
supports the disk drive. The driver number is an internal item to 
DOS and has nothing directly to do with the disk or the disk's 
format. 

The sector size in bytes is one of several entries that describe 
the absolute dimensions of the disk (as opposed to the logical 
structure that DOS adds to a disk). The other fields that describe 
the disk's absolute dimensions are the sectors per track and 
the number of sides, that appear toward the end of the list. 

The sectors per cluster indicates the size of the units 
of space that DOS allocates to our files. 

The number of reserved sectors is an item of uncertain use. 
You will often find, as in the example here, a discrepancy between 
the two sources of this information. 

The number of FATs indicates how many copies of the File 
Allocation Table are recorded on the disk. Two is the customary 
number for physical disks; virtual disks (RAM memory disks) 
commonly have just one. 

The root directory entries indicates the capacity of 
the disk's standard root directory. The physical size of the root 
directory can be calculated from this, combined with the sector size 
in bytes and the 32~byte size of the directory entries. 

The sectors per FAT indicates the physical size of the 
File Allocation Table. 

The number of clusters indicates how many units of 
disk space there are for DOS to allocate to our files. If there are 
more than 4080, the disk must have a 16-bit FAT format; under 
4080, a 12-bit FAT is used. 

The number of sectors indicates the total number of disk 
sectors available for DOS to use, including both the system and data 
portions of the disk. The number of tracks or cylinders given to 

382 



DISKETTE USER'S MANUAL 


this DOS disk can be calculated from this number, combined with 
the sectors per track and the number of sides. This calculation may 
not yield an integral number of cylinders, as you will find in the 
example above. This is normally due to the portion of a hard disk 
that is set aside for a "master boot record," which may be a single 
sector or an entire track of sectors. Note that while we can 
calculate the number of tracks or cylinders that the DOS portion of 
a disk occupies, we do not have the information necessary to 
determine the total absolute number of cylinders on a hard disk. 

Three offset fields, offset to FAT, offset to 
directory, and offset to data, indicate the number of 
sectors from the beginning of the DOS portion of a disk to each of 
these three key parts of the disk. Our programs can use this 
information to reliably find the disk's FAT and its root directory. 

Finally, the special reserved sectors normally 
indicates an offset to the beginning of the DOS portion of a disk. 
Like the reserved sectors field, the use of this field is somewhat 
uncertain. In this example it indicates the number of sectors 
removed from the disk partition for the disk's master boot record. 

383 



INSIDE THE IBM PC 


LD - List Directories 

Purpose 

Lists all the directories on your disks. 

Format 

LD [d: ... ] [/A] £IP] [/W] [IT] 
You may specify specific disk drives to search with the d: 

parameters, or use the I A switch to search all drives. 
IP pauses when the screen is full. IW lists directories in wide 

display format; IT lists a total of the number and size of the files 
in each directory. 

Remarks 

LD-List Directories provides a complete list of all the 
directories on your disks. You may list the directories on one or 
more specific drives, or ask for all your drives with the IA switch. 

Tips and Suggestions 

The directory list is useful in helping you keep track of all the 
directories and subdirectories on your disks. It is particularly useful 
on a hard disk system, that can accommodate many directories. 

You can redirect the output of LD into a file, using the 
standard DOS method for redirection of output. You can then use 
that file as a convenient starting point in the creation of a batch file 
that operates on your directories. This is a handy method that I 
often use. 

Just as you can use LD to get a list of your directories, you can 
use FF-File Find to get a list of your files. 

LD-List Directories is one of several of these Norton Utilities 
programs that are particularly useful in helping you manage a hard 
disk system. Other programs in the Utilities set that are especially 
useful with hard disks are DS-Directory Sort, FF-File Find, FS
File Size, and TS-Text Search. 

For example, to print a listing of your directories: 

LD >LPT1: 

384 



DISKETTE USER'S MANUAL 


SI - System Information 

Purpose 

Displays interesting technical information about your computer. 

Format 

SI [IN]
IN avoids the memory test, that can disrupt some computers. 

Remarks 

SI-System Information discovers and displays some technical 
information about your computer. You many find this information 
interesting, and it has some practical uses. 

Here are two examples that illustrate the variety of information 
that SI reports. From an AT: 

IBM/PC-AT 

Built-in BIOS programs dated Tuesday, January 10, 1984 

Operating under DOS 3.10 

5 logical disk drives, A: through E: 

DOS reports 640 K-bytes of memory: 


161 K-bytes used by DOS and resident programs 

479 K-bytes available for application programs 


A search for active memory finds: 

640 K-bytes main memory (at hex OOOO-AOOO) 


64 K-bytes display memory (at hex BOOO-COOO) 

Computing performance index relative to IBM/PC: 7.0 


Here is another example from a 3270 PC: 

IBM 3270 PC 

Built-in BIOS programs dated Monday, November 8, 1982 

Operating under DOS 2.10 

3 logical disk drives, A: through C: 

DOS reports 525 K-bytes of memory: 


25 K-bytes used by DOS and resident programs 

500 K-bytes available for application programs 


A search for active memory finds: 

640 K-bytes main memory (at hex OOOO-AOOO) 


16 K-bytes display memory (at hex BOOO-B400) 

16 K-bytes display memory (at hex B800-BCOO) 

4 K-bytes extra memory (at hex CEOO-CFOO) 


BIOS signature found at hex paragraph COOO 

C800 CAOO 


Computing performance index relative to IBM/PC: 1.0 


385 



INSIDE THE IBM PC 


SI attempts to identify the computer it is working on, within 
practical limitations. It can recognize specialty models of the PC 
family, such as the PCjr or the 3270 PC, but some other models 
can't be clearly identified. SI can also recognize some PC
compatibles. When it can't recognize the machine, it will attempt to 
find and show you identifying marks, such as a copyright notice 
within the computer. 

S I reports the version of DOS being used and the number of 
"logical" disk drives that DOS has at its command. This is often 
more than the real number of physical drives your machine has. 

SI reports on the computer's memory, using two approaches. 
The first is based on information that DOS provides. It shows the 
total amount of memory, how much is taken up by DOS and by 
resident programs (such as SideKick or Prokey), and how much 
remains for use by our application programs. 

The second memory report is based on a live test, performed by 
probing every part of the computer's memory. Some computers will 
lock up, reporting a PARITY ERROR when the live probe test is 
done. This does no harm whatsoever to your computer, but it does 
require you to turn off your computer and start it up from scratch. 
The IN switch allows you to bypass this test if you need to. The 
live memory test reports three categories of memory: main memory 
used by our programs, display memory used by the screen, and 
extra memory used for special applications. 

Your computer may have additions made to its built-in control 
program, the BIOS. If SI is able to detect any of these additions, it 
reports them; you will see three of them listed in the second 
example above. This information is of technical interest only. 

SI finishes with a computing performance index. This index 
provides a rough indication of your computer's relative speed in 
computing and memory access. To figure the index, SI times how 
long it takes to perform a series of calculations. The index is then 
scaled relative to a standard IBM PC. An index of 2.0 means that 
the calculations were done twice as fast as a standard PC would do 
them. Due to the methods used, the index can vary but it provides 
a rough-and-ready measure of your computer's speed. This index is 
based solely on a routine set of calculations. It does not take into 
account disk performance, that is a major factor in the overall 
capability of your computer. 

386 



DISKETTE USER'S MANUAL 


Tips and Suggestions 

SI may prove useful in providing certain key information about 
the computers with that you come in contact. For any computer 
that you routinely work with, information about the system memory 
overhead may be useful in deciding how much memory to devote to 
disk buffers or keyboard enhancement workspace. 

If you are concerned about the accumulative cost of the resident 
programs or disk buffers that you are using, you can easily monitor 
how much memory they take up by studying SI's DOS memory 
report. First look at how much memory is currently being used. 
Then restart your computer without the programs or buffers. Add 
them one by one, and examine the cost of each with sr. 

For any computer that is unfamiliar to you, SI may be helpful 
in quickly showing you the number of disk drives, memory 
available, and relative computing speed. 

387 



Order Form 

Indicate the titles and quantities desired below. 

Enclose Check or Money order or use your credit card for payment: 


o Enclosed is a check for $ 
D Charge my o MasterCard Account # 

DVISA Exp. Date 

Signature 

Name 
Address 
City State Zip 
(New Jersey residents please add applicable sales tax.) 
Dept. 3 

Return to: 	 PH Mail Order Billing 
Route 59 at Brook Hill Drive 
West Nyack, NY 

Title 
Utilities 

Hard Disk Manager 

dBASE III Plus To Go 

1-2-3 Ready-to-Run 

1-2-3 Power Pack 

Instant Ventura Publisher 


Also by Peter Norton 
Inside the IBM PC 

Inside the IBM PC book/disk 


10994 

Code Quantity Price trotal 

38377 $39.95 

19621 $39.95 

93988 $39.95 

63540 $39.95 

46779 $39.95 


03583 $21.95 

46732 $39.95 


Peter Norton's Assembly Language Book for the IBM PC 
Book 
Book/Disk 

Peter Norton's DOS Guide 

Also by Robert Jourdain 
Programmer's Problem Solver 
Turbo Pascal Express 

Inside the Norton Utilities 

66190 $21.95 
66214 $39.95 
66207 $19.95 

03787 $22.95 
53533 $39.95 

46788 $19.95 



a 

ISBN 0-89303-583-12 


	Front cover
	Contents
	Introduction
	1 - A Family Tree
	2 - Fundamentals: What a Computer Is
	3 - Data!
	4 - The PC Character Set
	5 - Hardware: The Parts of the PCs
	6 - Brains: Our Microprocessors
	7 - The Memory Workbench
	8 - Disks: The Basic Story
	10 - Disks: Deeper Details
	11: Video: An On-Screen Overview
	12 - Video: Text Fundamentals
	13 - Video: Graphics Fundamentals
	14 - Keyboard Magic
	15 - Other Parts: Communication, Printers, and More
	16 - Built-In BIOS: The Basic Ideas
	17 - Built-In BIOS: Digging In
	18 - The Role of DOS
	19 - DOS Serving Us
	20 - DOS Serving Our Programs
	21 - How Programs Are Built
	22 - Exploring and Tinkering
	A - Program Listings 
	B - Narrative Glossary
	C - Products and Trademarks
	D - Other Sources of Information
	Index
	User manual for accompanying diskette
	Rear cover



