
mArCh 2012  |   vol.  55  |   No.  3  |   coMMunicaTions of The acM     45

ToDAY 10-gigABiT inTerFAces are used increasingly in 
datacenters and servers. On these links, packets flow 
as fast as one every 67.2 nanoseconds, yet modern 
operating systems can take 10−20 times longer 
just to move one packet between the wire and the 
application. We can do much better, not with more 

powerful hardware but by revising ar-
chitectural decisions made long ago 
regarding the design of device drivers 
and network stacks.

The netmap framework is a promis-
ing step in this direction. Thanks to a 
careful design and the engineering of 
a new packet I/O API, netmap elimi-
nates much unnecessary overhead and 
moves traffic up to 40 times faster than 
existing operating systems. Most im-
portantly, netmap is largely compati-
ble with existing applications, so it can 

be incrementally deployed.
In current mainstream operating 

systems (Windows, Linux, BSD and 
its derivatives), the architecture of the 
networking code and device drivers is 
heavily influenced by design decisions 
made almost 30 years ago. At the time, 
memory was a scarce resource; links 
operated at low (by today’s standards) 
speeds; parallel processing was an ad-
vanced research topic; and the ability 
to work at line rate in all possible con-
ditions was compromised by hardware 

Revisiting 
network  
i/o aPis:  
The netmap 
framework 

Doi:10.1145/2093548.2093565

 

 

 Article development led by  
         queue.acm.org

It is possible to achieve huge performance 
improvements in the way packet processing  
is done on modern operating systems.

By LuiGi Rizzo



46    coMMunicaTions of The acM    |   mArCh 2012  |   vol.  55  |   No.  3

practice

limitations in the NIC (network inter-
face controller) even before the soft-
ware was involved.

In such an environment, designers 
adopted a trade-off between conve-
nience of use, performance, and lean 
memory usage. Packets are repre-
sented by descriptors (named mbuf,5 
skbuf,9 or NDISbuffer, depending 
on the operating system) linked to 
chains of fixed-size buffers. Mbufs 
and buffers are dynamically allocated 
from a common pool, as their life-
time exceeds the scope of individual 
functions. Buffers are also reference-
counted, so they can be shared by mul-
tiple consumers. Ultimately, this rep-
resentation of packets implements a 
message-passing interface among all 
layers of the network stack.

Mbufs contain metadata (packet 
size, flags, references to interfaces, 
sockets, credentials, and packet buf-
fers), while the buffers contain the 
packet’s payload. The use of fixed-size 
buffers simplifies memory allocators, 
even though it requires chaining when 
data exceeds the size of a single buffer. 
Allowing buffers to be shared can save 
some data copying (hence, time and 
space) in many common operations 
on the network stack. For example, 
when transmitting a TCP packet, the 
protocol stack must keep a copy of the 
packet in case the transmission gets 
lost, and sharing the buffer saves the 
copying cost.

The design of modern NICs is based 
on this data representation. They can 
send or receive packets split into mul-

tiple memory buffers, as implemented 
by the operating system. NICs use their 
own descriptors, much simpler than 
those used by the operating system, 
and typically arranged into a circular 
array, called a NIC ring (see Figure 1). 
The NIC ring is statically allocated, and 
its slots point to the buffers that are 
part of the mbuf chains.

Packet-handling costs
Network I/O has two main cost com-
ponents. The per-byte cost comes from 
data manipulation (copying, check-
sum computation, encryption) and is 
proportional to the amount of traffic 
processed. The per-packet cost comes 
from the manipulation of descriptors 
(allocation and destruction, metadata 
management) and the execution of sys-
tem calls, interrupts, and device-driver 
functions. Per-packet cost depends on 
how the data stream is split into pack-
ets: the larger the packet, the smaller 
the component.

To get the idea of the speed con-
straints, consider a 10Gbit/s Ethernet 
interface, which will be the point of 
reference throughout this article. The 
minimum packet size is 64 bytes or 512 
bits, surrounded by an additional 160 
bits of inter-packet gap and preambles. 
At 10Gbit/s, this translates into one 
packet every 67.2 nanoseconds, for a 
worst-case rate of 14.88Mpps (million 
packets per second). At the maximum 
Ethernet frame size (1,518 bytes plus 
framing), the transmission time be-
comes 1.23 microseconds, for a frame 
rate of about 812Kpps. This is about 

20 times lower than the peak rate, but 
still quite challenging, and it is a regi-
men that must be sustained if TCP is to 
saturate a 10Gbit/s link.

The split of the packet-processing 
time in a typical operating system is 
useful information to have in order to 
understand how to improve it. Consid-
er the following two situations.

Applications using User Datagram 
Protocol (UDP) or raw sockets normally 
issue one system call per packet. This 
results in the allocation of an mbuf 
chain, which is initialized with meta-
data and a copy of the user-supplied 
payload. Then the NIC is programmed 
to transmit the packet, and eventually 
the mbuf chain is reclaimed. A similar 
course of action occurs on reception. 
Out of the total processing time, about 
50% goes on the system call: 30% for 
mbuf allocation and reclaiming, and 
the remaining part equally split be-
tween memory copy and programming 
the hardware. A graphical representa-
tion of the split is shown here:

TCP senders and receivers are in a 
slightly different situation: system calls 
can move large segments from/to the 
kernel, and segmentation occurs with-
in the kernel. In this case, the impact 
of system calls on individual packets is 
reduced; on the other hand, the in-ker-
nel processing is more expensive, also 
because of the need to handle acknowl-
edgments flowing in the reverse direc-
tion. This results in a different split of 
work, shown graphically as:

The overall packet-processing capacity 
is similar in both cases, however: a state-
of-the-art system can process approxi-
mately 1Mpps per core. This is much 
less than the peak speed of a 10Gbit/s 
link and barely sufficient to saturate the 
link with 1,500-byte packets.

Why is mbuf handling so time con-
suming? In the uniprocessor systems 
on the scene 30 years ago, memory al-
locators and reference counting were 
relatively inexpensive, especially in the 
presence of fixed-size objects. These 
days things are different: in the pres-
ence of multiple cores, allocations 
contend for global locks, and reference 

figure 1. Mbufs and nic rings in conventional operating systems.

NiC registers

base

. . .

. . .

. . . . . .
. . .

head

tail

n_descs

NiC ring

phy_addr 
len

Buffers mbufs

v_addr

v_addr

v_addr

hardware operating system



practice

mArCh 2012  |   vol.  55  |   No.  3  |   coMMunicaTions of The acM     47

Thanks to a careful 
design and the 
engineering of a 
new packet i/o aPi, 
netmap eliminates 
much unnecessary 
overhead and 
moves traffic up  
to 40 times faster 
than existing 
operating systems.

counts operate on shared memory vari-
ables; both operations may easily result 
in uncached DRAM accesses, which 
take up to 50−100 nanoseconds.4

Dealing with Latency
Processing costs are only one part of 
the equation when trying to saturate 
high-speed links. Latency also has a se-
vere impact on performance. Sensitiv-
ity to latency is not unique to 10Gbit/s 
networking, but the phenomenon be-
comes particularly significant when 
the link speed ceases to be the bottle-
neck in the system.

High memory read latencies—the 
tens of nanoseconds mentioned ear-
lier—often occur when reading from 
the NIC’s registers or NIC rings. These 
memory areas are updated by the 
NIC, thus invalidating CPU caches. 
To avoid stalls (which would eat all of 
the available packet-processing time) 
and achieve the desired throughput, 
the packet-processing code must issue 
prefetch instructions well before data 
is actually needed. In turn, this might 
require significant code restructuring: 
instead of processing one packet at a 
time, the code should work on batches, 
with a first round of prefetches (to keep 
the CPU busy while waiting for reads 
to complete), followed by the actual 
packet processing.

Memory writes are less affected 
by latency because caches and write 
buffers can absorb many outstand-
ing write requests without blocking. 
On the other hand, application stalls 
waiting for writes to complete may oc-
cur at the transport-protocol level. It is 
well known that in any communication 
protocol, when the amount of data in 
transit (“window”) is limited by some 
maximum value W, the maximum 
throughput is min(B, W/RTT) where B 
is the bottleneck bandwidth and RTT 
is the round-trip time of the system. 
Even for a very optimistic 100-micro-
second RTT, it takes 1Mbit (125KB) of 
outstanding data to exploit the link’s 
capacity. If the communicating entities 
do not have enough data to send before 
waiting for a response, achieving full 
speed might be impossible or require 
significant restructuring of the appli-
cations themselves.

high-speed Transport Protocols
For paths with realistic RTT values 

(in the 10ms to 100ms range), win-
dow sizes become huge and put the 
entire system under pressure. Large 
windows interact poorly with conven-
tional TCP congestion-control algo-
rithms,1 which react very conservative-
ly to packet losses. An experimental 
RFC (request for comments) proposes 
a more aggressive window increase 
policy after a packet loss, thus reduc-
ing the time to reach full speed.2 A 
second-order effect of the use of large 
windows is the increase in memory 
footprint and cache usage, potentially 
overflowing the available cache space 
and slowing down data access. Finally, 
the data structures (linear lists) nor-
mally used to store packets introduce 
linear costs in the presence of packet 
losses or reordering.

Remember that protocols some-
times deal with not only protocol head-
ers, but also access to the payload of 
packets. For example, TCP checksum 
computation requires reading packet 
data (both on the transmit and receive 
side), and this consumes memory 
bandwidth and pollutes the cache. In 
some cases (for example, with locally 
generated data), this operation can be 
optimized by merging the checksum 
computation with the copy done to 
bring data into the kernel. The same 
is not possible for the receive path, 
because acknowledgments (which de-
pend on checksum verification) can-
not be delayed until the user-space 
process reads data. This explains why 
checksum computations are a natural 
candidate for hardware offloading.

Performance-enhancement 
Techniques
The efficiency of the packet I/O mech-
anisms. Enabling system calls to han-
dle multiple packets per call amor-
tizes their cost, which is a significant 
fraction of the total. Some high-per-
formance packet-capture APIs adopt 
this technique. Another common 
option is to use packets larger than 
the default 1,500 bytes used on most 
Ethernet interfaces. A large maximum 
transmission unit (MTU) reduces the 
per-packet costs; and in the case of 
TCP traffic, it also speeds up the win-
dow increase process after packet 
losses. A large MTU is effective, how-
ever, only if it is allowed on the entire 
path between source and destination; 



48    coMMunicaTions of The acM    |   mArCh 2012  |   vol.  55  |   No.  3

practice

netmap is a novel 
framework that 
employs some 
known techniques 
to reduce packet-
processing costs. 
its key feature is 
that it integrates 
smoothly with 
existing operating-
system internals 
and applications.

otherwise, the MTU is trimmed down 
by path MTU discovery; or even worse, 
the MTU mismatch may lead to IP-lev-
el fragmentation.

Outsourcing some tasks to the 
hardware is another popular option to 
increase throughput. Typical examples 
are IP and TCP checksum computation 
and virtual LAN (VLAN) tag addition/re-
moval. These tasks, which can be done 
in the NIC with only a modest amount 
of additional circuitry, may save some 
data accesses or copies. Two popular 
mechanisms, specifically in the con-
text of TCP, are TCP segmentation 
offload (TCO) and large receive offload 
LRO). TSO means the NIC can split a 
single large packet into multiple MTU-
size TCP segments (not IP fragments). 
The saving is that the protocol stack is 
traversed only once for the entire pack-
et, instead of once for each MTU bytes 
of data. LRO acts on the receive side, 
merging multiple incoming segments 
(for the same flow) into one that is then 
delivered to the network stack.

Modern NICs also support some 
forms of packet filtering and crypto ac-
celeration. These are more specialized 
features that find application in spe-
cific cases.

The usefulness of hardware acceler-
ation has been frequently debated over 
the years. At every jump in link speeds 
(usually by a factor of 10), systems find 
themselves unable to cope with line 
rates, and vendors add hardware ac-
celeration features to fill the gap. Then 
over time CPUs and memories become 
faster, and general-purpose processors 
may reach and even exceed the speed 
of hardware accelerators.

While there might be a point to hav-
ing hardware checksums (they cost 
almost nothing in the hardware and 
can save a significant amount of time), 
features such as TSO and LRO are rela-
tively inexpensive even when imple-
mented in software.

The almost ubiquitous availability 
of multiple CPU cores these days can be 
exploited to increase the throughput of 
a packet-processing system. Modern 
NICs support multiple transmit and 
receive queues, which different cores 
can use independently without need 
for coordination, at least in terms of ac-
cessing NIC registers and rings. Inter-
nally, the NIC schedules packets from 
the transmit queues into the output 

link and provides some form of demul-
tiplexing so that incoming traffic is de-
livered to the receive queues according 
to some useful key (such as MAC ad-
dresses or 5-tuples).

netmap
Returning to the initial goal of improv-
ing packet-processing performance, 
we are looking for a large factor: from 
1Mpps to 14.88Mpps and above, in or-
der to reach line rate. According to Am-
dhal’s Law, such large speedups can be 
achieved only by subsequently shaving 
off the largest cost factors in the task. 
In this respect, none of the techniques 
shown so far has the potential to solve 
the problem. Using large packets is not 
always an option; hardware offloading 
does not help system calls and mbuf 
management, and recourse to paral-
lelism is a brute-force approach to the 
problem and does not scale if other 
bottlenecks are not removed.

Netmap7 is a novel framework that 
employs some known techniques to 
reduce packet-processing costs. Its 
key feature, apart from performance, 
is that it integrates smoothly with ex-
isting operating-system internals and 
applications. This makes it possible to 
achieve great speedups with just a lim-
ited amount of new code, while build-
ing a robust and maintainable system.

Netmap defines an API that sup-
ports sending and receiving large num-
bers of packets with each system call, 
hence making system calls (the larg-
est cost component for the UDP) al-
most negligible. Mbuf handling costs 
(the next most important component) 
are completely removed because buf-
fers and descriptors are allocated only 
once, when a network device is initial-
ized. The sharing of buffers between 
kernel and user space in many cases 
saves memory copies and reduces 
cache pollution.

Data structures. Describing the 
netmap architecture is easier when 
looking at the data structures used to 
represent packets and support com-
munication between applications and 
the kernel. The framework is built 
around a shared memory region—ac-
cessible to the kernel and user-space 
applications—which contains buffers 
and descriptors for all packets man-
aged by an interface. Packet buffers 
have a fixed size, sufficient to store a 



practice

mArCh 2012  |   vol.  55  |   No.  3  |   coMMunicaTions of The acM     49

maximum-size packet. This implies no 
fragmentation and a fixed and simple 
packet format. Descriptors—one per 
buffer—are extremely compact (eight 
bytes each) and stored in a circular ar-
ray that maps one-to-one to the NIC 
ring. They are part of a data structure 
called netmap _ ring, which also 
contains some additional fields, in-
cluding the index (cur) of the first buf-
fer to send or receive, and the number 
(avail) of buffers available for trans-
mission or reception.

Netmap buffers and descriptors are 
allocated only once—when the inter-
face is brought up—and remain bound 
to the interface. Netmap has a simple 
rule to arbitrate access to the shared 
data structures: the netmap ring is al-
ways owned by the application except 
during the execution of a system call, 
when the application is blocked and 
the operating system is free to access 
the structure without conflicts. The 
buffers between cur and cur+avail 
follow the same rule: they belong to 
user space except during a system call. 
Remaining buffers, if any, are instead 
owned by the kernel.

User API. Using netmap is extreme-
ly simple and intuitive for program-
mers. First, an unbound file descriptor 
(akin to a socket) is created by calling 
open(“/dev/netmap”). The descrip-
tor is then bound to a given interface 
using an ioctl(), passing the inter-
face name as part of the argument. 
On return, the argument indicates the 
size of the shared memory area and the 
position of the netmap ring(s) in that 
area. A subsequent mmap() will make 
the shared memory area accessible to 
the process.

To send packets, an application 
fills up to avail buffers with packet 
data, sets the len field in the corre-
sponding slots in netmap _ ring, 
and advances the cur index by the 
number of packets to send. After this, 
a nonblocking ioctl(fd, NIOCTX-
SYNC) tells the kernel to transmit the 
new packets and reclaims buffers for 
completed transmissions. The receive 
side uses similar operations: a non-
blocking ioctl(fd, NIOCRXSYNC) 
updates the state of the netmap ring 
to what is known to the kernel. On 
return, cur indicates the first buffer 
with data, tells how many buffers are 
available, and data and metadata are 

available in the buffers and slots. The 
user process signals consumed pack-
ets by advancing cur, and at the next 
ioctl() the kernel makes these buf-
fers available for new receptions.

Let’s revisit the processing costs in a 
system using netmap. The system call 
is still there but now can be amortized 
over a large number of packets—pos-
sibly the entire ring—so its cost can 
become negligible. The next highest 
component, mbuf management, goes 
away completely because buffers and 
descriptors are now static. Data cop-
ies are equally removed, and the only 
remaining operation (implemented 
by the ioctl()s) is to update the NIC 
ring after validating the information 
in netmap _ ring and start transmis-

sion by writing to one of the NIC’s reg-
isters. With these simplifications, it is 
not surprising that netmap can achieve 
much higher transmit and receive rates 
than the standard API.

Many applications need blocking 
I/O calls. Netmap descriptors can be 
passed to a poll()/select() system 
call, which is unblocked when the ring 
has slots available. Using poll() on a 
netmap file descriptor has the same 
complexity as the ioctl()s shown be-
fore, and poll() has some additional 
optimizations to reduce the number 
of system calls necessary in a typical 
application. For example, poll() can 
push out any pending transmission 
even if POLLOUT is not part of the 
argument; and it can update a time-

figure 2. shared memory structures and nic rings.

netmap_if netmap_ring nic_ring
ring_size

cur

avail

flags

buf_ofs

flags len index

num_rings

ring_ofs[ ] pkt_buf

pkt_buf

pkt_buf

pkt_buf

shared Memory region

figure 3. code for a packet generator using netmap.

fds.fd = open(“/dev/netmap”, O_RDWR);
strcpy(nmr.nm_name, “ix0”);
ioctl(fds.fd, NIOCREG, &nmr);
p = mmap(0, nmr.memsize, fds.fd);
nifp = NETMAP_IF(p, nmr.offset);
fds.events = POLLOUT;
for (;;) {
    poll(fds, 1, -1);
    for (r = 0; r < nmr.num_queues; r++) {
        ring = NETMAP_TXRING(nifp, r);
        while (ring->avail-- > 0) {
            i = ring->cur;
            buf = NETMAP_BUF(ring, ring->slot[i].buf_index);
            ... store the payload into buf ...
            ring->slot[i].len =  ... // set packet length
            ring->cur = NETMAP_NEXT(ring, i);
        }
    }
}



50    coMMunicaTions of The acM    |   mArCh 2012  |   vol.  55  |   No.  3

practice

stamp in netmap _ ring, avoiding 
the extra gettimeofday() call that 
many applications issue right after a 
poll().

Support for multiple rings. Figure 
2 shows that an interface can have 
multiple netmap rings. This supports 
the multi-ring architecture of modern 
high-speed NICs. When binding a file 
descriptor to a NIC, applications have 
a choice of attaching all rings, or just 
one, to the file descriptor. With the 
first option, the same code can work 
for a single- or multiqueue NIC. With 
the second option, a high-performance 
system can be built using one process/
core per ring, thus exploiting the paral-
lelism available in the system.

A working example of a traffic gener-

ator that can handle a multi-ring NIC is 
shown in Figure 3. The device attach se-
quence follows the structure discussed 
so far. The code in charge of sending 
packets loops around a poll(), which 
returns when buffers are available. The 
code simply fills all available buffers 
in all rings, and the next poll() call 
will push out packets and return when 
more buffers are available.

Host stack access and zero-copy for-
warding. In netmap mode, the NIC is 
disconnected from the host stack and 
made directly accessible to applica-
tions. The operating system, however, 
still believes the NIC is present and 
available, so it will try to send and re-
ceive traffic from it. Netmap attaches 
two software netmap rings to the host 

stack, making it accessible using the 
netmap API. Packets generated by 
the host stack are extracted from the 
mbufs and stored in the slots of an in-
put ring, similar to those used for traf-
fic coming from the network. Packets 
destined to the host stack are queued 
by the netmap client into an output 
netmap ring, and from there encap-
sulated into mbufs and passed to the 
host stack as if they were coming from 
the corresponding netmap-enabled 
NIC. This approach provides an ideal 
solution for building traffic filters: a 
netmap client can bind one descriptor 
to the host rings and one to the device 
rings, and decide which traffic should 
be forwarded between the two.

Because of the way netmap buffers 
are implemented (all mapped in the 
same shared region), building true 
zero-copy forwarding applications is 
easy. An application just needs to swap 
buffer pointers between the receive 
and transmit rings, queueing one buf-
fer for transmission while replenish-
ing the receive ring with a fresh buffer. 
This works between the NIC rings and 
the host rings, as well as between dif-
ferent interfaces.

Performance and implementation
The netmap API mainly provides a 
shortcut for sending and receiving raw 
packets. A class of applications (fire-
walls, traffic analyzers and generators, 
bridges, and routers) can easily exploit 
the performance benefits by using the 
native API. This requires changes, al-
beit small, in applications, which is 
usually undesirable. It is trivial to build 
a libpcap-compatible API on top of 
netmap, however, and this means you 
can run a large set of unmodified appli-
cations on top of our new API.

The improvements of netmap are 
best seen on simple applications 
such as traffic generators or receivers. 
These applications spend the major-
ity of their time doing raw packet I/O. 
Figure 4 compares the performance of 
various traffic generators, using net-
map or standard APIs, with varying 
clock speeds and numbers of cores. 
The bottom curve shows that net-
send, a packet generator using the 
traditional socket API, can barely reach 
1Mpps at full clock with one core. Next 
on the performance graph is pktgen, 
a specialized Linux application that 

figure 4. Packet-generation speed using netmap vs. traditional aPis.

T
x 

R
at

e 
(M

p
p

s)

clock speed (Ghz)

16

14

12

10

8

6

4

2

0

0 0.5 1.0 1.5 2.0 2.5 3.0

4 cores
1 Core

pktgen
netsend

figure 5. Performance of various applications with and without netmap.

Packet forwarding Mpps 

FreeBSd bridging 0.690

netmap + libpcap emulation 7.500

netmap, native 10.660

open vswitch Mpps

optimized, FreeBSd 0.790

optimized, FreeBSd + netmap 3.050

click Mpps

user space + libpcap 0.400

linux kernel 2.100

user space + netmap 3.950



practice

mArCh 2012  |   vol.  55  |   No.  3  |   coMMunicaTions of The acM     51

our experience 
with netmap has 
shown that it is 
possible to achieve 
huge performance 
improvements in 
the way operating 
systems employ 
packet processing.

implements packet generation entirely 
within the kernel. Even in this case, the 
peak speed is about 4Mpps, way below 
the maximum rate achievable on the 
10Gbit/s interface.

The next two curves show the per-
formance of the netmap generator 
of Figure 3: not only can it reach line 
rate (14.88Mpps with minimum-
size frames), but also it does so even 
at one-third of the maximum clock 
speed. This is about 40 times faster 
than using the native API and 10 times 
faster than the in-kernel Linux tool. 
The top curve, using four cores, shows 
that the API scales reasonably well 
with multiple CPUs.

Figure 5 shows how various pack-
et-forwarding applications benefit 
from the use of netmap. The two ex-
tremes are native bridging (on Free-
BSD), reaching 0.69Mpps; and a cus-
tom application that implements the 
simplest possible packet forwarding 
across interfaces using the netmap 
API, reaching more than 10Mpps. As 
seen in the figure, the use of a libp-
cap emulation on top of netmap sac-
rifices only 25% of the performance in 
this case (and much less in more CPU-
intensive applications). Similar great 
speedups have been achieved8 with 
two popular forwarding applications. 
Open vSwitch6 gets a fourfold speed-
up even after being heavily optimized 
to remove some performance issues 
from the original implementation. 
Click3 is 10 times faster using netmap 
compared with the original version. 
In fact, Click with netmap is much 
faster than the in-kernel version that 
has been considered for many years to 
be one of the most efficient solutions 
for building software packet-process-
ing systems.

One of the key design goals of net-
map is to make it easy to integrate 
into an existing operating system—and 
equally easy to maintain and port to new 
(or closed-source, third-party) hard-
ware. Without these features, netmap 
would be just another research proto-
type with no hope of being used at large.

Netmap has been recently imported 
into FreeBSD distribution, and a Linux 
version is under development. The 
core consists of fewer than 2,000 lines 
of heavily documented C code, and it 
makes no changes to the internal data 
structures or software interfaces of the 

operating system. Netmap does require 
individual device-driver modifications, 
but these changes are small (about 500 
lines of code each, compared with the 
3,000 to 10,000 lines that make up a 
typical device driver) and partitioned 
so that only a small portion of the origi-
nal sources is modified.

conclusion
Our experience with netmap has shown 
that it is possible to achieve huge perfor-
mance improvements in the way operat-
ing systems employ packet processing. 
This result is possible without special 
hardware support or deep changes to ex-
isting software but, instead, by focusing 
on the bottlenecks in traditional packet-
processing architectures and by revising 
design decisions in a way that could min-
imize changes to the system. 

  Related articles  
  on queue.acm.org

Whither Sockets? 

George V. Neville-Neil
http://queue.acm.org/detail.cfm?id=1538949

DAFS: A new high-Performance  
networked File System 

Steve Kleiman
http://queue.acm.org/detail.cfm?id=1388770

The Virtualization Reality 
Simon Crosby, David Brown
http://queue.acm.org/detail.cfm?id=1189289

References 
1. allman, M., Paxson, V. and blanton, e. rFC 5681: tCP 

congestion control, 2009.
2. Floyd, s. rFC 3649: high-speed tCP for large congestion 

windows, 2003.
3. Kohler, e., Morris, r., Chen, b., Jannotti, J. and Kaashoek, 

F. the Click modular router. ACM Transactions on 
Computer Systems 18, 3 (2000); http://dl.acm.org/
citation.cfm?id=354874. 

4. levinthal, D. Performance analysis guide for Intel Core i7 
processor and Intel Xeon 5500 processors (2008-2009), 
22; http://software.intel.com/sites/products/collateral/
hpc/vtune/performance_analysis_guide.pdf. 

5. McKusick, M.K. and neville-neil, G. The Design and 
Implementation of the FreeBSD Operating System. 
addison-Wesley, boston, Ma, 2004.

6. open vswitch; http://openvswitch.org/. 
7. rizzo, l. the netmap home page; http://info.iet.unipi.

it/~luigi/netmap. 
8. rizzo, l., Carbone, M. and Catalli, G. transparent 

acceleration of software packet forwarding using 
netmap. Infocom (2012); http://info.iet.unipi.it/~luigi/
netmap/20110729-rizzo-infocom.pdf. 

9. rubini, a., Corbet, J. 2001. linux Device Drivers, 2nd ed. 
(Chapter 14). o’reilly, sebastopol, Ca; http://lwn.net/
Kernel/lDD2/ch14.lwn.

this work was funded by eC Project ChanGe. 

Luigi Rizzo (rizzo@iet.unipi.it) is an associate professor 
at the Dipartimento di Ingegneria dell’Informazione 
of the università di Pisa, Italy. his research is focused 
on computer networks, most recently on fast-packet 
processing, packet scheduling, network emulation, and 
disk scheduling.

© 2012 aCM 0001-0782/12/03 $10.00 




