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ABSTRACT

Building multilingual and crosslingual models help bring different
languages together in a language universal space. It allows mod-
els to share parameters and transfer knowledge across languages,
enabling faster and better adaptation to a new language. These ap-
proaches are particularly useful for low resource languages. In this
paper, we propose a phoneme-level language model that can be used
multilingually and for crosslingual adaptation to a target language.
We show that our model performs almost as well as the monolingual
models by using six times fewer parameters, and is capable of bet-
ter adaptation to languages not seen during training in a low resource
scenario. We show that these phoneme-level language models can be
used to decode sequence based Connectionist Temporal Classifica-
tion (CTC) acoustic model outputs to obtain comparable word error
rates with Weighted Finite State Transducer (WFST) based decod-
ing in Babel languages. We also show that these phoneme-level lan-
guage models outperform WFST decoding in various low-resource
conditions like adapting to a new language and domain mismatch
between training and testing data.

Index Terms— multilingual language models, phoneme-level
language models, CTC based decoding, low-resource ASR

1. INTRODUCTION

There are nearly 7000 languages in the world - some have unique or-
thography and rules, while some are similar in phonetics, language
family, and loan words [1]. With the advent of deep learning, it has
been shown that languages can be brought together in a shared uni-
versal space with the help of neural networks [2, 3]. This has mul-
tiple advantages like requiring less parameters to model a particular
task for many languages, transfer of information across languages in
case of low resource languages [4, 5], cross-lingual adaptation to a
new language etc. [6, 7]. However, language models are almost al-
ways built to model one language at a time. They are typically word
level neural or n-gram language models, which are difficult to share
across languages, except when there exist many loan words [8, 9] or
code-switching [10].

Collection and cleaning of data in low resource languages can
be expensive. Often we find data which is either out-of-domain
or is so little that a reliable model cannot be trained using it [5].
Building good word language models is also difficult due to vari-
ous language-specific issues like rich morphology, spelling incon-
sistencies, etc. If not handled carefully, using these language mod-
els to decode an Automatic Speech Recognizer (ASR) usually leads
to many out-of-vocabulary words and also bad estimates of uncom-
mon in-domain words. These inconsistencies reduce when observ-
ing the data in units smaller than words like characters or phonemes.
Hence, there is a need to build language models that can be trained
on such smaller units without much preprocessing, and be used with

a targeted dictionary during decode time to produce the necessary
in-domain words.

In this paper,

1. We propose a phoneme-level language model (Section 3),
which is similar to a character-level language model [11, 12]
in terms of the granularity of training unit. Additionally,
this can be used to create a shared representation using the
language agnostic units, International Phonetic Alphabet. It
allows us to share language model parameters across mul-
tiple languages. We show that we can build multilingual
phoneme-level language models where we get the same per-
plexity on all languages without increasing the number of
parameters, effectively using six times fewer trainable pa-
rameters. We see considerable reduction in perplexity during
crosslingual adaptation of our multilingual language model
versus a monolingual language model (Section 4.2.1).

2. These phoneme-level language models can be used to de-
code CTC acoustic model outputs by doing a prefix tree based
beam search, a slight modification to open vocabulary beam
search [12] and prefix tree based search [13]. We show that on
an average they perform around 6.1% better than using open
vocabulary character-based decoding [12, 14] and are at par
with the popularly used WFST-based decoding [15](Section
4.2).

3. We find that our approach is better in low resource scenar-
ios and decoding with monolingual and (adapted) multilin-
gual phoneme-level language models both performing bet-
ter than WFST decoding (Section 4.2.1). We also show that
these models are robust towards domain mismatch and can
be trained with only out-of-domain data, Bible text, and be
decoded by just providing a list of in-domain words, conver-
sational speech.

We start by explaining the related work and datasets which we
used in this paper. Section 3 explains our proposed approach, fol-
lowed by experiments and results in Section 4 showing the afore-
mentioned contributions.

2. RELATED WORK AND BABEL DATASET

Building character-level n-gram language models is difficult due
to the need for long contexts. However, with the use of RNNs
and (Long Short Term Memory) LSTMs, it has been shown that
character-level RNN language models (CLMs) can produce sen-
tences that are semantically and syntactically correct [11] due to
their capability of capturing long contexts [16]. While most tasks
in natural language processing that use CLMs build word-level
language models [17, 18], in speech recognition, especially for
decoding sequence-based acoustic models, we are interested in
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making character-level sentence language models, where space is
considered as another character [11, 19, 12].

Parameter sharing in language models has been done in the past
with words as units for code-switching [10]. Though these models
tend to benefit by having common loan words [8, 9], there are very
few common target units which makes it harder to share parameters.
A polyglot language model proposed in [18] tries to approach some
of the problems mentioned above. However, this work was limited
to producing only words and did not explore its capabilities at sen-
tence level (the model cannot produce sentences). Though this work
made interesting observations in deciding what languages to use for
improving performance of multilingual models, they didn’t explore
its capability to adaptation towards a new target language.

There are multiple ways to decode CTC acoustic models. One of
the simplest ones is greedy decoding where we choose the top pre-
diction at every frame and apply the CTC squash function to get the
target sequence, as shown in [20]. We can get better predictions by
just doing a prefix based beam search without any language models
where we add paths to the beam that lead to a valid word, [13, 21].
CTC being a conditionally independent model, benefits a lot when
decoded with a language model, this was shown using both charac-
ter [12, 19] and word [13, 15] language model. A word language
model can be applied at every word boundary during a prefix based
search [13] or by composing a TLG graph using WFST [15] and a
character language model can be used while inserting a character
[12, 19]. While the first one produces words from a fixed lexicon,
it requires us to make word-level language models. On the contrary,
the latter requires easier to train character language models but per-
forms open-vocabulary decoding which may not always be optimal,
especially in low resource scenarios.

In this paper, we use 9 different languages from the IARPA BA-
BEL Research Project (IARPA-BAA-11-02). We choose three lan-
guages, Cebuano, Mongolian and Amharic, as our unseen test lan-
guages and choose two other languages spoken in nearby regions
from each of these three, i.e., Javanese, Tagalog, Turkish, Kazakh,
Swahili, and Zulu, as our training languages. We hope to maximize
closeness in language family and loan words by using this heuristic.
Table 1 summarizes the number of phonemes, amount of training
data and the out-of-vocabulary (OOV) rate for the languages we used
in our experiments on the Full Language Pack (FLP) condition 1.

Languages #Units #Train Utts OOV%

Test
Cebuano 28 42k 3.7

Mongolian 50 45k 4.5
Amharic 58 41k 11.3

Train

Javanese 31 46k 4.4
Tagalog 25 93k 2.8
Turkish 29 81k 5.7
Kazakh 39 48k 6.1
Swahili 37 44k 7.7

Zulu 44 60k 13.4

Table 1: Overview of the FLP Babel Corpora used in this work.

1This work used releases IARPA-babel105b-v0.4, IARPA-babel106-
v0.2g, IARPA-babel202b-v1.0d, IARPAbabel204b-v1.1b, IARPA-
babel206b-v0.1d, IARPAbabel301b-v2.0b, IARPAbabel302b-v1.0a,
IARPAbabel307b-v1.0b, IARPAbabel401b-v2.0b and IARPAbabel402b-
v1.0b provided by IARPA BABEL Research Program

3. PHONEME LEVEL LANGUAGE MODELS

Character Language Models (CLMs): A typical CLM involves an
embedding lookup, Emb ∈ Rd×|V |, for each character c ∈ {V } to
an embedding dimension d, LSTMs for modeling past context and a
final output transformation Wout which is passed to a softmax to
produce distribution over V . Given a sequence c1...t−1, the distri-
bution over the next character of the sequence is then computed as
follows:

p(ct | c1...t−1) = softmax(WoutLSTM(Emb(c1...t−1)) + bout)

Phoneme Language Models (PLMs): In this paper, we are inter-
ested in building such CLMs but on language universal characters,
also called as the International Phonetic Alphabet (IPA). We can con-
vert the words of any language into their corresponding IPA sym-
bol, by using any rule-based grapheme-to-phoneme (G2P) library.
In this paper, we use the Epitran [22] G2P library. Although us-
ing phonemes comes with the added cost of a G2P library, typically
speech recognizers built using phonemes have better performance
when compared to character-level models [14].
Multilingual Phoneme Language Models (Multi-PLMs): An-
other key advantage of using phonemes is that with IPA, we enter a
language agnostic space, allowing us to use a single model to decode
sequences in multiple languages. Authors in [18] show that incorpo-
rating a language tag while training the RNN language model helps
to improve multilingual language models. Since we want to use our
model to work in crosslingual adaptation scenarios, we want to bring
all the phonemes in same space. We modify the model proposed by
[18] to provide language identification only for sentence and word
boundaries. Effectively, the input units (x) are sum of the union
of all the phonemes φ in each of the languages (φl) and language
specific <space> and <sos>.

Further, we also introduce a “masked-training” approach to im-
prove the model training by computing softmax and calculating loss
only on units belonging to the languages being trained. The basic
motivation behind this approach is to bring the advantages of the
“block-softmax” approach that has been very useful for multilingual
acoustic models [23, 24, 25, 7] into a “shared-softmax” model.

lang maskl =

{
True if x ∈ {φl}
False if x /∈ {φl}

ind = where(lang mask = True)

logits = WoutLSTM(Emb(x1, . . . , xt−1)) + bout

sparse softmax = softmax(gatherind(logits))

This approach also ensures that only language-specific gradient
flows through the network for any training example, thereby not
penalizing the model on distributing activations on invalid phones
for any training example. We found that the “masked-training”
approach not only gives better results but also helps in faster conver-
gence.

4. EXPERIMENTS AND OBSERVATIONS

4.1. Multilingual Phoneme Language Model

We build PLMs on each of the training languages and compare their
performance with a Multi-PLM built on all the training languages
put together. The multilingual model uses the same number of pa-
rameters as the models built for individual languages, effectively us-
ing six times fewer parameters while fulfilling the same purpose for

2



each of the six languages. Both the models use a single layer LSTM
with 1024 hidden units and 64 dimensional embeddings. All models
have a dropout of 0.4 in the LSTM layers and are implemented us-
ing Tensorflow. These models are chosen after a parameters search
on different embedding sizes (64, 128, 256), hidden units (256, 512,
1024) and dropout rate (0.4, 0.2, 0).

4.1.1. Parameter Reduction using Multi-PLMs

Table 2 shows the phoneme-level perplexity results (not counting
sentence boundaries) of the multilingual model and compares it with
corresponding monolingual models. It shows that the Multi-PLM
model matches the performance of the PLM Large model while us-
ing roughly 6 times lesser parameters. For comparison, we also
show the perplexities obtained using a smaller PLM model which
uses roughly 1/6 effective trainable parameters (obtained by using
LSTM with 256 units instead of 1024 and a dropout of 0 instead
of 0.4). We can see that the Multi-PLM does better than the PLM
Small model and showing that the model is benefiting from learning
a shared representation.

PLM PLM Multi-PLM
Small Large Large

# Params ∼0.4M×6 ∼4.5M×6 ∼4.6M

Javanese 3.91 3.80 3.80
Tagalog 3.62 3.43 3.46
Turkish 3.53 3.36 3.38
Kazakh 3.02 2.89 2.89
Swahili 3.63 3.44 3.50

Zulu 4.18 3.95 4.00

Table 2: PLM (Small and Large) and Multi-PLM (Large) perplexi-
ties for different languages in the training set.

4.1.2. Crosslingual Adaptation using Multi-PLMs

Here, we compare the performance of our monolingual and multi-
lingual PLMs by adapting them to various amounts of training data
in a target language. We use Amharic, Cebuano and Mongolian as
our test crosslingual languages; the multilingual model has not seen
any of these languages before adaptation. We train the monolingual
model from scratch without using any adaptation. Figure 1 shows
that the Multi-PLM adapts better to the target language when com-
pared to a PLM trained in that language. The gains are consistent
across languages, and they reduce as the amount of training data in-
creases in the target language. When the model has seen 50% of the
training data, the gains seem to disappear, and for some languages,
the PLM performs better than the adapted multilingual model.

4.2. Decoding using Phoneme LM

Previous works that employ character-level language models are typ-
ically deployed in the context of high resource scenarios [14, 12, 19],
for example, [14] trains on around 112M characters. However, it
is often impossible to collect and clean such large amounts of data
in low-resource languages, and these open vocabulary decoding ap-
proaches do not perform well. We think this is because the language
models that are trained might not reliably output valid OOV words.
For example, from the experiments shown in Table 3 for Zulu, open
vocabulary CLM decoding outputs 4k incorrect OOV words out of
the 46k total words in the hypothesis.

Fig. 1: PPL after adaptation of Multi-PLM to target languages on
different amounts of data. Multi-PLM outperforms PLM for small
amounts of training data.

To solve this issue, we combine the CLM based beam search
decoding with a prefix tree to restrict the paths taken in the lattice
during beam search to only valid words, similar to [13, 21]. In Table
3, we show the results of in-vocabulary decoding of PLMs and com-
pare them with the previous works, i.e., open vocabulary decoding
using CLMs [14, 12] and WFST based decoding [22, 15] with CTC
based acoustic models. We see that PLM based decoding does much
better than open vocabulary CLM decoding. These improvements
stem either from the ability to build higher quality acoustic models
using phonemes instead of characters, or in-vocabulary decoding,
both of which our proposed model facilitates over prior work. We
also observe that this approach performs comparatively with WFST
based decoding.

Babel WFST CLM PLM
Languages Based Decoding

Cebuano 57.1 71.1 67.9
Mongolian 60.5 84.3 59.0
Amharic 57.2 64.8 57.6

Javanese 65.7 68.4 64.8
Tagalog 55.7 58.0 55.8
Kazakh 57.8 64.2 61.3
Turkish 56.9 58.5 59.4
Swahili 61.2 50.7 50.8

Zulu 65.2 75.3 63.7

Table 3: % WER for each of the languages used using different
kinds of decoding strategies; WFST decoding using word language
models, open-vocabulary decoding using CLMs and in-vocabulary
decoding using PLMs. Almost always, PLM based decoding per-
forms better than CLMs and as good as WFST.

We only use the training lexicon as the in-vocabulary dictio-
nary while decoding PLMs. For training the acoustic models for
CLM and PLM decoding, we add an extra target token between ev-
ery pair of words, representing a word boundary. During our initial
experiments, we found that language model weight of 1.0, insertion
penalty of 0.35 and beam size of 40 worked best for our develop-
ment set and we used this value for all our experiments. For WFST,
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we use a beam size of 9.0, lattice beam of 4.0 and acoustic model
weight of 0.6. Note that the numbers shown for WFST are the best
WER found using various word insertion penalties, n-gram language
model parameters and prior decoding for each language. Whereas
for the PLM based model, we use fixed parameters across languages,
presenting room for further improvements.

4.2.1. Comparing Decoding Strategies for Crosslingual Adaptation

We now compare the decoding results of using PLMs and (adapted)
Multi-PLMs against a word-based WFST decoding. Again, we
use Amharic, Cebuano and Mongolian as our test crosslingual lan-
guages. For this experiment, we train a monolingual CTC acoustic
model, which is a 2 layer bidirectional LSTM with 360 units, and use
it with the PLMs and WFSTs to decode the CTC acoustic models.
Table 4 shows the word error rates for various amounts of training
data on different acoustic models. We can see that our monolingual
as well as multilingual language model decoding does better than
WFST based decoding most of the times. We also notice that for
low resource scenarios, getting a good prior estimate is not possible
and hence the WFST results fluctuate depending on the language
and the data sub-selection.

Crosslingual Decoding Training Data (%)
Languages Strategies 5% 10% 20% 50%

Amharic
WFST 89.94 87.93 82.84 78.02
PLM 86.50 82.66 78.18 69.90

Multi-PLM 86.29 82.07 78.30 70.91

Cebuano
WFST 92.96 91.29 88.36 83.69
PLM 89.85 86.70 82.72 77.23

Multi-PLM 89.85 86.04 82.53 77.23

Mongolian
WFST 91.07 83.83 88.42 80.61
PLM 88.12 84.89 81.00 73.19

Multi-PLM 88.05 84.98 80.96 73.33

Table 4: Comparing decoding strategies on crosslingual adaptation
with different amounts of training data. We see that PLM and Multi-
PLM based decoding does better than WFST in almost all cases.

Probability of Training Data (%)
Improvement 5% 10% 20% 50%

Amharic 97.9 100.0 10.3 0.0
Cebuano 99.9 100.0 97.5 95.3

Mongolian 83.7 11.8 67.6 5.7

Table 5: Bootstrap comparison of Multi-PLM with PLM based de-
coding to estimate the prob. of improvement at 95% conf. interval.

Though language model perplexity improvements are seen us-
ing the crosslingually adapted multilingual language models, the im-
provements are not apparent in terms of word error rates. To under-
stand the “significance of improvement” made using the Multi-PLM
decoding over the PLM decoding, we use the bootstrapped tests pre-
sented in [26] using the Kaldi compute-wer-bootci tool. It
returns a probability estimate of improving WER of system 1, here a
Multi-PLM, by bootstrapping it with system 2, a monolingual PLM.
Table 5 shows that the improvements are significant, always for 5%
of the data and almost always for the rest.

4.2.2. Domain Robustness of Decoding Strategies

We finally compare the robustness of the two best decoding strate-
gies on domain mismatched conditions. Here, we assume the Bible
as one of the sources of text in any low resource language and use
it to train our language model. For generating the lexicon for both
PLMs and WFSTs, we run the words of the Bible through Epitran
G2P library. For the WFST, we train multiple n-gram language mod-
els with various discounting and choose the one that performs the
best for our in-domain validation data. We then use this language
model along with an in-domain acoustic model and decode it using
the two strategies using the in-domain target dictionary. From Table
6 we can see that PLM based decoding performs much better than
WFST based decoding showing its capability of generating words
outside language model training data by just using a targeted lexi-
con.

Babel WFST PLM
Languages Based Decoding

Cebuano 86.2 79.8
Javanese 93.1 80.8
Tagalog 83.4 68.9
Kazakh 78.3 72.5

Table 6: % WER for languages using different decoding strategies
on LMs trained on the Bible text. We see that in-vocabulary decod-
ing using PLMs does much better than WFST based decoding.

5. CONCLUSION

In this paper, we propose a phoneme-level language model and
present a unique way of training it multilingually thereby using
around six times fewer parameters without much increase in per-
plexity. We show that it is beneficial to use multilingual models
when adapting to a new language in very low resource settings. As
the amount of training data increases, the monolingual PLM starts
to outperform the multilingually adapted models.

We show a way of using phoneme-level language models to de-
code CTC acoustic models using a targetted lexicon which gives us
significant gains over open-vocabulary decoding using CLMs and
comparable results to the traditional WFST based decoding. We
show that our approach outperforms WFST in low resource condi-
tions, like crosslingual adaptation, where building good n-gram word
language models is hard.

Finally, we explore the domain adaptation capabilities of our
model, where we train on words that are outside the target domain.
We exploit the phoneme-level training of the language model cou-
pled with our targeted lexicon decoding approach to improve the
robustness of our model.
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