
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7296–7301
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

7296

ClarQ: A large-scale and diverse dataset for Clarification Question
Generation

Vaibhav Kumar
Language Technologies Institute

Carnegie Mellon University
vaibhav2@cs.cmu.eu

Alan W Black
Language Technologies Institute

Carnegie Mellon University
awb@cs.cmu.edu

Abstract

Question answering and conversational sys-
tems are often baffled and need help clari-
fying certain ambiguities. However, limita-
tions of existing datasets hinder the develop-
ment of large-scale models capable of gener-
ating and utilising clarification questions. In
order to overcome these limitations, we de-
vise a novel bootstrapping framework (based
on self-supervision) that assists in the creation
of a diverse, large-scale dataset of clarification
questions based on post-comment tuples ex-
tracted from stackexchange. The framework
utilises a neural network based architecture
for classifying clarification questions. It is a
two-step method where the first aims to in-
crease the precision of the classifier and sec-
ond aims to increase its recall. We quantita-
tively demonstrate the utility of the newly cre-
ated dataset by applying it to the downstream
task of question-answering. The final dataset,
ClarQ, consists of ∼2M examples distributed
across 173 domains of stackexchange. We re-
lease this dataset1 in order to foster research
into the field of clarification question genera-
tion with the larger goal of enhancing dialog
and question answering systems.

1 Introduction

The ubiquitous nature of conversations has led to
the identification of various interesting problems
(Clark et al., 2019). One of these problems is the
ability of a system to ask for clarifications (Rao
and Daumé III, 2018; Aliannejadi et al., 2019) to
a natural language question.

A user’s complex information need is often lost
due to the brevity of the posed question. This
leads to an under-specified question containing in-
formation gaps which lowers the probability of
providing the correct answer. Thus, it would be
an improvement if a conversational or a question
answering system had a mechanism for refining

1https://github.com/vaibhav4595/ClarQ

user questions with follow-ups (De Boni and Man-
andhar, 2003). In literature, such questions have
been termed Clarification Questions (De Boni
and Manandhar, 2003; Rao and Daumé III, 2018,
2019).

In the domain of question-answering, the major
advantages of a clarification question are its ability
to resolve ambiguities (Wang et al., 2018; Alian-
nejadi et al., 2019) and to improve the probabil-
ity of finding the most relevant answer. For con-
versational systems, asking such questions help in
driving the conversation deeper along with better
engagement of the user (Li et al., 2016; Yu et al.,
2016).

Recently, Rao and Daumé III (2018, 2019) have
provided a dataset based on stackexchange and
used it for clarification question retrieval as well
as generation. They also modify a dataset based
on Amazon Question-Answering and Product Re-
views (McAuley et al., 2015; McAuley and Yang,
2016) to make it suitable for the same task. On
the other hand, Aliannejadi et al. (2019) created a
dataset (Qulac) built on top of TREC web collec-
tions.

However, there are several shortcomings to
these datasets, which limit the development of
generalizable and large-scale models aimed to
tackle the problem of clarification question gen-
eration. The stackexchange dataset (Rao and
Daumé III, 2018) is created by utilising simple
heuristics. This adds a lot of noise, thereby reduc-
ing the number of actual clarification questions. It
also limits the inclusion of diverse types of ques-
tions as it is collected from three similar domains
(askubuntu, superuser and unix). The question
generation model of Rao and Daumé III (2019)
achieves a very low BLEU score when trained on
this dataset. On the other hand, the dataset based
on Amazon reviews is a poor proxy for clarifi-
cation questions because product descriptions are
not actual questions demanding an answer and

https://github.com/vaibhav4595/ClarQ


7297

there is no information gap that needs to be ad-
dressed.

To overcome the shortcomings of existing
datasets, we devise a novel bootstrapping frame-
work based on self-supervision to obtain a dataset
of clarification questions from various domains of
stackexchange. The framework utilises a neural
network based architecture to classify clarification
questions. In a two step procedure, the framework
first increases the precision of the classifier and
then increases its recall. The first step is called
down-sampling, where the classifier is iteratively
trained on the most confident predictions (carried
forward over from the previous iteration). The
second step is the up-sampling procedure, where
the classifier is iteratively trained by successively
adding more positively classified examples. This
step provides a boost in recall while restricting the
drop in precision to a minimum. The classifier
trained on the final iteration is then used for iden-
tification of clarification questions.

The overall process ensures that the final dataset
is less noisy and, at the same time, consists of a
large and diverse number of examples. We must
emphasize that, given the large amount of data
available on stackexchange, a classifier with mod-
erate recall still serves our purpose. However, it
is imperative that precision of the classifier be rea-
sonably high.

2 Methodology

Stackexchange is a network of online question an-
swering websites. On these websites, users may
comment on the original post with content such
as third party URLs, clarifying questions, etc. We
only want to select comments which act as clari-
fying questions and remove the rest as noise. To
this end, we devise a bootstrapping framework for
training a classifier capable of identifying clarify-
ing questions.

The bootstrapping method utilises a neural net-
work based classifier L which is posed with the
task of clarification question detection. Formally,
given a tuple (p, q), where p ∈ P is a post and
q ∈ qp is a comment made on p, the task is to pre-
dict whether q is an actual clarification question
for p. This makes it a binary classification prob-
lem, where a label 1 indicates q being an an actual
clarification question and 0 indicates otherwise.

2.1 Data Collection

We first utilise the stackexhange data dump
available at https://archive.org/details/

stackexchange. We extract the posts and the
comments made by users on those posts from 173
different domains. We remove all posts which
did not have a provided answer. The comments
made on the posts act as a potential candidate for
clarifying question. This leads to 6,186,934 tuples
of (p, q).

2.2 Bootstrapping

First, we initialise a seed dataset that is used to
train L using the process of iterative refinement as
described later. Iterative-refinement itself is sub-
divided into two parts: (1) Down-Sampling (2)
Up-Sampling.

2.2.1 Classifier L
We utilise a neural network based architecture for
the classifier L. Inspired by Lowe et al. (2015),
L utilises a dual encoder mechanism i.e it uses
two separate LSTMs (Hochreiter and Schmidhu-
ber, 1997) for encoding a post p and a question q.
The dual encoder generates hidden representations
hp and hq for p and q respectively. The result-
ing element-wise product of hp and hq is further
passed on to fully connected layers before making
predictions via softmax. More formally, the entire
process can be summarised as follows:

hp = LSTMP (p) (1)

hq = LSTMQ(q) (2)

hpq = φ(hp � hq) (3)

ŷ = Softmax(hpq) (4)

where, � represents the element-wise product, φ
represents the non-linearity introduced by the fully
connected layers and ψ represents the final classi-
fication layer.

2.2.2 Seed Selection
In order to select seeds for the bootstrapping pro-
cedure, we consider all the collected posts but only
use the last comment made on these posts as clari-
fying questions. We make the assumption that the
comments act as a proxy for a clarification ques-
tion. Later, we remove all (p, q) tuples where q
does not have a question mark. Intuitively, the
last comment can be a better signal for identifying

https://stackexchange.com
https://archive.org/details/stackexchange
https://archive.org/details/stackexchange


7298

clarifying questions as it has more chances of cap-
sulizing the requirements of the original post. It
can also be more opinionated than others. We then
randomly sample a question from the same do-
main as that of the post and treat it as an instance of
a negative clarification question. Thus each ques-
tion gets paired with a positive and a negative clar-
ification question. We denote this seed dataset as
D0.

Algorithm 1 Iterative Refinement
1: N ← 5
2: D0 ← Seed Data
3: T ← Annotated Ground Truth
4: for i = 1, 2, . . . , N do . down-sampling
5: L ← Classifier
6: train L on Di−1

7: Dtemp ← []
8: for (p, q) ∈ Di−1 do
9: y ← L(p, q)

10: if y is true positive then
11: add (p, q) to Dtemp

12: end if
13: end for
14: Sort Dtemp using prediction confidence
15: Di ← top 40% of Dtemp

16: Randomly sample Negatives for Di

17: end for
18: SN ← DN

19: for i = N,N − 1, . . . 0 do . up-sampling
20: L ← Classifier
21: train L on SN
22: Stemp ← []
23: for (p, q) ∈ Di−1 do
24: y ← L(p, q)
25: if y is true positive then
26: add (p, q) to Stemp

27: end if
28: end for
29: Si−1 ← Stemp

30: Randomly Sample Negatives for Si−1

31: end for
32: Lbest ← Classifier
33: Lbest on S0
34: Use Lbest to classify remaining data

2.2.3 Iterative Refinement
The procedure is described in Algorithm 1. This
entire process can be segmented into two parts.
Down-Sampling: The aim of this step is to in-
crease the precision of the classifier. In the first

iteration of this step, the classifier L is trained on
the seed dataset D0. After training is complete, L
classifies D0 and the most confident 40% of the
positives are selected to train L in the next itera-
tion. This process is continued for N iterations.
Each iteration leads to a new dataset Di (which
is smaller in size than Di−1. Intuitively, the pre-
cision of L on the task of selecting actual clarifi-
cation question should increase at the end of each
iteration as it is successively trained only on the
examples which it was more confident about in the
previous round.
Up-Sampling: This step is intended to improve
the recall of L while restricting the loss of pre-
cision to a minimum. In the first iteration, L is
trained on SN = DN i.e the data obtained at the
last iteration of the down-sampling procedure. Af-
ter training is complete, L is used for classifying
DN−1 (which is obtained during the second-list
iteration of the down-sampling process). The tu-
ples which get classified as positive are used for
training L in the next round. This process con-
tinued for N iterations. Note that this procedure
has two major differences to the iterative proce-
dure of the down-sampling process. First, instead
of using L for classifying the same dataset which
it was trained on, it is used for classifying an up-
sampled version of the current dataset. Second,
it relaxes the condition of selecting 40% of the
most confident examples. Intuitively, this relax-
ation should help in increasing the recall of the
classifier and at the same time should not drasti-
cally hamper the precision (as it operates only on
the examples which it classifies as positives).

Note that, in order to provide the classifier
with examples of non-clarifying questions, we
randomly sample negative examples at the end
of each iteration (during both up and down-
sampling). This is similar to the way in which the
D0 is created.

2.2.4 Classifying Remaining Data
At the end of the iterative refinement procedure,
we obtain a dataset on which L can achieve a
good precision and moderate recall on the task of
classifying clarification questions. Thus, L is fi-
nally trained on S0 and used for classifying the
6,186,934 tuples of (p, q) extracted from stackex-
change. We again emphasize that it is more im-
portant to obtain better precision, as it reduces the
amount of noise added to the dataset. Given that
there are a large number of (p, q) tuples, a moder-



7299

Iteration Precision Recall F1
1 0.736 0.601 0.662
2 0.758 0.561 0.645
3 0.771 0.390 0.518
4 0.827 0.286 0.426
5 0.829 0.270 0.407

Table 1: Performance of the classifier on the anno-
tated test set at the end of each iteration of the down-
sampling procedure.

Iteration Precision Recall F1
1 0.829 0.270 0.407
2 0.835 0.262 0.434
3 0.800 0.270 0.404
4 0.82 0.344 0.488
5 0.82 0.414 0.550

Table 2: Performance of the classifier on the annotated
test set at the end of each iteration of the up-sampling
procedure.

ate recall can still ensure the incorporation of large
and diverse types of (p, q) tuples.

3 Experimental Results

This section describes the results of the iterative
refinement strategy.

Test Set Creation: We first create a manually
annotated test set to evaluate the effectiveness of
the classifier at each step of the iterative refine-
ment process. For this, we randomly sample 100
(p, q) tuples each from 7 different domains (Ap-
ple, cooking, gaming, money, photography, scifi,
travel). These questions are either the last, second
last or the third last comments of their correspond-
ing posts. The annotated test set has a 7:3 ratio of
positives to negatives.

Seed Dataset: It is created based on the method
described in Section 2.2.2. It consists of 1,800,000
(p, q) tuples, amongst which 50% are randomly
sampled negative instances. The classifier is then
iteratively trained based on Algorithm 1.

3.1 Results of Iterative Refinement
The results of the down-sampling and the up-
sampling procedure are discussed below:

3.1.1 Down-Sampling
Table 1 describes the performance of the classifier
on the annotated test set during the down-sampling
process. It can be clearly observed that the preci-
sion of the classifier increases with each iteration.

Metric Without CQ With CQ
P@1 0.751 0.791
P@2 0.399 0.416
P@3 0.278 0.287
P@4 0.214 0.220
P@5 0.174 0.178
MRR 0.791 0.816

Table 3: Performance on the task of question-answer
retrieval. CQ stands for clarification question. P@k
represents the precision at the kth position of the ranked
list. MRR represents the Mean Reciprocal Rank.

Even though there is a substantial decline in recall,
the down-sampling procedure helps in increasing
the overall precision.

3.1.2 Up-Sampling

Table 2 describes the performance of the classifier
on the annotated test set during the up-sampling
process. It can be clearly observed that recall
of the classifier increases with each iteration, al-
though the final recall (i.e at iteration 5) is lower
than the recall obtained in the first iteration of
the down-sampling process. Given that there are
a large number of (p, q) tuples, a drop in recall
will not hamper the quality nor the diversity of the
dataset. At the end of the process, we also ob-
serve that there is only a marginal drop in preci-
sion. Thus, at the end of the last iteration we are
able to obtain a classifier which has a high preci-
sion and a reasonable recall.

3.2 Downstream Utility

We evaluate the utility of the clarification question
in ClarQ by using it for the task of reranking an-
swers. We first randomly sample 1000 (p, q) tu-
ples from 11 different domains (Apple, askubuntu,
biology, cooking, english, gaming, money, puz-
zling, scifi, travel, unix). Corresponding to each
tuple, we randomly sample a list of 99 answers
(from the same domain as that of the post) and ap-
pend the actual answer to this list. We first rerank
the answers based on the post alone. Later, we
rerank the answers by concatenating the post and
the clarifying question. Based on the results from
Table 3, we observe that concatenating the clarifi-
cation question to the post does help in improving
the performance. The success of this experiment
depicts the usefulness of our created dataset.



7300

Figure 1: Distribution of the Clarifying Questions across different domains. The figure depicts the top 20 domains.
Rest of the domains are clubbed at the end of the spectrum in ”others”.

4 Dataset Statistics

The classifier obtained at the end of iterative re-
finement procedure is used for classifying the ini-
tially collected (p, q) tuples of 6,186,934. The
classifier predicts 2,079,300 tuples as actual clari-
fication questions. As can be seen from Figure 1,
these tuples are unequally distributed across 173
different domains. The top 20 domains account for
69.18% of the total (p, q) tuples in the dataset. The
remaining 155 domains account for the remaining
30.82% of the total number of tuples.

It is noteworthy that our provided dataset also
comprises of actual answers to each post. This
would help researchers in evaluating the quality
of the clarification questions in a standalone per-
spective and at the same time with respect to the
downstream task of question-answering.

5 Conclusion and Future Work

In this paper, we present a diverse, large-scale
dataset (ClarQ) for the task of clarification ques-

tion generation. It is created by a two-step it-
erative bootstrapping framework based on self-
supervision. ClarQ consists of∼2M post-question
tuples spanning 173 different domains. We hope
that this dataset will encourage research into clar-
ification question generation and, in the long run,
enhance dialog and question-answering systems.

Acknowledgments

We would like to extend our sincere gratitude to
Abhimanshu Mishra, Mrinal Dhar and Yash Ku-
mar Lal for helping us understand the structure
of the comments and their distribution across do-
mains.

References
Mohammad Aliannejadi, Hamed Zamani, Fabio

Crestani, and W Bruce Croft. 2019. Asking clarify-
ing questions in open-domain information-seeking
conversations. In Proceedings of the 42nd Interna-
tional ACM SIGIR Conference on Research and De-



7301

velopment in Information Retrieval, pages 475–484.
ACM.

Leigh Clark, Nadia Pantidi, Orla Cooney, Philip
Doyle, Diego Garaialde, Justin Edwards, Brendan
Spillane, Emer Gilmartin, Christine Murad, Cosmin
Munteanu, et al. 2019. What makes a good con-
versation?: Challenges in designing truly conversa-
tional agents. In Proceedings of the 2019 CHI Con-
ference on Human Factors in Computing Systems,
page 475. ACM.

Marco De Boni and Suresh Manandhar. 2003. An anal-
ysis of clarification dialogue for question answering.
In Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology-
Volume 1, pages 48–55. Association for Computa-
tional Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Jiwei Li, Alexander H Miller, Sumit Chopra,
Marc’Aurelio Ranzato, and Jason Weston. 2016.
Learning through dialogue interactions by asking
questions. arXiv preprint arXiv:1612.04936.

Ryan Lowe, Nissan Pow, Iulian Serban, and Joelle
Pineau. 2015. The ubuntu dialogue corpus: A large
dataset for research in unstructured multi-turn dia-
logue systems. arXiv preprint arXiv:1506.08909.

Julian McAuley, Christopher Targett, Qinfeng Shi, and
Anton Van Den Hengel. 2015. Image-based recom-
mendations on styles and substitutes. In Proceed-
ings of the 38th International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, pages 43–52. ACM.

Julian McAuley and Alex Yang. 2016. Addressing
complex and subjective product-related queries with
customer reviews. In Proceedings of the 25th In-
ternational Conference on World Wide Web, pages
625–635. International World Wide Web Confer-
ences Steering Committee.

Sudha Rao and Hal Daumé III. 2018. Learning to
ask good questions: Ranking clarification questions
using neural expected value of perfect information.
arXiv preprint arXiv:1805.04655.

Sudha Rao and Hal Daumé III. 2019. Answer-based
adversarial training for generating clarification ques-
tions. arXiv preprint arXiv:1904.02281.

Yansen Wang, Chenyi Liu, Minlie Huang, and Liqiang
Nie. 2018. Learning to ask questions in open-
domain conversational systems with typed decoders.
arXiv preprint arXiv:1805.04843.

Zhou Yu, Ziyu Xu, Alan W Black, and Alexander Rud-
nicky. 2016. Strategy and policy learning for non-
task-oriented conversational systems. In Proceed-
ings of the 17th annual meeting of the special in-

terest group on discourse and dialogue, pages 404–
412.


