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ABSTRACT
Latent stochastic encoder decoder models often are faced

with optimization issues such as latent collapse preventing
them from realizing their full potential of rich representation
learning and disentanglement. In this paper we present an ap-
proach to train such models by incorporating joint continuous
and discrete representation in the prior distribution. We eval-
uate the performance of proposed approach on a multitude of
metrics against vanilla latent stochastic models. We also per-
form a qualitative assessment and observe that the proposed
approach indeed has the potential to learn composite informa-
tion and explain novel combinations not seen in the training
data.
Index Terms: disentanglement, latent representation, cap-
tioning, composition, multimodal, continuous, discrete

1. INTRODUCTION

Tasks involving multiple modalities are challenging due to
two main reasons: Firstly, the model needs to represent and
summarize multimodal data so as to exploit the complemen-
tarity and redundancy of the involved modalities [1]. Sec-
ondly the model has to be able to translate relevant informa-
tion to one of the modalities without loss of generality. Con-
sider image captioning[2, 3] as an example to demonstrate
this: Models aimed at captioning are required to generate fac-
tual and grammatically meaningful image descriptions. For
accomplishing this, the model needs to learn a joint repre-
sentation that can capture global information about an image
such as objects, their attributes, relations between the objects
while discarding local information such as texture, etc. The
model relies on the learnt representation to simultaneously
reason about the inferred relationships between objects in a
different domain, natural language.

Attempting to tackle such tasks using encoder decoder
models leads to learning biases present in the data [4, 5]. Such
models usually fail to recognize previously unseen composi-
tions of the existing objects [6] since while they are universal
function approximators, they lack the hierarchy to learn ro-
bust representations in their formulation. Deep latent stochas-
tic models [7, 8] on the other hand, provide a flexible frame-
work that promises to address such concerns [9]. These mod-

els provide a mechanism to jointly train both the latent repre-
sentations as well as the generator network. Therefore, such
models are expected to both discover and disentangle causal
factors of variation present in the distribution of original data.
Disentanglement is an attractive property from the perspec-
tive of zero shot, transfer learning [10] and low resource sce-
narios. Moreover, disentangled representations are usually
aligned with the attributes of original data and are condition-
ally dependent on variance in the original data, hence inter-
pretible.

However, while training latent stochastic models, the
exact log likelihood is usually intractable and current ap-
proaches use a recognition network to approximate the pos-
terior probability using reparameterization [11]. In practise,
such models often are subject to an optimization challenge re-
ferred to as KL-collapse [12] - wherein the generator network
which is usually an RNN ignores the learnt latent repre-
sentation. Typical approaches to address this issue involve
weakening the generator network. However, this is not de-
sired when the downstream task is generative in nature. In
this paper we take a different approach: We first present an
analysis of the optimization performed in latent stochastic
models. From this, we show that latent collapse happens
since a trivial solution for generative models is to ignore
the latent representation under certain constraints. We then
present an approach to make the prior distribution more com-
plex thereby forcing the model to encode information into the
latent representation.

Our contributions are as follows (1) We propose a simple
yet effective architecture that splits the latent space into con-
tinuous and discrete factors that better capture the relations
between entities. (2) We perform quantitative and qualitative
analysis on MSCOCO dataset and observe that the model is
able to not only generate diverse captions but also makes less
mistakes in terms of entity attributes.

This paper is outlined as follows: In section 2 we present
relevant previous works in the context of image captioning.
This is followed by an analysis of the optimization and dis-
entanglement in latent stochastic models (3). In section 4 we
present an approach to split the latent representation into joint
continuous and discrete components. This is followed by ex-
periments in section 5 and conclusion.



2. RELATED WORK

The common approach for generating image descriptions
conditioned on the input image involve using a feature ex-
tractor as the encoder and then a language-model decoder to
generate the captions. [13] use a Convolutional neural net-
work (CNN) trained on images to extract the features from
the pen-ultimate layer, and then use a maximum-entropy lan-
guage model to generate the captions. [14, 15] replace the
decoder with a Recurrent Neural Network (RNN) decoder,
whereas [16] use Log-bilinear models. However, since these
models are trained to maximize the likelihood with reference
descriptions, they generate good short captions, but fail to
generate longer diverse captions that are conditioned on the
images.

[17] used Generative Adverserial Network (GAN) style
caption generation model that produces captions that are in-
distinguishable from reference captions. [18] used a condi-
tioned GAN to produce the image description and also eval-
uate the description with respect to the image content. [19]
[20] [21] use Conditional Variational Auto-Encoder (CVAE)
style generative modelling to add diversity in the decoder. All
these models first learn a latent vector distribution at training
time for the images and text. At test time, the input image,
along with a latent vector z that is sampled from this distribu-
tion are fed into the decoder. The different sampled z vectors
result in diversity at the decoder end. [21] used a fixed Gaus-
sian prior to model z for all images, which resulted in col-
lapsed conditional posterior probability at the decoder end.
To account for the different objects present in an image, and
to generate diverse captions around these objects, [20] substi-
tuted this single prior with different Gaussian priors for each
object class.

However, these models do not capture all the causal fac-
tors of variation in the data (e.g. colour, count etc) reliably
(see Figure 5. in [20]). We hypothesize that disentangling
representations to capture both the properties and the objects
in the image separately might help the model to overcome the
sparseness issue, and generate more factual captions for the
input image. Particularly, we would like to see if the model
can learn different dimensions for each of these properties
and objects, and hence learn to combine them to generate /
comprehend novel concepts. Our work is similar in spirit to
[22, 23]. Both these works attempt to learn a joint continuous
and discrete latent representation in a single modality while
we deal with a task that involves learning and inferring from
a shared space across modalities.

3. ANALYSIS OF OPTIMIZATION AND
DISENTANGLEMENT IN LATENT STOCHASTIC

MODELS

Latent Stochastic Models has shown promising results in
unsupervised, uni modal settings and are the preferred mod-

els for representation learning. However, when we apply
these models in an encoder decoder framework, optimization
becomes harder due to KL-vanishing[12]. This is mainly
because the latent variable distributions are usually approxi-
mated by simpler networks compared to the powerful RNNs
used in the encoders and decoder [9].

The problem becomes apparent by looking at the Varia-
tional Lowerbound (ELBO) such models try to optimize. For
instance, consider the ELBO being optimized by Beta CVAE:

Eqφ(z|x,c)[logpθ(x|c, z)]−β|DKL(qφ(z|x, c)||pθ(z|c))−Cz|
(1)

where Cz is the channel capacity term [24]. The first term
in ELBO is the reconstruction error while the second is the di-
vergence between approximate and true posteriors. Rewriting
the first term as

logpθ(x|c, z) = logpθ(x|z, c) + logpθ(z|c) (2)

It can be seen that the optimal value of this likelihood esti-
mate can be conditionally independent of the latent represen-
tation (z) if the recognition network is complex enough [25].
In other words, if the decoder network employs powerful uni-
versal approximators, the model is incentivized to ignore the
latent representation. The second term in the expression acts
as a regularizer to penalize such behavior. However, a trivial
solution for the model is to force this posterior distribution to
closely follow the Gaussian prior distribution [9].

The second term, KL divergence between the true and ap-
proximate posterior distributions obtains the global minimum
0 only when both the distributions match each other. From
Bayes rules,

pθ(z|x, c) =
pθ(x|z, c)pθ(z|c)

pθ(x|c)
(3)

It can be seen that a trivial solution to reach global mini-
mum again is by ignoring the latent variable. Models such as
β VAE and the subsequently proposed channel capacity based
approaches [24] address this issue by gradually increasing the
channel capacity. This would effectively result in pressurizing
the posterior distribution to match the prior closely. However,
following such an approach translates to an unrealistic con-
straint in scenarios that have categorical distribution as their
output (tasks such as language modeling, machine translation,
image captioning among others). In addition, it is unintuitive
to assume that the true prior that generates latent distribution
is a Gaussian when the likelihood is based on discrete sequen-
tial data. In such cases the decoder is implicitly weakened
and the model is forced to encode information into the latent
dimensions. At this stage, any local information is encoded
within the hidden states of the decoder while remaining in-
formation is encoded in the latent space [25]. Thus, we ob-



tain disentanglement of independent factors of variation in the
original data.

However, it has to be noted that during training optimiza-
tion is performed in expectation over minibatches. The KL
term can then be written as

Ep(x)[DKL(qφ(Z|x)||p(z))] = I(x; z) +DKL(q(z)||p(z))
(4)

In other words, the KL term is the upperbound on the mu-
tual information that can be encoded into the latent dimen-
sions [26]. Penalizing this mutual information results in an
increased reconstruction loss. Therefore, optimization in la-
tent stochastic models follows a compromise between the ca-
pability for reconstruction and the potential for disentangle-
ment.

4. PROPOSED APPROACH

In this work, we present an approach to improve the training
of multimodal variational encoder decoders by incorporat-
ing a joint discrete and continuous prior in the latent space.
Based on the analysis presented in the previous section, we
hypothesize that using a more flexible prior distribution helps
accomplish decent disentanglement without losing the re-
construction loss. In other words, if the prior distribution
is flexible, it increases the pressure on model to match the
prior more closely thereby improving disentanglement. At
the same time, it gives more flexibility to the model to encode
information into the latent representation thereby improving
the reconstruction loss as well.

We make an observation that the tasks such as image ques-
tion answering and image captioning require learning repre-
sentations from both image and textual modalities. It has to
be noted that while the textual modality is primarily symbolic,
the visual modality is spatial. However, both these modalities
can be explained by distinct discrete and continuous factors
of variation. In the context of images, argument for discrete
representation refers to individual objects while the contin-
uous counterpart corresponds to the spatial relationships be-
tween objects in the image. Based on this intuition, we split
the latent representation to include both continuous as well as
discrete variables.

Let { zc,zd } denote set of continuous and discrete la-
tent random variables respectively. We define joint posterior
qφ(zc, zd|x), prior p(z, c) and likelihood pθ(x|z, c). The ob-
jective for β variational encoder decoder with both continuous
and discrete latent variables becomes:

Eqφ(zc,zd|x)[logpθ(x|zc, zd)]− β ∗K (5)

K = |DKL(q(zc, zd|x)||p(zc, zd))− Cj | (6)

where Cj is denotes joint channel capacity for both con-
tinuous and discrete latent spaces. Assuming that the con-
tinuous and discrete latent representations are independent of

each other, the divergence between the true prior and approx-
imate prior becomes:

DKL(qφ(zc, zd|x)||p(zc, zd)) =
Eqφ(zc|x)[logqφ(zc|x)]− Eqφ(zc|x)[logp(zc)]
+ Eqφ(zd|x)[logqφ(zd|x)]− Eqφ(zd|x)[logp(zd)]

(7)

Following [23], we further split the channel capacity into
continuous and discrete latent channels and force the model
to encode relevant information in both channels.

5. EXPERIMENTAL SETUP

5.1. Dataset

We conduct our experiments using the challenging MS
COCO (2014) dataset [27], which has 82,783 images and
was generated using human subjects on the Amazon Mechan-
ical Turk (AMT). We have only applied trivial tokenization
to the captions. We have used a threshold of 10 and every
word with lower frequency was replaced by UNK. The final
vocabulary size was 8855.

5.2. Evaluation Metrics

We report the performance of our systems with the frequently
used BLEU metric, a measure that loosely corresponds to
precision of word n-grams between hypothesis and reference
sentences. However, there has been a criticism regarding in-
terpreting BLEU scores. Hence we also present METEOR,
ROUGE and CiDer [28].

5.3. Systems built

We have built the following systems for our task.

• Base System - CNN + RNN: As the base for our latent
stochastic models we used a simple but powerful En-
coder Decoder architecture. In our encoder framework
we have used pretrained ResNet features. The decoder
is trained in a teacher forcing fashion by stacking to-
gether encoder output and caption embedding.

• Latent Stochastic Baseline Model: This system is a
modification of our base system to include variational
inference. Specifically, we designed our encoder model
to output the mean and log variance of the latent distri-
bution. We then sample a latent representation using
reparameterization trick [11]. Decoder is same as our
baseline. The input to decoder is stacked vector of la-
tent vector and caption embedding. For training this
model, we have used scheduled annealing using logistic
function for KL divergence as pointed out in [12, 22].
The step size for logistic function was fixed at 2500.



• Multi Space Latent Stochastic Model: In this system we
have incorporated joint continuous and discrete latent
representation as the prior distribution being modeled
by the latent stochastic model. Since there are around
80 unique objects in MS COCO dataset, it might be
intuitive to allow atleast so many dimensions in the dis-
crete space. Following this intuition, we have used 128
dimensions each for the discrete and continuous com-
ponents.

5.4. Quantitative Analysis

The results from quantitative evaluation of the systems is pre-
sented in table 1. As it can be seen, using both continuous and
discrete variables for representing the latent space does seem
to have consistent gains across different metrics.

Table 1. Quantitative Evaluation of proposed approaches

Dataset [%]

MS COCO

Latent Stochastic Baseline
BLEU 4 0.13

METEOR 0.15

CIDEr 0.33

ROUGE L 0.4

Multi space latent stochastic model
BLEU 4 0.16

METEOR 0.18

CIDEr 0.49

ROUGE L 0.43

5.5. Qualitative Analysis

Observing the captions generated by the multispace model (
an example shown in figure 1 it appears that the proposed
model is better able to disentangle the individual objects from
the image. On the other hand, vanilla latent stochastic model
tends to use the bias that a clock appears together with tower.

Fig. 1. Baseline Latent Stochastic Model: a clock tower
with a weather vane and a clock on top of it. Multi Space
Latent Stochastic Model: A clock on a cycle

6. FUTURE WORK

In this preliminary study, we have presented an approach to
use joint continuous and discrete latent variables in latent
stochastic models. However, the presented work has to be
evaluated against the state of the art approaches. We also
believe that a much detailed qualitative analysis has to be
performed. We would like to use this module in a subsequent
task, visual question answering.

7. CONCLUSION

Caption generation is an AI complete task requiring repre-
sentation learning and translation across modalities. In this
paper we have presented an approach to train latent stochastic
encoder decoder models for such tasks by incorporating joint
continuous and discrete representation in the prior distribu-
tion. We evaluate the performance of proposed approach on
a multitude of metrics with vanilla latent stochastic models.
We also perform a qualitative assessment and observe that the
proposed approach indeed has the potential to learn compos-
ite information and explain novel combinations not seen in
the training data.
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