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Abstract

Grapheme-to-phoneme conversion (g2p) is the
task of predicting the pronunciation of words
from their orthographic representation. His-
torically, g2p systems were transition- or rule-
based, making generalization beyond a mono-
lingual (high resource) domain impractical.
Recently, neural architectures have enabled
multilingual systems to generalize widely;
however, all systems to date have been trained
only on spelling-pronunciation pairs. We hy-
pothesize that the sequences of IPA characters
used to represent pronunciation do not capture
its full nuance, especially when cleaned to fa-
cilitate machine learning. We leverage audio
data as an auxiliary modality in a multi-task
training process to learn a more optimal inter-
mediate representation of source graphemes;
this is the first multimodal model proposed for
multilingual g2p. Our approach is highly ef-
fective: on our in-domain test set, our mul-
timodal model reduces phoneme error rate to
2.46%, a more than 65% decrease compared
to our implementation of a unimodal spelling-
pronunciation model—which itself achieves
state-of-the-art results on the Wiktionary test
set. The advantages of the multimodal model
generalize to wholly unseen languages, reduc-
ing phoneme error rate on our out-of-domain
test set to 6.39% from the unimodal 8.21%,
a more than 20% relative decrease. Further-
more, our training and test sets are composed
primarily of low-resource languages, demon-
strating that our multimodal approach remains
useful when training data are constrained.

1 Introduction

Graphemic and phonemic representations of
words are often no more than loosely related
within languages and can be in direct contradic-
tion between them. These inconsistencies intro-
duce errors into any application of speech technol-
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ogy which has to convert between these two rep-
resentations: namely text-to-speech and speech-
recognition systems.

Very early grapheme to phoneme systems were
monolingual and often restricted to English due to
dataset availability (Weide, 1998; Kingsbury et al.,
1997; Sejnowski, 1987). These early systems were
designed to address the problem of intra-language
discrepancies through rule based transition sys-
tems. These systems required painstaking tailor-
ing to individual languages, and their performance
was largely limited to that language’s domain. Re-
cent work has extended finite state automata con-
structed in this way for high resource languages
to very similar low resource languages by apply-
ing distance metrics and linguistic expertise (Deri
and Knight, 2016), but this approach is limited in
application and performance.

Relieving some of the burden of technical ex-
pertise, statistical methods surpassed rule-based
ones, with emphasis on joint sequence modeling
(Chen, 2003; Bisani and Ney, 2008; Jiampojamarn
et al., 2007). These methods improved perfor-
mance, but they mandate explicit training align-
ments. This can be avoided by using neural atten-
tional models, as in Toshniwal and Livescu (2016).
Their work makes clear the parallel between this
sequence prediction task and more traditional ma-
chine translation; this parallel inspires the model
proposed in Peters et al. (2017), which, motivated
by similarities in vocabularies, spellings, writing
systems, and phonemic inventories between low
and high resource languages, applies multilingual
MT techniques to train a massively multilingual
g2p system.

This application is effective, but it—like all
work on this task before it—neglects perhaps the
most rich source of information on pronunciation
available: speech data. All existing grapheme to
phoneme systems have been trained on spelling-
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pronunciation data alone, neglecting the audio
modality largely due to constraints imposed by
available datasets. Suspecting that the prepro-
cessed IPA sequences used to represent pronunci-
ation encode it insufficiently, we propose to learn
more optimal grapheme representations and thus
make more accurate phoneme predictions by nov-
elly leveraging an auxiliary audio modality as part
of a multi-task training process.

2 Datasets

We discuss two datasets in this paper. We focus on
the newer Wilderness dataset (Black, 2019), which
is multilingual and contains paired text and speech
data. We compare results of our multimodal model
with all baselines on the Wilderness data. We also
include the Wiktionary dataset (Deri and Knight,
2016), which consists of textual data only, because
it has been commonly used in prior works on mul-
tilingual g2p systems. Wiktionary and Wilderness
have incompatible IPA character sets which pre-
vent us from training a model on Wilderness and
testing with Wiktionary. We report baseline results
only on Wiktionary to offer an approximate means
of comparison between the two datasets.

2.1 Wiktionary

The Wiktionary dataset, introduced in Deri and
Knight (2016), consists of single word spelling-
pronunciation pairs scraped from the open-source
multilingual dictionary maintained by Wikimedia.
Entries are extracted from high resource language
sites, which have instances for multiple languages.
This heavily biases the distribution, with English,
French, and German accounting for 51% of all
pairs. Filtering for length, each Wiktionary pro-
nunciation is mapped to Phoible phonemes after
accounting for a phoneme distance metric origi-
nal to this work. Following Peters et al. (2017),
we use the cleaned pronunciations and randomly
sample 10% of the corpus’ training split to use for
validation.

Train Test

Languages 311 507
Words 631,828 25,894
Scripts 42 45

Table 1: Corpus statics for Wiktionary dataset

2.2 Wilderness

We use the CMU Wilderness dataset1, introduced
in Black (2019), which contains of audio, aligned
text, and word pronunciations for over 700 lan-
guages. The source material consists of versions
of the New Testament, which speakers read in their
own language. Pronunciations are generated from
the audio by an HMM aligner and are transcribed
in X-SAMPA (Wells, 1995), an extension of the
Speech Assessment Methods Phonetic Alphabet
(SAMPA). X-SAMPA was used to encode sym-
bols of the International Phonetic Alphabet (IPA)
into 7-bit ASCII before the advent of Unicode. We
convert the X-SAMPA representations into true
IPA characters.

We represent the audio data from the CMU
Wilderness dataset as 39-dimensional MFCC
(Mel Frequency Cepstral Coefficients) features
(Sahidullah and Saha, 2012; Zheng et al., 2001;
Ganchev et al., 2005; Ittichaichareon et al., 2012),
a spectral-based parameter commonly used to
vectorize audio data which represents the short-
term power spectrum of an audio stream. The first
13 dimensions are the Mel frequency cepstral co-
efficients of the first 13 coefficients of the Fourier
transform of the audio stream. The next 13 dimen-
sions are the time-derivatives of those coefficients,
and the last 13 are the double time-derivatives.
The first 13 dimensions were calculated with
the Librosa python package (McFee et al.,
2015) method librosa.feature.mfcc.
Other dimensions were calculated with the
librosa.feature.delta method.

Directly comparing those dimensions has no
physical meaning, so we normalize those features
as

fi,u →
fi,u − min

u′∈U
(fi,u′)

max
u′∈U

(fi,u′)− min
u′∈U

(fi,u′)
· 0.95i

where U are the utterances and i ∈ {1..39}. We
used a sliding window of 25ms with 10ms stride.
MFCCs are not the only way to vectorize audio
data, and they are not necessarily the best, but they
are a sufficient representation to facilitate our ex-
periments.

The Wilderness dataset ranks the quality of
alignment for a language on the basis of the re-
construction score over a held out test set for a

1https://github.com/festvox/
datasets-CMU_Wilderness

https://github.com/festvox/datasets-CMU_Wilderness
https://github.com/festvox/datasets-CMU_Wilderness
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grapheme-based speech synthesizer trained on the
remaining language data. Reconstruction score is
measured in Mel Cepstral Distortion (MCD) (Toda
et al., 2007), a scaled Euclidean distortion met-
ric for comparing synthesized utterances to true
ones. Lower is better. For this dataset, when MCD
scores are less than 7, the synthesized outputs are
usually intelligible, and when they are less than 6,
the outputs are easily understood. We chose lan-
guages with MCD scores less than 6 for our exper-
iments; see Table 2 for more on these languages.

Resources constrain our experiments to a total
of 20 languages out of the available 700. Ten
of those languages are used for training, devel-
opment, and in-domain (ID) experiments; the re-
maining ten are used for out-of-domain (OoD) ex-
periments. Fifteen different language families are
represented. For training and validation, 1000 and
100 utterances are used for each ID language re-
spectively. Note that all languages trained on are
themselves low resource—a major departure from
previous work. For more details on each of the
languages, as well as expansions of the abbrevia-
tions, see Table 9 at the end of the paper.

In-Domain Out-of-Domain

Language MCD Language MCD

SHIRBD 4.96 MYYWBT 5.80
COKWBT 5.37 SABWBT 5.80
LTNNVV 5.82 LONBSM 5.83
XMMLAI 5.20 NHYTBL 5.92
TS1BSM 5.24 ALJOMF 5.93
GAGIBT 5.26 BFABSS 5.20
KNETBL 5.68 HUBWBT 5.98
TPPTBL 5.72 TWBOMF 5.98
HAUCLV 5.74 ENXBSP 5.99
ESSWYI 5.79 POHPOC 5.29

Table 2: MCD scores for Wilderness languages2

Verses Words Length (min)

Train 10,000 139,796 1060
Dev 1,000 13,937 106
ID Test 1,000 13,815 104
OoD Test 1,000 15,418 107

Table 3: Statistics for Wilderness-based corpus

3 Baseline

Multilingual neural machine translation tech-
niques have recently been applied to the g2p prob-
lem (Peters et al., 2017) to accommodate the lack
of data for low-resource languages. With many
low-resource languages sharing similar writing
systems with high-resource languages, ortho-
graphic representations of words in any language
are mapped to the corresponding phonemic repre-
sentations in a multisource sequence-to-sequence
model. We reproduce their architecture as our per-
formance baseline using OpenNMT (Klein et al.,
2017) on the Wiktionary and Wilderness datasets.
Briefly, the source graphemes (augmented with
language tags) and target phonemes are first pro-
cessed as character-based embedding sequences.
The model uses an encoder-decoder structure and
the global attention layer proposed by Luong
et al. (2015). We selected this model because
it achieved state-of-the-art results on Wiktionary
and represents a strong baseline for sequence-to-
sequence model performance on g2p.

Two common evaluation metrics for g2p mod-
els are Phoneme Error Rate (PER) and Word Er-
ror Rate (WER). Phoneme Error Rate represents
the Levenshtein distance over the target and pre-
dicted phonemes, normalized by the target se-
quence length. Word Error Rate represents the
percentage of predicted phoneme words which do
not exactly match their target phoneme words. For
our experiments, we extend the concept of Word
Error Rate to a metric that we term Sequence Er-
ror Rate (SER), which measures the percentage
of incorrectly predicted phoneme sequences. This
alteration is necessary because Wilderness utter-
ances consist of multiple words, and the phoneme
sequences are not segmented by word. WER

Examples SER PER

Example #1: ‘An example’

Predicted: [@ n I g z AE m p @ l]
Gold: [@ n I g z AE m p @ l] 0.00 0.00

Example #2: ‘And a second’

Predicted: [AE n d @ s @ k @ n]
Gold: [AE n d @ s E k @ n d] 100.00 20.00

Total Scores 50.00 10.00

Table 4: Examples for SER and PER calculations
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and SER are functionally identical for Wiktionary,
which comprises single-word grapheme-phoneme
pairs.

We note that other multilingual g2p systems
exist, such as Deri and Knight (2016) and Epitran
(Mortensen et al., 2018), although we do not
include these systems in the results. The Peters
et al. (2017) model previously outperformed the
Deri and Knight (2016) system on Wiktionary by
a significant margin, and Epitran is a rule-based
system that does not support the vast majority of
the low-resource languages we use.

4 Multimodal Approach

Multimodal models have been frequently explored
for feature mining (e.g., text, image, audio). Mul-
timodal learning commonly focuses on three ar-
eas: fusion of information, cross-modality learn-
ing, and shared representation mining (Ngiam
et al., 2011). A deep multimodal learning method
for automatic speech recognition was designed
(Mroueh et al., 2015) to fuse both audio and visual
modalities. In this case, the latent audio and video
features were concatenated and used jointly for the
prediction of speech. Recent work on multimodal
sentiment analysis (Pham et al. (2018b) and Pham
et al. (2018a)) demonstrated that an auxiliary task
of translating from a source to one or more tar-
get modalities results in a joint representation that
captures interactions between the modalities. We
base our model on this approach and apply it to a
sequence prediction task on multilingual data.

We develop a recurrent sequence-to-sequence
model with attention that learns a robust joint rep-
resentation for graphemes and speech data across
multiple languages, which is then used to pre-
dict a phoneme sequence given only graphemes3.
We hypothesize that the inclusion of the speech
modality will enable the model to learn a better
multilingual representation than text alone, and
that a multimodal representation will generalize to
unseen languages better than a text-only model.
A key feature of our model is that speech data
are only required for training; during inference the
model only uses grapheme inputs.

Our model is an LSTM sequence-to-sequence
model with a single encoder and two decoders
(Figure 1). One decoder predicts MFCC coef-

3Model code is available at https://github.com/
jamesrt95/Multimodal-Multilingual-G2P

ficients from graphemes (auxiliary task) and the
other predicts IPA character sequences (primary
task). Each task corresponds to a separate loss
function.

During training, three sequences are available
to the model: grapheme characters Xt, speech
MFCCs St, and phoneme characters Yt. The en-
coder is a biLSTM, with the output based on the
previous hidden state and the current grapheme
character in the input sequence:

he,t = LSTM(he,t−1, Xt) (1)

The decoders use the same basic architecture
with minor differences. The MFCC decoder con-
sists of an LSTM whose input is a concatenation of
the previous MFCC output Ŝt−1 and previous at-
tention context as,t−1. The LSTM hidden state is
fed to an MLP to produce the attention query qs,t.
The sequence of encoder hidden states is passed
through two separate MLPs to obtain attention
keys and values K and V . A dot-product global
attention mechanism from Vaswani et al. (2017)
follows. The resulting attention context as,t is then
projected by MLP down to a 39-dimension MFCC
vector Ŝt.

hs,t = LSTM(hs,t−1, [Ŝt−1; as,t−1]) (2)

qs,t =MLP (hs,t) (3)

K,V =MLP (he),MLP (he) (4)

as,t =
∑

softmax(qs,tK
T )V (5)

Ŝt =MLP (as,t) (6)

The phoneme decoder follows the same design
except that its output Ŷt is a distribution over
the IPA character vocabulary. No parameters are
shared between the decoders.

hy,t = LSTM(hy,t−1, [Ŷt−1; ay,t−1]) (7)

qy,t =MLP (hy,t) (8)

K,V =MLP (he),MLP (he) (9)

ay,t =
∑

softmax(qy,tK
T )V (10)

Ŷt = softmax(MLP (ay,t)) (11)

Model parameters are learned during train-
ing by empirical risk minimization over in-
put graphemes and paired MFCC vectors and
phoneme characters {Xt, St, Yt}, across all lan-
guages in the training set. A separate loss is

https://github.com/jamesrt95/Multimodal-Multilingual-G2P
https://github.com/jamesrt95/Multimodal-Multilingual-G2P
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Figure 1: Diagram of Multimodal g2p Model

calculated from the output of each decoder. We
use mean-squared error as loss function `S for
the MFCC output and cross-entropy as loss func-
tion `Y for the IPA output. The entire network
is trained end-to-end using a weighted sum of the
two losses where λ is a hyperparameter.

LS = E[`S(Ŝ, S)] (12)

LY = E[`Y (Ŷ , Y )] (13)

L = LY + λLS (14)

The encoder learns a joint embedding that mod-
els interactions between the grapheme and speech
modalities. This is accomplished via gradient de-
scent, as parameter updates for the encoder and
MFCC decoder are dependent on the grapheme
and speech sequences. The model is then able
to infer speech data when given only grapheme
inputs. At test time, the model is given only
grapheme inputs and the MFCC output is ignored.
We then perform beam search over the IPA de-
coder output to generate the final predicted se-
quence.

5 Experiments

First, we implemented the Peters et al. (2017)
baseline model separately on the Wiktionary and
Wilderness datasets. We then trained two vari-
ants of our sequence-to-sequence model on the
in-domain Wilderness data to compare the effects
of the multimodal representation. The first vari-
ant was multimodal (referred to as the Multimodal
Model). The parameters for this model are given
in Table 5. The second variant was unimodal (re-
ferred to as the Unimodal Model) and treated as

an additional baseline. During training for this
model, the loss term for the MFCC decoder was
ignored, so learned parameters were based solely
on the grapheme inputs and phoneme outputs. The
unimodal model also used the parameters given in
the table, except the MSE loss weight was zero.

We selected layer size parameters for the both
models that were similar to Peters et al. (2017)
so that differences in performance could be more
clearly attributed to the multimodal training pro-
cess. We set teacher forcing to 90% so that the
model’s inferences were not completely depen-
dent on seeing correct labels at each time step.
For the multimodal model, we weighted the MSE
loss from MFCC prediction at 0.1 because it was
an auxiliary objective, and the model’s learning
process tended to be more stable when weighted
lower than the primary cross-entropy objective.
We used results from the dev set to choose this
value. We also averaged the MFCC values over 10
consecutive frames; this helped the model to learn
more quickly and allowed for larger batch sizes.

The models were each trained on all languages
in the training set (i.e., each model was trained
to be multilingual). The training set was shuf-
fled so that there was no systematic ordering of
languages during training. The models were then
evaluated separately on the in-domain and out-of-
domain test sets.

6 Results

The results on the Wilderness datasets are pre-
sented in Table 7. We are only able to provide a
direct comparison between the performance of the
baseline model and of our models on the Wilder-
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Enc. type biLSTM
Dec. type LSTM
Enc. & dec. layers 1
Attention type Dot
Hidden layer size 128
Source emb. size 64
Target emb. size 64
Batch size 16
Optimizer Adam
Learning rate 1e-3
Teacher forcing rate 0.9
MSE loss weight (λ) 0.1
Training epochs 14
Beam size 10

Table 5: Multimodal Model Parameters

ness data: the Wiktionary dataset uses a different
and incompatible IPA character vocabulary, which
prevents us from training a model on Wilder-
ness and testing on Wiktionary. We report base-
line results on Wiktionary to offer an approximate
means of comparison between Wiktionary (an es-
tablished dataset) and Wilderness, which is newly
created.

Model SER PER

Peters et al. Baseline Model 43.23 37.85
Our Impl. of Peters et al. 37.87 26.00

Table 6: Comparison of Models on Wiktionary Dataset

For the Wilderness data, we report results on
two test sets (In-Domain and Out-of-Domain) to
illustrate generalization to unseen languages. The
ID test set consists of 100 unseen utterances from
each of the same 10 languages used in training,
whereas the OoD test set consists of 100 utter-
ances each from 10 languages that were not used
in training.

7 Discussion

Although we were pleasantly surprised to see the
performance of our implementation of the base-
line system from Peters et al. (2017) increase so
drastically from the results they report on the Wik-
tionary dataset, we take little credit for this result;
it can perhaps be attributed to improvements made
to the OpenNMT platform over the past two years,
but we replicated their experiments as faithfully as

Model SER PER

In-Domain Test Results

Baseline Model 46.90 25.06
Unimodal Model 31.20 7.05
Multimodal Model 9.50 2.46

Out-of-Domain Test Results

Baseline Model 84.20 43.16
Unimodal Model 49.30 8.21
Multimodal Model 38.10 6.39

Table 7: Comparison of Models on Wilderness Dataset

we were able.
On the other hand, we are happy to take credit

for the relative performances of our models on the
Wilderness dataset. We attribute much of the im-
provement to a more expressive attention mecha-
nism and to improved hyperparameter tuning, as
our underlying model used similar layer sizes to
the baseline.

Our hypothesis about the value of including au-
dio data during training is heartily confirmed by
the performance of our multimodal model: the
multimodal model performs better for both met-
rics not only on in-domain languages but also
on very different, wholly unseen languages. Our
multimodal approach to the task of grapheme to
phoneme conversion improves both performance
and generalization.

We note the multimodal model’s SER is much
worse on out-of-domain languages than in-domain
ones, albeit still surpassing the unimodal model’s

In-Domain Out-of-Domain
Lang PER SER Lang PER SER

SHI 5.24 14.00 MYY 14.10 100.00
COK 3.07 14.00 SAB 6.59 50.00
LTN 1.92 8.00 LON 1.51 14.00
XMM 1.91 8.00 NHY 18.60 22.00
TS1 1.62 6.00 ALJ 2.60 4.00
GAG 2.71 7.00 BFA 7.41 90.00
KNE 1.29 3.00 HUB 1.60 5.00
TPP 5.03 20.00 TWB 2.86 7.00
HAU 0.56 7.00 ENX 17.00 71.00
ESS 0.23 8.00 POH 3.36 18.00

Table 8: Multimodal Model Error Rates by Language
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In-Domain Out-of-Domain

Code Name Family Code Name Family

SHIRBD Shilha Afro-Asiatic MYYWBT Macuna Tucanoan
COKWBT Cora, Santa Teresa Uto-Aztecan SABWBT Buglere Chibchan
LTNNVV Latin Indo-European LONBSM Elhomwe Niger-Congo
XMMLAI Manadonese Malay Austronesian/Indo-Euro. NHYTBL Nahuatl Uto-Aztecan
TS1BSM Tsonga Niger-Congo ALJOMF Alangan Austronesian
GAGIBT Gagauz Turkic BFABSS Bari Nilo-Saharan
KNETBL Kankanaey Austronesian HUBWBT Huambisa Jivaroan
TPPTBL Tepehua Totonacan TWBOMF Tawbuid Austronesian
HAUCLV Hausa Afro-Asiatic ENXBSP Enxet Mascoyan
ESSWYI Yupik Eskimo-Aleut POHPOC Pokomchi Mayan

Table 9: More Information on Wilderness languages

(Table 8). The out-of-domain languages contain
characters that are out of vocabulary (OOV) from
the training set, and in most cases OOV charac-
ters comprise 15-20% of the input sequence. One
mistake in the output results in the entire sequence
being scored incorrect for SER, so even small PER
increases can lead to large swings in SER. In par-
ticular, the large increase in SER is primarily due
to four languages in the Out-of-Domain test set.
In the case of Macuna (MYY, 100 SER), the IPA
character 0 appears in nearly every utterance but
never occurs in the training set, so the model is
unable to predict it. Bari (BFA, 90.0 SER) is sim-
ilar, where N is highly common but never appears
in the training set. Enxet (ENX, 71.0 SER) and
Buglere (SAB, 50.0 SER) both frequently contain
ñ, which occurs only once in the training set.

We also note that our reimplementation of the
Peters et al. (2017) baseline produces a lower Se-
quence Error Rate on the single-word utterances in
the Wiktionary dataset than on the multi-word ut-
terances in the Wilderness sets. Longer sequence
pairs result in more opportunities for a model
to make a mistake. This effect is acute for the
sequence-level error, but even for PER, an incor-
rect output at one timestep may lead to cascading
mistakes at future timesteps. The comparable PER
scores on the Wiktionary and In-Domain Wilder-
ness set suggest that the datasets are comparable in
difficulty. Although we are unable to directly mea-
sure the multimodal model’s performance on Wik-
tionary, its substantial improvements on a compa-
rable task convince us of its efficacy.

8 Future Work

With recent advancements in language embed-
dings, we identify significant potential for improv-
ing the generalization of the model to unseen lan-
guages. Including language tags was shown to
be beneficial in previous work, and we predict
that exchanging the three-character tag for a high-
dimensional embedding to capture taxonomic re-
lationships between languages would only mag-
nify the effect. Similarly, we have demonstrated
the advantages of incorporating audio data during
training, but MFCCs are not necessarily the most
effective method of vectorizing that audio data. It
would be interesting to investigate the effects of
using other techniques, such as those in Haque
et al. (2019) and Chung and Glass (2018), for gen-
erating high-dimensional representations of audio
data.

We trained our model on approximately 0.1% of
the data included in the Wilderness dataset, leav-
ing tremendous opportunity for further learning.
The incorporation of more training data is likely
to improve results on its own, but it may also fa-
cilitate the use of a Transformer encoder-decoder
model (Vaswani et al., 2017), which we know to
require larger datasets than the LSTM variants.

We are very interested in experimenting with
graphemes encoded in non-Roman scripts. This
capacity is one of the most compelling facets of
the Peters et al. (2017) model, but we were unable
to explore it with our multimodal model: the New
Testament text is almost always Romanized in the
Wilderness data. We were furthermore unable to
effectively evaluate our multimodal model on the
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Wiktionary data after training on the Wilderness,
as the IPA character space over the Wilderness
dataset is much smaller than that of the Wiktionary
dataset. In the future, we would like to recon-
cile these differences, both in order to evaluate
our multimodal model on the Wiktionary test set
and to explore its performance over widely vary-
ing scripts.
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