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Abstract

We study the problem of generating inter-
esting endings for stories. Neural genera-
tive models have shown promising results
for various text generation problems. Se-
quence to Sequence (Seq2Seq) models are
typically trained to generate a single output
sequence for a given input sequence. How-
ever, in the context of a story, multiple end-
ings are possible. Seq2Seq models tend to
ignore the context and generate generic and
dull responses. Very few works have stud-
ied generating diverse and interesting story
endings for a given story context. In this
paper, we propose models which generate
more diverse and interesting outputs by 1)
training models to focus attention on im-
portant keyphrases of the story, and 2) pro-
moting generation of non-generic words. We
show that the combination of the two leads
to more diverse and interesting endings.

1 Introduction

Story ending generation is the task of generating
an ending sentence of a story given a story con-
text. A story context is a sequence of sentences
connecting characters and events. This task is
challenging as it requires modelling the char-
acters, events and objects in the context, and
then generating a coherent and sensible ending
based on them. Generalizing the semantics of
the events and entities and their relationships
across stories is a non-trivial task. Even harder
challenge is to generate stories which are non-
trivial and interesting. In this work, we focus on
the story ending generation task, where given a
story context - a sequence of sentences from a
story, the model has to generate the last sentence
of the story.

∗ equal contribution

Context
My friends and I did not know what to do
for our friends birthday. We sat around the
living room trying to figure out what to do.
We finally decided to go to the movies. We all
drove to the theatre and bought tickets.

Specific response (ground truth)
The movie turned out to be terrible but our
friend had a good time.
Generic response (seq2seq output)
We were so happy to see that we had a good
time.

Table 1: For a given story context there can be mul-
tiple possible responses. The ones which are more
specific to the story are more appealing to the users.

Seq2seq models have been widely used for the
purpose of text generation. Despite the popu-
larity of the Seq2seq models, in story genera-
tion tasks, they suffer from a well known issue
of generating frequent phrases and generic out-
puts. These models when trained with Maxi-
mum Likelihood Estimate (MLE), learn to gen-
erate sequences close to the ground truth se-
quences. However, in story generation tasks,
there can be multiple possible reasonable out-
puts for a given input story context. MLE ob-
jective in these models results in outputs which
are safe (that is more likely to be present in any
output), but also bland and generic. Some ex-
amples of such generic outputs in story ending
generation task are - "He was sad", "They had a
great time", etc. Table 1 shows an example story
from the ROC stories corpus (Mostafazadeh
et al., 2017) and the corresponding specific and
generic responses.
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There have been many attempts to solve the
issue of generation of generic responses. They
can be broadly categorized into two categories:

1. Use conditionals such as emotions, senti-
ments, keywords, etc. that work as fac-
tors to condition the output on (Li et al.,
2016b; Hu et al., 2017a). When the models
focus on these conditionals given as addi-
tional input features, they tend to generate
outputs which are more relevant and spe-
cific to the conditionals, which leads to less
generic outputs. In our models, we use the
keyphrases present in the story context as
conditionals.

2. Modify the decoding procedure (Vijayaku-
mar et al., 2018) with beam search or other
variants, or the loss of the decoder (Baheti
et al., 2018; Li et al., 2016a) to encourage the
model to generate more diverse outputs.
Our proposed model uses the ITF loss func-
tion suggested by Nakamura et al. (2018) to
encourage the decoder to produce more in-
teresting outputs.

We show that our proposed models can gen-
erate diverse and interesting outputs by condi-
tioning on the keyphrases present in the story
context and incorporating a modified training
objective. Apart from human judgement based
evaluation, we measure performance of the
models in terms of 1) Diversity using DISTINCT-
1,2,3 metrics and 2) Relevance by introducing
an automatic metric based on Story Cloze loss.
Experiments show that our models score higher
than current state of the art models in terms of
both diversity and relevance.

For reproducibility purposes we are making
our codebase open source 1.

2 Related Work

There has been a surge in recent years to tackle
the problem of story generation. One common
theme is to employ the advances in deep learn-
ing for the task. Jain et al. (2017) use Seq2Seq
models (Sutskever et al., 2014) to generate sto-
ries from descriptions of images. Huang et al.
(2018) leverage hierarchical decoding where a
high-level decoder constructs a plan by gener-
ating a topic and a low-level decoder generates

1https://github.com/witerforcing/WriterForcing

sentences based on the topic. There have been
a few works which try to incorporate real world
knowledge during the process of story genera-
tion. Guan et al. (2018) use an incremental en-
coding (IE) scheme and perform one hop rea-
soning over the ConceptNet graph ConceptNet
in order to augment the representation of words
in the sentences. Chen et al. (2018) also tackle
the problem in a similar way by including "com-
monsense knowledge" from ConceptNet as well.
Several prior work focus on generating more co-
herent stories. Clark et al. (2018) model en-
tity representations explicitly by combining it
with representations of the previous sentence
and Martin et al. (2018) model events represen-
tations and then generate natural language sen-
tences from those events (event2sentence). Li
et al. (2018) use adversarial training to help the
model generate more reasonable endings.

A common problem with such neural ap-
proaches in general is that the generated text is
very "safe and boring". There has been a lot
of recent efforts towards generating diverse out-
puts in problems such as dialogue systems, im-
age captioning, story generation, etc., in order to
alleviate the safe or boring text generation prob-
lem. Methods include using self-attention Shao
et al. (2017), Reinforcement Learning (Li et al.,
2017), GANs etc. Xu et al. (2018) proposed a
method called Diversity-Promoting Generative
Adversarial Network, which assigns low reward
for repeatedly generated text and high reward
for novel and fluent text using a language model
based discriminator. Li et al. (2016a) propose a
Maximum Mutual Information (MMI) objective
function and show that this objective function
leads to a decrease in the proportion of generic
response sequences. Nakamura et al. (2018) pro-
pose another loss function for the same objec-
tive. In our models we experiment with their loss
function and observe similar effects.

Recent works have also made advances in
controllable generation of text based on con-
straints to make the outputs more specific. Peng
et al. (2018) have a conditional embedding ma-
trix for valence to control the ending of the
story. Hu et al. (2017b) have a toggle vector
to introduce constraint on the output of text
generation models using Variational Auto En-
coders(Doersch, 2016). Generating diverse re-
sponses based on conditioning has been done
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extensively in the field of dialogue systems. Xing
et al. (2016); Zhou et al. (2018); Zhang et al.
(2018) propose conditioning techniques by us-
ing emotion and persona while generating re-
sponses. Conditioned generation has also been
studied in the field of story generation to plan
and write (Yao et al., 2018; Huang et al., 2018)
stories.

In this work, we focus on generating more di-
verse and interesting endings for stories by in-
troducing conditioning on keyphrases present
in the story context and encouraging infrequent
words in the outputs by modifying the training
objective, thus leading to more interesting story
endings.

3 Background

3.1 Sequence-to-Sequence with Attention

We use a Seq2Seq model with attention as our
baseline model. Words (wi ) belonging to the
context of the story are fed one by one to the
encoder (uni-directional but multi-layer) which
produces the corresponding hidden representa-
tions henc

i . Finally, the hidden representation
at the final timestep (T) is passed on to the de-
coder. During training, for each step t, the de-
coder (a unidirectional GRU) receives the word
embedding of the previous word(xt−1) and the
hidden state (hdec

t−1). At training time, the word
present in the target sentence at timestep t −1 is
used and at test time, the actual word emitted by
the decoder at the time step t −1 is used as input
in the next time step.

However, to augment the hidden representa-
tion that is passed from encoder to the decoder,
one can use the mechanism of attention (Bah-
danau et al., 2014). The attention weights at time
step t during decoding, denoted as at , can be
calculated as:

e t = vT tanh
(
Wdec hdec

t +Wenc henc
1:Tsr c

)
(1)

at
i = softmax

(
e t

i

)
(2)

where Wdec , Wenc and vT are learnable pa-
rameters and at

i denotes the i th component of
the attention weights. The attention weights can
be viewed as a probability distribution over the
source words, that tells the decoder where to
look to produce the next word. Next, the atten-
tion weights are used to produce a weighted sum

of the encoder hidden states, known as the con-
text vector(ct ):

ct =
Tsr c∑
i=1

at
i henc

i (3)

This context vector is then concatenated with
the embedding of the input word. It is used by
the decoder to produce a probability distribu-
tion. P vocab

t over the whole vocabulary:

P vocab
t = Decodert ([xt−1 : ct ];ht ) (4)

During training, the loss for timestep t is the
negative log likelihood of the target word w∗

t for
that timestep.

losst =− logP
(
w∗

t

)
(5)

Thus, the overall averaged loss of the whole se-
quence becomes:

loss = 1

Tdec

Tdec∑
t=1

losst (6)

4 Model Overview

We now describe our model and its varia-
tions. We hypothesize that conditioning on the
keyphrases present in the story context leads to
more specific and interesting outputs. We ex-
periment with several variants for incorporating
keyphrases in our base model. We further adapt
the loss suggested by Nakamura et al. (2018) to
encourage the model to generate infrequent to-
kens.

4.1 Keyphrase Conditioning

In this section we briefly describe four differ-
ent variants used for incorporating keyphrases
from the story context. We first extract top
k keyphrases from the story context using the
RAKE algorithm (Rose et al., 2010). RAKE deter-
mines the keyphrases and assigns scores in the
text based on frequency and co-occurrences of
words. We then sort the list of keyphrases by
their corresponding scores and take the top-k of
those. Note, each of the keyphrases can contain
multiple words. Each of the word in a multi-
word key phrase is assigned the same score as
the keyphrase.

We use the top-k keyphrases and ignore the
rest. For that, we explicitly set the score of 0 to
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all the keyphrases which couldn’t get to the top-
k list. Next, the scores of these top-k keyphrases
are normalized so that the total score sums to 1.
We call this set keyphrases and its correspond-
ing score vector p. p is a vector with length
equal to the length of the story context, and the
value of every element j is equal to score of the
keyphrase to which the word w j belongs.

In all the four model variants described next,
we incorporate the score vector p to encourage
the model to condition on the keyphrases.

4.1.1 Keyphrase Addition

In a Seq2Seq model with attention, for every
timestep t during decoding, the model generates
a distribution at

i which is the weight given for a
given source context word wi . In this variant, the
model is provided an additional keyphrase at-
tention score vector p along with the self-learnt
attention weight vector at . To combine the two
vectors, we simply add the values of the two vec-
tors for each encoder position i and normalize
the final vector a

′t
i .

a
′t
i =∑

i
at

i +pi

a
′t
i = a

′t
i

|a ′t
i |

Now at each time step t of the decoder, we
compute the new context vector as follows:

c
′
t =

Tsr c∑
i=1

a
′t
i henc

i (7)

4.1.2 Context Concatenation

This variation calculates two separate con-
text vectors - one based on attention weights
learnt by the model, and another based on the
keyphrase attention score vector. Then both
these context vector are concatenated. The intu-
ition for this method comes from multi-head at-
tention (Vaswani et al., 2017), where different at-
tention heads are used to compute attention on
different parts of the encoder states. Similarly we
also expect the model to capture salient features
from both types of context vectors.

kt =
∑

i
pi henc

i (8)

c ′t = [kt ;ct ] (9)

We use this new context vector to calculate
our probabilities over the words as described in
equation 4.

4.1.3 Coverage Loss

This is a variant which implicitly encourages the
model to pay attention to all words present in
the context. We adapt the attention coverage
based loss proposed by See et al. (2017). It also
helps in avoiding repeated attention across dif-
ferent timesteps while decoding. Due to this
constraint, the model should focus on different
words in the story and generate outputs condi-
tioned on these words. The loss function which
is presented in the paper is :

losst =− logP
(
w∗

t

)+λ∑
i

min
(
at

i ,si
)

(10)

Here si is the sum of attention weight vectors till
i time steps and at

i is the attention weight vector
for the current time step i.

4.1.4 Keyphrase Attention Loss

In this variant, instead of explicitly forcing the
model to attend on the keyphrases, we provide
additional guidance to the model in order for it
learn to attend to keyphrases. We introduce an
attention similarity based loss. We first create a
coverage vector q , which is the sum of the atten-
tion weights across all the decoders time steps.
We then calculate Mean Squared Error loss be-
tween this vector and our keyphrase score vector
p. This loss is calculated once per story after the
whole decoding of the generated ending has fin-
ished. Unlike the first two variants, this method
only nudges the model to pay more attention to
the keyphrases instead of forcing attention on
them. While backpropagating into the network,
we use two losses. One is the original reconstruc-
tion loss which is used in Seq2Seq models and
the other is this keyphrase based attention loss.
This can be summarised by the following set of
equations.

q =
Tdec∑

t
at (11)

losskeyphrase = MSE(q, p) (12)

Where MSE is the mean squared error between
the coverage vector and the probability distribu-
tion produced by the RAKE algorithm. This loss
is weighted by a factor λ and added to the cross-
entropy loss.
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Train Set Dev set Test Set
ROC Stories 90,000 4,081 4,081

Table 2: The number of train, dev and test stories in
each of the ROCStories corpus.

4.2 Inverse Token Frequency Loss

As mentioned earlier, Seq2Seq models tend to
generate frequent words and phrases, which
lead to very generic story endings. This hap-
pens due to the use of conditional likelihood as
the objective, especially in problems where there
can be one-to-many correspondences between
the input and outputs. MLE loss unfairly penal-
izes the model for generating rare words which
would be correct candidates, but are not present
in the ground truth. This holds for our prob-
lem setting too, where for the same story context,
there can be multiple possible story endings.
Nakamura et al. (2018) proposed an alternative
Inverse Token Frequency (ITF) loss which as-
signs smaller loss for frequent token classes and
larger loss for rare token classes during train-
ing. This encourages the model to generate
rare words more frequently compared to cross-
entropy loss and thus leads to more interesting
story ending outputs.

5 Experimental Setup

5.1 Dataset

We used the ROCStories (Mostafazadeh et al.,
2017) corpus to generate our story endings. Each
story in the dataset comprises of five sentences.
The input is the first four sentences of the story
and output is the last sentence of the story. The
number of stories which were used to train and
test the model are shown in Table 2.

5.2 Baselines and Proposed Methods

For the evaluation of story ending generation, we
compare the following baselines and proposed
models:
Seq2Seq: Seq2Seq model with attention trained
with vanilla Maximum likelihood Estimate(MLE)
loss.
IE + GA: model based on Incremental Encoding
(IE) and Graph Attention (GA) (Guan et al., 2019).
Seq2Seq + ITF: Seq2Seq model with attention
trained with ITF loss.
Keyphrase Add + ITF: Our model variant de-

scribed in section 4.1.1.
Context Concat + ITF: Our model variant de-
scribed in section 4.1.2.
Coverage Loss + ITF: Our model variant de-
scribed in section 4.1.3 based on (See et al.,
2017).
Keyphrase Loss + ITF: Our model variant de-
scribed in section 4.1.4.
Keyphrase Loss: Our model variant described in
section 4.1.4 without the ITF loss.

5.3 Experiment Settings

All our models use the same hyper-parameters.
We used a two layer encoder-decoder architec-
ture with 512 GRU hidden units. We train our
models using Adam optimizer with a learning
rate of 0.001. For the Keyphrase Attention Loss
model we assign the weight of 0.9 to Keyphrase
loss and 0.1 to reconstruction loss. We use the
best win percent from our Story-Cloze metric
(described in the next section) for model selec-
tion. For ITF loss we use the hyperparameters
mention in the original paper.

5.4 Automatic Evaluation Metrics

In this section, we briefly describe the various
metrics which were used to test our models. We
did not use perplexity or BLEU as evaluation
metric, as neither of them is likely to be an effec-
tive evaluation metric in our setting. This is since
both these metrics measure performance based
on a single reference story ending present in the
test dataset, however there can be multiple valid
possible story endings for a story. Therefore, we

DIST (Distinct): Distinct-1,2,3 calculates
numbers of distinct unigrams, bigrams and tri-
grams in the generated responses divided by
the total numbers of unigrams, bigrams and tri-
grams. We denote the metrics as DIST-1,2,3 in
the result tables. Higher Distinct scores indicate
higher diversity in generated outputs.

Story-Cloze: Since it is difficult to do human
evaluation on all the stories, we use the Story-
Cloze task (Mostafazadeh et al., 2017) to create
a metric in order to pick our best model and
also to evaluate the efficacy of our model against
Seq2Seq and its variants. This new proposed
metric measures the semantic relevance of the
generated ending with respect to the context. In
the Story-Cloze task, given two endings to a story
the task is to pick the correct ending. We can
use this task to identify the better of two endings.
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Model DIST-1 DIST-2 DIST-3
Seq2Seq 0.039 0.165 0.335
IE + GA 0.026 0.130 0.263
Seq2Seq + ITF 0.063 0.281 0.517
Keyphrase Add + ITF 0.065 0.289 0.539
Context Concat + ITF 0.065 0.294 0.558
Coverage Loss + ITF 0.066 0.315 0.590
Keyphrase Loss 0.055 0.243 0.443
Keyphrase Loss + ITF 0.068 0.318 0.588

Table 3: Model comparison based on automatic met-
rics DIST-1, DIST-2 and DIST-3.

In order to do so, we fine-tune BERT (Devlin
et al., 2018) to identify the true ending between
two story candidates. The dataset for this task
was obtained using the Story-Cloze task. Positive
examples to BERT are obtained from the Story-
Cloze dataset while the negative examples are
obtained by randomly sampling from other story
endings to get false ending for the story. We fine
tune BERT in the two sentence setting by provid-
ing the context as the first sentence and the final
sentence as the second. We pick the ending with
a greater probability (from BERT’s output head)
of being a true ending as the winner. With this
approach we were able to get a Story-Cloze test
accuracy of 72%.

We now use this pre-trained model to com-
pare the IE + GA model with our models. We se-
lect the winner based on the probability given by
the pre-trained Bert model.

5.5 Results

We measure the performance of our models
through automatic evaluation metrics as well
as human evaluation. We use Distinct1, Dis-
tinct2 and Distinct3 to measure the diversity of
our outputs. Additionally, we have built an au-
tomatic evaluation system using BERT and the
Story-Cloze task following Fan et al. (2018) in or-
der to compare our model against the state of
the art models like the IE model. We also per-
form human evaluation on the stories generated
by our model to get a overall sense of the model’s
performance.

5.5.1 Model Comparison and Ablation Study

From the Table 3, we observe that the Seq2Seq
model and the incremental encoding + graph at-
tention (IE + GA) model have the worst perfor-
mance in diversity. Although it has been shown
that the IE + GA model achieves a good BLEU
score, we observe that the model does not do as

Model Story-cloze
Seq2Seq 49.8
Seq2Seq + ITF 54.1
Keyphrase Add + ITF 52.9
Context Concat + ITF 55.8
Coverage Loss + ITF 54.7
Keyphrase Loss 53.4
Keyphrase Loss + ITF 55.9

Table 4: We measure the performance of the mod-
els using an automated Story-Cloze classifier which
compares the outputs of model with the outputs of
IE model.

Number of
keyphrases DIST-1 DIST-2 DIST-3 Story-Cloze

1 0.069 0.309 0.569 53.3
3 0.067 0.305 0.569 55.2
5 0.066 0.315 0.590 54.7
7 0.072 0.315 0.575 53.9
All 0.072 0.307 0.558 51.8

Table 5: Results for automatic metrics with varying
number of keyphrases. Diversity is measured using
DIST-1, DIST-2 and DIST-3 metrics. Story-Cloze loss
measures relevance in comparison to IE model.

well on our automated metrics like DIST-1, 2 and
3 because the model has learnt to generate end-
ings which match the distribution as a whole in-
stead of generating story specific endings.

As expected, Seq2Seq + ITF loss model greatly
outperforms the vanilla Seq2Seq model. As does
the Keyphrase loss, showing that these models
are indeed able to focus on different context
words resulting in more diverse generations.

The Story-Cloze based performance of the
models is presented in Table 4. The Keyphrase
+ ITF loss model outperforms all models on both
the diversity and Story-Cloze metrics. Hence, we
select Keyphrase + ITF loss model as the best
model in further discussions. As an ablation
study, we run the Keyphrase loss model with the
MLE loss instead of the ITF loss. We find that
this model performs poorly than then its version
with the ITF loss but still performs quite better
than the Seq2Seq model. Also we note that the
diversity obtained in Keyphrase + ITF loss model
is greater than the Seq2Seq + ITF model and the
Keyphrase loss model without ITF. It shows that
a combination of both, Keyphrase attention loss
and ITF loss, achieves better performance than
these components by themselves.
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Example 1

Context

Seq2Seq Model
IE Model
Our Best Model
Ground Truth

megan was new to the pageant world . in fact , this was her very
first one . she was really enjoying herself , but was also quite
nervous . the results were in and she and the other contestants
walked out . she was disappointed that she couldn’t have to learn
how to win . the next day , she was happy to have a new friend .
megan won the pageant competition .
they read off the names and megan had won !

Example 2

Context

Seq2Seq Model
IE Model
Our Best Model
Ground Truth

alicia was going on a trip to disney . she was very excited .
yet when she got there she did not like it .
she thought it was too childish .
she had to go home .
thankfully she got a call .
alicia decided to watch the movie instead .
she decided to never go back.

Example 3

Context

Seq2Seq Model
IE Model
Our Best Model
Ground Truth

katie found out her husband was cheating on her . she tried to
make it work , but he wasn’t interested . he took all her money
and divorced her . a few weeks later , his mistress dumped him
katie was so happy , he helped her to help her out .
he was so upset , he decided to go home .
katie was devastated by himself and dumped her boyfriend .
she is much happier for being rid of him .

Example 4

Context

Seq2Seq Model
IE Model
Our Best Model
Ground Truth

tom had a cat . he noticed the litter wasn’t being used .
after a while he started noticing a bad smell . he looked around
and found a corner under the sofa .
he was able to get it back .
he was able to get it out and clean it .
tom cleaned the catnip smell up and cleaned it outside .
it was full of cat poop that he had to clean up .

Table 6: Qualitative analysis of the outputs produced by our model. For each context of the story, we show
the endings generated by various models. It can be seen from the outputs that our model is able to generate
specific outputs for a context.

5.5.2 Effect of varying number of keyphrases

In order to better understand the effect of
keyphrases on the diversity and relevance of
story endings, we ran the Coverage Loss model
with varying number of keyphrases. Table 5
shows the results of the experiment. We see
that both Story-Cloze loss and DIST-1,2,3 are low
when we use 1 keyphrase and also when we use
all the keyphrases. This is expected, since in
the case of 1 keyphrase, the model has very lit-
tle keyphrase related information. In the other
extreme case, providing all keyphrases covers a
large proportion of the original context itself,
and thus does not provide any extra benefit. We
see good performance within the range of 3-5

keyphrases, where using 5 keyphrases gives the
best diversity and 3 keyphrases gives the best
Story-Cloze score. Informed by this experiment,
we use 5 keyphrases in all our other experiments.

5.6 Human Evaluation

Since automatic metrics are not able to capture
all qualitative aspects of the models, we per-
formed a human evaluation study to compare
our models. We first randomly selected 50 story
contexts from the test set, and show them to
three annotators. The annotators see the story
context, and the story endings generated by our
best model and the baseline IE+GA model in a
random order. They are asked to select a better
ending among the two based on three criteria -
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1) Relevance - Story ending should be appropri-
ate and reasonable according to the story con-
text. 2) Interestingness - More interesting story
ending should be preferred 3) Fluency - End-
ings should be natural english and free of errors.
We found that both models were preferred 50%
of the time, that is, both model was picked for
25 stories each. From a manual analysis of hu-
man evaluation, we found that our model was
selected over the baseline in many cases for gen-
erating interesting endings, but was also equiva-
lently penalized for losing the relevance in some
of the story endings. We discuss this aspect in
more detail in section 5.7.

5.7 Qualitative Analysis

In Table 6, we show some example generations of
our model and baselines. From example 1 and 2,
it can be seen that the baseline models produce
generic responses for story endings without fo-
cusing much on the context and keyphrases in
the story. However, our model conditions on
words like "pageant" in the story context, and in-
cludes it in the output even though it is a rare
word in the corpus. Another point to note is
that our model tends to include more proper
nouns and entities in its output, like alicia and
megan instead of using generic words like "he"
and "she". However, our model is penalised a
few times for being too adventurous, because it
tends to generate more rare outputs based on the
context. For example, in example 3, it got half of
the output correct till "katie was devastated", but
the other half "dumped her boyfriend" although
is more interesting than the baseline models, is
not relevant to the story context. The model in-
correctly refers to katie with the pronoun "him-
self". In example 4, our model’s generated out-
put is quite relevant and interesting, apart from
the token "catnip", for which it is penalized in
human evaluation. Hence, although our model
generates more interesting outputs, further work
is needed to ensure that 1) The generated out-
puts entail the story context at both semantic
and token level. 2) The generated output is logi-
cally sound and consistent.

6 Conclusion

In this paper we have presented several models
to overcome the generic responses produced by
the state of the art story generation systems. We

have both quantitatively and qualitatively shown
that our model achieved meaningful improve-
ments over the baselines.
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