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Abstract

Recent advances in deep learning have shown
promises in solving complex combinato-
rial optimization problems, such as sorting
variable-sized sequences. In this work, we
take a step further and tackle the problem of
ordering the elements of sequences that come
with graph structures. Our solution adopts an
encoder-decoder framework, in which the en-
coder is a graph neural network that learns the
representation for each element, and the de-
coder predicts the ordering of each local neigh-
borhood of the graph in turn. We apply our
framework to multilingual surface realization,
which is the task of ordering and completing
sentences with their dependency parses given
but without the ordering of words. Experi-
ments show that our approach is much better
for this task than prior works that do not con-
sider graph structures. We participated in 2019
Surface Realization Shared Task (SR'19) , and
we ranked second out of 14 teams while out-
performing those teams below by a large mar-
gin.

1 Introduction

Sorting and ordering a sequence of items is a fun-
damental problem to computer science and artifi-
cial intelligence. When under the problem setting
where a pairwise comparison function is not clear,
one may wish to adopt a learning approach to rank
any two elements in the sequence, and heuristi-
cally find the ordering that optimally agrees with
the ranking function (Cohen et al., 1998). How-
ever, in many real world problems, the ordering
of two elements may largely depend on the other
items in the sequence (e.g. word order in natural
languages), which makes learning a good pairwise
ranking function very hard.

Recent advances in deep learning have opened
many doors in solving sequence prediction prob-
lems. These neural-network-based frameworks

typically involve an encoder that learns a context-
sensitive representation for each element, and a
decoder that predicts a probability distribution
over possible outputs at each time step in an auto-
regressive manner (Sutskever et al., 2014). This
framework has been adapted to performing the
task of sorting by using an encoder that is “order-
less” and a decoder that predicts the indices of el-
ements in the sequence (Vinyals et al., 2016).

Many important machine learning problems in-
volves graph-structured data, such as social net-
works, citation networks, or parse trees in nat-
ural language processing (NLP). There has been
a surging interest in modelling graphs with deep
neural networks in the last few years. Unlike tradi-
tional spectral approaches that work with the spec-
tral representations of graphs (Belkin and Niyogi,
2002), deep learning has the flexibility that it pro-
vides end-to-end solutions to much more complex
problems such as graph generation and transduc-
tion.

Surface realization is a natural language gener-
ation task in which sentences are generated given
input meanings. In particular, the Multilingual
Surface Realization Task (Mille et al., 2019) de-
rived inputs from universal dependency (UD) tree-
bank (De Marneffe et al., 2014), a framework
that aims to facilitate cross-lingually consistent
grammatical annotations. The task consists of
two tracks. The shallow track starts from UDs
with word order information removed and words
are lemmatized. The task consists in determin-
ing the word order and inflecting the words. The
deep track further removes function words that are
leaves in the dependency structures, and the task
additionally consists in introducing removed func-
tion words.

In this paper, we are interested in the scenario
where the sequences to be sorted have graph struc-
tures embedded. Our main contribution is a novel
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graph-to-graph learning framework for ordering
graph elements. Furthermore, we evaluated our
framework on a downstream task – surface real-
ization – that has many impactful applications. We
believe our approach is applicable to other prob-
lem domains.

2 Related Work

We survey the work related to our approach
from the following three aspects: deep learning
for combinatorial optimization, deep learning for
graphs, and structured language generation.

2.1 Neural Combinatorial Optimization

Most sequence-to-sequence models only handles
outputs of fixed vocabulary. Pointer Network
(Vinyals et al., 2015) was first proposed for pre-
dicting the indices of elements of any given out-
put set, and was applied to solving combinatorial
problems suchs as Travelling Salesman Problem
(TSP). A set-to-sequence (Vinyals et al., 2016)
model was developed for investigation on the im-
portance of order in various machine learning
problems. This framework learns a holistic rep-
resentation of the input set by repeatedly applying
attention on the entire set. Last but not least, deep
reinforcement learning has also been investigated
for solving more complex combinatorial problems
such as TSP (Bello et al., 2016).

2.2 Graph Neural Networks

Learning representations of graphs with deep neu-
ral networks has attracted a lot of attention in
the recent years, and deep learning has achieved
success in graph-related tasks such as classifi-
cation (Kipf and Welling, 2017) and generation
(You et al., 2018). Graph neural networks gen-
erally follow a recursive neighborhood aggrega-
tion scheme, where the embedding of each node
is computed with the embeddings of its neigh-
bors and itself. After k iterations, the embed-
ding contains the information of its k-hop neigh-
borhood in the graph. Besides graph represen-
tation learning, extensive research has been con-
ducted on the transduction between sequences and
graphs, including sequence-to-graph (Aharoni and
Goldberg, 2017), graph-to-sequence (Beck et al.,
2018), and graph-to-graph (Sun and Li, 2019)
learning problems.

2.3 Structured Language Generation

Graph structures are ubiquitous in representa-
tions of natural language. Despite the success of
sequence-to-sequence learning for language gen-
eration (especially machine translation), NLP re-
searchers have started to pay a substantial amount
of efforts into incorporating tree structures into
neural language generation in the recent years.
Application domains include machine translation
(Wang et al., 2018), dialog response generation
(Du and Black, 2019), and document summariza-
tion (Liu et al., 2019). Tree-based language gener-
ation models typically sequentialize the parse tree
of sentences by some pre-defined traversal order,
and generate the tree node in an autoregressive
manner. The most common traversal orders are
depth-first, left-to-right (pre-order) and breadth-
first, left-to-right (level-order).

3 Methods

3.1 Problem Definition

We first give the mathematical formulation of the
problem. Given graph G = (V,E) where V is
the vertices and E is the edges, we try to learn
an ordering function π : V −→ {n ∈ N | 1 ≤
n ≤ |V |}. Each vertex has multiple attributes of
discrete type. Denote the attribute a of vi by a(vi).

3.2 Encoder Architecture

Our encoder uses a Graph Attention Network
(GAT) (Veličković et al., 2018). Attention mecha-
nism has been widely used for handling orderless
inputs, such as sets (Vinyals et al., 2016) and mem-
ory (Sukhbaatar et al., 2015). GAT learns repre-
sentations for each graph node through a stack of
graph attention layers. At each layer, the informa-
tion of local neighborhood of each node is aggre-
gated through attention and integrated to the em-
bedding of the node. More specifically, let gil be
the embedding of node i at layer l. Embeddings
of layer 0 are input features, which are the sum of
embeddings of each node attributes:

hi0 =
∑
a

Ea(vi)

where E is the embedding matrix of attributes.
For each node i, the importance of neighbor j

is computed with the scaled inner product of pro-
jected features of i and j and normalized by soft-



20
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Figure 1: The order of visits for sentence ”Both of my dogs like eating sausages.” in our decoding algorithm. The
nodes being considered for ordering are highlighted with red.

max:

eijl =
1√
d
〈Wk

l gi,l−1,W
k
l gj,l−1〉

αijl =
exp(eijl)∑

j,(i,j)∈E
exp(eijl)

and the local neighborhood is aggregated through
the weighted sum of the embeddings. Similar to
Transformer (Vaswani et al., 2017), we employ
multi-head attention

gkil =
∑

j,(i,j)∈E

αkijlg
k
j,l−1

g′il = Concat(gkil)

where k is the index of attention heads. The atten-
tion values are transformed by a one-layered feed-
forward network with residual connection.

gil = g′il + FFNl(g
′
il)

It is clear that these graph embeddings are invari-
ant to permutation through attention mechanism.
When modelling graphs with GAT, all vertices are
considered adjacent to itself. Consequently, the
embeddings of each node at all graph attention
layers include the embedding of itself. Since the
inner product between oneself is always maximal,
the embeddings of the node itself will always dom-
inate the embeddings of its neighbors when aggre-
gating its local neighborhood. It is also clear that
the embeddings at layer k represent the informa-
tion of k-hop neighborhood of each node. We use
the summation of embeddings from all layers as
the final representation of graph nodes:

gi =
∑
l

gil

We also tried concatenation followed by linear
transform for aggregating all layers, but this ap-
proach is no better than simple summation.

Since dependency graphs are directed, it might
be natural to perform unilateral attention (i.e. the
parent uses the information of its children but
not the other way around). However, we found
from experiments that ignoring the directed-ness
of graphs and using bilateral attention (i.e. the
children also use the information of their parent)
would perform much better than the first approach.

3.3 Decoder Architecture
At decoding stage, we order the graph elements
by selecting the next element one by one. At each
step of selection, we have the sequence of past ele-
ments that are already ordered available. A natural
choice would be using a recurrent neural network
(RNN) to encode the ordered elements. The hid-
den state from RNN decoder at each step would
be used for selecting the next element. This idea
is developed as Pointer Network (Vinyals et al.,
2015). Let ht be the hidden state of RNN decoder
at time t, Pointer Network predicts the distribution
over the next element through attention:

uit = vT tanh(W1ei +W2ht)

P (i | vπ(1) . . . vπ(t)) = softmaxi(uit)

where ei is the embedding of element i. In our
architecture, we propose two modifications. First,
we use dot product for computing attention. Sec-
ond, we add candidate component when comput-
ing attention.

uit = 〈gi,W1ht〉+ 〈gi,
∑
j∈Ct

gj〉

where Ct = {j | j 6∈ {π(1) . . . π(t − 1)}} is
the set of candidate indices that are not selected in
previous steps. It is intuitive to add the embedding
of candidates to bias the model towards selecting
from the remaining nodes. We found this modifi-
cation significantly improves the performance.

The model described above is not inherently de-
signed to handle graphs. To incorporate graph
structures in decoding, we predict the order of
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nodes of each neighborhood in turn. We start with
the root of the graph, and order the set consisting
of the root and its neighbors. Then we recursively
repeat the process for each of the children of the
parent from left to right based their predicted or-
der. An example is provided in the figure above.
We also provide pseudocode for our decoding al-
gorithm. TreeSort is used for arranging the order
of each local neighborhood, and TreeLinearize is
for converting the sorted tree into a sentence. The
sort function sorts the input elements using the de-
coder architecture described above. It takes two
arguments: the first one is the set to be sorted, and
the second one is the initial state of the RNN de-
coder. It returns the sorted set and the last hidden
state from the RNN decoder. TreeLinearize simply
merges subtrees by interpolating spaces.

One limitation of using TreeLinearize is that it
cannot generate non-projective trees, i.e. when
nodes are put in linear order, there are edges
crossing over each other. There are about 2.5%
parses are non-projective in the English dataset,
so the degradation in performance is negligible.
In order to generate non-projective trees, one may
want to use a linearization algorithm alternative to
TreeLinearize that generates the whole sequence
based on the topological order of nodes returned
by TreeSort. At each step, the choices of nodes
should be limited to those that are not preceded by
any unselected nodes with higher topological or-
der.

To see why tree decoding is advantageous over
ordering the whole sequence at a time, consider
the size of the search space of both approaches.
The hypothesis space of sequence decoding is fac-
torial in the number of vertices (i.e. |V |!). In graph
decoding, at each node v, the number of nodes to
be ordered is the degree of v, d(v) (since the nodes
to be ordered include v but not parent of v). In the
example shown above, the total number of permu-
tations of the sentence is 7! = 5040, while with
tree decoding, the number of ordering to be con-
sidered reduced to (3!)3 = 216. The difference
is even larger when there are more words in the
sentence. So tree decoding gains performance by
reducing the size of search space.

The full model is trained by maximizing the
likelihood of choices of indices. We apply candi-
date masking, i.e. the candidates that are already
selected in previous steps are assigned zero prob-
ability.

Algorithm 1 Pseudocode for tree decoding proce-
dures.

procedure TREESORT(node, h)
if node is a leaf then

return
else

n← node
n.children← []
l← n ∪ node.children
l, h← sort(l, h)
node.sorted← l
for ch in l do

TreeSort(ch, h)

procedure TREELINEARIZE(node)
if node is a leaf then

return node.word
else

s← empty string
for ch in node.sorted do

s← s+′ ′+TreeLinearize(ch)

return s

3.4 Morphology
The MSR challenge requires realizaton of lem-
matized words. Since this is not the main focus
of our paper, we briefly describe our approach
here. After the words are ordered into sentences
in the first stage described above, we obtain BERT
embeddings (Devlin et al., 2019) of each word.
We train a character-level sequence-to-sequence
model with attention for morphological inflection,
where the source is the lemmatized word and the
target is the realization. The BERT embedding
is used for constructing the initial state of the de-
coder, so that the morphology model may use con-
textual information. The concatenation of decoder
hidden states and embeddings of syntactic infor-
mation such as tense and number is used for pre-
dicting characters.

4 Experiments

4.1 Data and Preprocessing
We use SR'19 challenge dataset (Mille et al.,
2018). The data is obtained from the universal
dependency treebank (Zeman et al., 2018). The
dataset includes many major languages, such as
English, Spanish, and Chinese. Word orders are
hidden and words are randomly shuffled. Our
model uses the following attributes for graph at-
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Table 1: Average performance on English dataset (dev)
of shallow track with different hyperparameters. All
results are evaluated without morphological inflections.

BLEU DIST NIST
L = 0 76.4 85.3 14.4
L = 1, H = 8 79.9 90.6 14.5
L = 2, H = 8 82.8 91.5 14.7
L = 3, H = 8 83.2 91.4 14.7
L = 4, H = 8 83.5 91.1 14.7
L = 5, H = 8 83.6 92.1 14.7
L = 6, H = 8 83.3 91.0 14.7
L = 5, H = 4 82.3 91.3 14.6
L = 5, H = 16 83.9 92.0 14.7

tention networks: lexicons, part-of-speech tags,
types of the dependency relation with the gover-
nor, depths in the dependency graph, and relative
positions to the parent. All relative positions far-
ther than 2 are considered as one type.

4.2 Metrics
Three quantitative measure are used for evaluating
performance. BLEU measures the average pre-
cisions of n-gram overlap with references. NIST
is similar to BLEU but gives more weights to
less frequent n-grams. DIST measures the edit
distance between hypotheses and references, in
which either insertion, deletion, or substitution of
a word is considered an edit.

4.3 Model and Training Details
All models are implemented in PyTorch 1. The
Graph Attention Networks has output size of 512
for each attention layer, and the feedforward net-
works’ middle layers have 1024 dimension. RNN
decoders have hidden size of 512. Dropout is ap-
plied with rate 0.5. We use Adam optimizer with
learning rate 0.001. We did not use learning rate
warm-up as we did not find much improvement.

4.4 Main Results
We show the effects of hyperparameters of GAT
on performance. We vary the number of attention
layers and the number of heads in GAT. The results
are summarized in Table 1. Note that these results
are for hypotheses without morphological inflec-
tions, which are measured against lemmatized ref-
erences. We first examine the impact of number of
graph attention layers on performance. With only

1https://github.com/wenchaodudu/MSR

Table 2: Comparison between different learning
paradigms on English dev sets. All results are evalu-
ated without morphological inflections.

BLEU DIST NIST
set-to-graph

(no attention)
76.4 85.3 14.4

set-to-graph
(global attention)

79.9 90.6 14.5

graph-to-sequence 63.6 88.9 13.7
graph-to-graph 83.2 91.4 14.7

one layer of graph attention, performances are sig-
nificantly worse than multiple layers. On the other
hand, the improvement beyond using 3 layers is
marginal. Without any graph attention layer, the
model is essentially taking inputs as mathematical
sets, in which case its performance is the worst.
We are also interested in the effect of number of
attention heads. It appears that the best perfor-
mance is achieved with 8 heads, while attentions
with 4 heads and 16 heads are slightly worse off.

Table 1 shows that given local neighborhood in-
formation, the model learns more useful graph em-
beddings than without. We are interested in the
other end of the spectrum: what if each node has
global information of the set from the beginning?
We apply attention over the whole input graph for
each node without masking. This ignores the lo-
cal structures in graphs and is essentially treating
the inputs as sets. Results are listed in Table 2.
It seems that learning the embeddings of set ele-
ments holistically is better than learning for each
element in isolation, but still not as good as learn-
ing with graph structures.

We are also interested in the advantage of
graph-to-graph decoding over graph-to-sequence.
Graph-to-sequence baseline uses the graph em-
beddings from graph encoder, and follows the nor-
mal sequence decoding procedure. The results are
shown in Table 2. The difference between graph-
to-sequence and graph-to-graph is huge. Even if
graph-to-sequence decoding is capable of produc-
ing non-projective trees, learning is much more
difficult due to much larger hypothesis space. On
the other hand, graph-to-graph decoding deals
with smaller search space and exploits the hierar-
chical structure of sentences.

We also include the results with morphological
inflections in Table 3. It seems that the morphol-
ogy of English and Spanish are relatively easy,

https://github.com/wenchaodudu/MSR
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Table 3: Final performance on dev sets after word inflections. Results without considering inflections are paren-
thesized. We did not perform word inflection for Chinese datasets.

BLEU DIST NIST
English 80.0 (83.6) 87.4 (92.1) 14.4 (14.7)
Chinese 66.5 63.4 12.3
Spanish 81.1 (83.2) 84.3 (85.2) 15.2 (15.4)
French 75.4 (85.5) 86.0 (88.6) 13.8 (14.8)
Japanese 67.1 (84.3) 72.5 (72.9) 10.8 (12.2)

hence the differences between the final numbers
and the results without inflections are smallest.
Solving morphological inflections for French is
harder than English and Spanish, and Japanese is
the hardest. Our approach achieved worst results
on Chinese dataset. We hypothesize this is be-
cause 1) the Chinese dataset contains more non-
projective trees and 2), the Chinese dataset is the
smallest one comparing to other languages.

5 Conclusion

In this work, we proposed a novel graph-to-graph
framework for ordering graph elements and gener-
ating sentences with projective dependency struc-
ture. Empirical results show competitive perfor-
mance on surface realization task. Furthermore,
exploiting graph structures is indeed helpful for
such task. One future direction would be finding
an end-to-end approach for jointly finishing and
ordering graphs, as required in the deep track of
surface realization challenge. Another direction
would be finding an end-to-end approach for gen-
erating both projective and non-projective trees.
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