
THE ARCHITECTURE OF THE FESTIVAL SPEECH SYNTHESIS
SYSTEM

Paul Taylor Alan W Black Richard Caley

Centre for Speech Technology Research,
University of Edinburgh, 80,South Bridge, Edinburgh EH1 1HN, UK�

pault,awb,rjc � @cstr.ed.ac.uk

ABSTRACT

We describe a new formalism for storing linguistic data in a text to
speech system. Linguistic entities such as words and phones are
stored as feature structures in a general object called an linguistic
item. Items are configurable at run time and via the feature struc-
ture can contain arbitrary information. Linguistic relations are
used to store the relationship between items of the same linguistic
type. Relations can take any graph structure but are commonly
trees or lists. Utterance structures contain all the items and rela-
tions contained in a single utterance. We first describe the design
goals when building a synthesis architecture, and then describe
some problems with previous architectures. We then discuss our
new formalism in general along with the implementation details
and consequences of our approach.

1. INTRODUCTION

Speech synthesis systems require ways of storing the various
types of linguistic information produced in the process of con-
verting the input format (e.g. text) into speech. In this paper we
present a new formalism for representing arbitrary linguistic data
and show how this helps in building a speech synthesis system.

The are a number of design considerations which builders of syn-
thesis architectures must take into account. We have listed these
as follows:

� Simple linguistic objects such as words, phones, syllables
and phrases need to be represented.

� A co-indexing mechanism is needed whereby given a word,
one can find the phones that comprise this word.

� Changes should be localized. For example, a change in the
syllabification algorithm should only require changing those
parts of the program directly involved with syllabification -
other modules should not be affected.

� There should be no redundancy or duplication of informa-
tion in the system. For instance, it is common to want to
know the start and end times of linguistic entities. The end
time of a word will be the same as the end time of the last
phone in that word. If this information is stored separately
for the phone and word, problems will occur if one value is
changed as the other will then become out of date.

� By their very nature, multi-lingual systems must support a
wide variety of linguistic theories. Hence the architecture
should not be tied to any particular linguistic theory or for-
malism.

� The architecture should be fast and efficient as the synthe-
sizer is intended for real-time use.

Most importantly, the real purpose of the architecture is to allow
speech synthesis algorithms to be written as easily as possible. It
is therefore important that the architecture should be unobtrusive
and provide the sorts of structures and information that synthe-
sis algorithms need. All programs must deal with infrastructure
issues such as data storage, file i/o, memory allocation etc. If
left unchecked, algorithms can easily become bogged down with
this sort of code, which becomes intertwined with the actual al-
gorithm itself. A good architecture will abstract the infrastructure
to such an extent that these aspects are hidden, so that synthesis
algorithms can be easily written and read without other issues get-
ting in the way. The interface should be easy to use, and make the
writing of synthesis algorithms easier and quicker than by purely
ad-hoc methods.

2. BACKGROUND

In this section we review some previous types of architecture.

2.1. String processing

Many early synthesis systems used what has been referred to as a
string re-writing mechanism as their central data structure. In this
formalism, the linguistic representation of an utterance is stored as
a string. Initially, the string contains text, which is then re-written
or embellished with extra symbols as processing takes place. Sys-
tems such as MITalk [1] and the CSTR Alvey synthesizer [5] used
this method.

There are many short comings in this formalism which have been
previously recognized ([6], [3], [4], [7]). The main problem with
the string formalism is that it soon becomes unwieldy for anything
apart from the most trivial of tasks. Often the string becomes very
complex with words, phrase symbols, stress symbols, phones etc
all mixed in together. There are two main ways in which modules
process such strings. Modules can work on this string directly, but
the interpretation of the symbols often gets in the way of the al-



gorithm itself. Alternatively, a module can parse the string into an
internal format and let the algorithms use that. Although this may
simplify the writing of the algorithms themselves, this is a very
unwieldy approach as it means the string has to be parsed every
time a module is called. Moreover, this often leads to each module
having an individual internal data structure, which is unattractive
from a programming point of view as new structures and tech-
niques have to be learnt to understand the workings of any new
module.

To lessen these problems, information is often deleted from the
string so as to keep only what is perceived as essential informa-
tion. For instance, after the grapheme to phoneme conversion,
the orthographic form of the word may be deleted from the string.
This can have unfortunate consequences in that information which
might potentially be of use to a module may have been deleted by
an earlier module.

2.2. Multi-level data structures

In recognition of these shortcomings, many current systems have
abandoned string based processing and now use multi-level data
structures (MLDS). The most famous of these systems, known as
Delta, was developed by Hertz [6], but many other systems, such
as Chatr [3], the Bell labs system [7], Polyglot [4], and early ver-
sions of Festival [2] use similar formalisms. In the multi-layered
formalism, different types of linguistic information are held in
separate streams which are linear lists or arrays of linguistic items.
For example we may have a word stream, a phone stream and a
syllable stream. Some systems have a fixed set of these while
others an allow arbitrary number.

Often algorithms need to know what phones are related to a given
word, and hence the streams must be co-indexed. There are two
main types of co-indexing. In Delta, streams are aligning by the
edges of items. To find the phones in a word, one goes to the be-
ginning of the word, traces the edge “down” to the phone stream,
and they progresses along the phone stream until the edge relating
to the end of the word is found. An alternative strategy is to align
by the “centres” of items. In this case, a word contains a set of
links to the phones that are related to it, and the phones in a word
can be found by following these links.

While multi-level data structures are far preferable to string struc-
tures they still have serious drawbacks. The main drawback stems
from the fact that this forces all information to be represented
by linear structures: other types of structure, specifically trees,
are very hard to represent. Partly because of this, the number
of streams in a system can become considerable which leads to
difficulties in co-indexing the items in streams. With the delta co-
indexing, it is often the case that for a given item in one stream,
there is no corresponding item in other streams. For example, a
pause is represented by a item in the phone stream, but there is
no equivalent item in the syllable or word streams. Thus a “hole”
must be created in these streams to ensure the co-indexing works.

With a large number of streams, the number of holes can become
considerable which makes processing awkward. In the centre-
linking paradigm, the hole problem is absent, but because each
item must be explicitly linked to items in other streams, the num-
ber of links can become very large. Furthermore, if a new stream
is added, one would have to link every existing item to the items
in the new stream to ensure full connectivity. As this isn’t possi-
ble in practice, the streams are often left partially connected. This
can cause confusion in writing module, as one may be unsure of
what streams are linked to what.

Another more subtle problem occurs in multi-level structures due
to a lack of clarity as to what an item really represents. Often (not
always) each item has a single value, typically a name. While
it is obvious that a suitable phone name could be something like
/h/ or /e/ and a word “hello”, what should the name of a syllable
be? Commonly, syllables are regarded as organisational units,
which serve to group together phones. As such, they don’t have a
distinct name. One could group together the names of the phones
and make that the syllable name (e.g. “/h e l/” for the first syllable
of “hello”), but this is redundant, somewhat artificial and likely to
cause errors if the phone representation is changed.

3. A FORMALISM BASED ON
INTERSECTING RELATIONS

The most significant difference between the Festival architecture
and those using MLDS is that Festival does not constrain linguis-
tic items to be in linear lists: any graph structure is allowed. Addi-
tionally, items can be contained in more than one structure, which
leads to more efficient representations. We have also generalised
the content of an item such that information of arbitrary complex-
ity can be easily stored.

3.1. Relations

We used the term relation to represent our generalisation of the
stream concept. A relation is a data structure which is used to
organize linguistic items into linguistic structures such as trees
and lists. A relation is a set of named links connecting a set of
nodes. Lists (streams in the MLDS) are linear relations where
each node has a previous and next link. Nodes in trees have up and
down links also. Nodes are purely positional units, and contain no
information apart from their links. In addition to having links to
other nodes, each node has a single link to an item, which contains
the linguistic information.

Figure 1 shows an example utterance with a syntax relation and
a word relation. The word relation contains nodes which have
next and previous connections, whereas the syntax relation, has
up and down connections in addition to next and previous. Each
node in the syntax tree is linked to a item, each of which has a
feature, CAT, giving its syntactic category. Terminal nodes in a
syntax tree are words, and so an additional feature name is used
here. The nodes in the word relation, which is a linear list, are



Word Relation

Syntax Relation

CAT:NP

CAT:VP

CAT:S

name: "this"
CAT: "pro

name: "is"
CAT:vb

name:"an"
CAT:art

name:"example"
CAT: noun
Focus: +

next

previous

down

up

Figure 1: An example representation of an utterance structure.
This example shows the word relation and the syntax relation.
The syntax relation (shown on top) is a tree with links connecting
the nodes, shown as black circles. The word relation (shown on
the bottom) is a list. The items contain the actual linguistic in-
formation and are shown in the rounded boxes. The dotted lines
show the connections between the nodes and items.

also linked to the items that are linked to the terminal nodes in the
syntax tree.

In this way, node structures of arbitrary complexity can be con-
structed, and they can be intertwined in a natural way by having
links from different nodes to the same item.

3.2. Items and Features

Items consist of a bundle of features and a set of named links to
nodes in relations. Items can be linked into any number of rela-
tions - in the above example words were linked into 2 relations,
but in principle any number of relations is possible.

The information in items themselves are represented by features
which are stored as a list of key-value pairs. Feature values are
commonly numbers or strings, but may also take complex objects
as values if necessary. A item can have arbitrarily many features,
including zero: syllable items often have no features at all, for
example.

As well as simple values, features can also take functions as val-
ues. Function features are a powerful facility which can help to
greatly reduce the amount of redundant information in a utterance
structure.

Consider the case of a simple phone segmentation of an utterance,
which comprises a contiguous list of named segments each with

timing information. If the phones are properly contiguous, only
one timing value for each phone is needed to fully represent all
the timing information of the segmentation. If the end point is
used, the start time of an item will be equal to the end point of
the previous item and the duration will be equal to the start sub-
tracted from the end. However, it is often useful to have access
to the start times and duration of the phone also. Without the use
of function features, there are two choices. Either the end infor-
mation alone can be stored and calculations can be done on the
fly to compute start times and durations, or else the start and du-
rations can be written in as additional features to the item. The
first solution is unattractive as this can make algorithm writing
unwieldy and overly complicated. While the second solution will
may make algorithm writing easier, it involves effectively copy-
ing information, which can lead to out of date information being
present.

Function features provide a neat solution to this problem. In the
current example, a start function is written (in Festival this can be
written in C++ or scheme) which looks at the previous item and
returns its end. This function is then assigned as the value of a
key named “start” in the items in question. When one accesses the
start feature a time value is returned as if it were actually stored. A
duration function returns the value of the start feature subtracted
from the end feature. The duration function simply evaluates the
feature named “start” - it doesn’t need to know if it is a simple
feature or a function feature.

In our current usage of the Festival architecture, we only keep
time positions in items linked to the segment relation: all other
times are calculated by functions. Different start functions can
be written for different purposes. For example, the end function
assigned to the non-terminal nodes in the syntax tree descends
from the current node until a terminal node is encountered and
that node’s item’s end value is returned. Of course the terminal
node’s item, being a word, has its end feature as a function also -
a common operation is for the word’s end function to return the
time of the last syllable it is related to, which returns the time of
the last phone etc. In each case a separate end function is used,
but all are assigned to the key “end” in the item. This means that
algorithms can evaluate the end feature on any item, and be sure
of a legitimate value being returned without having to worry about
the details of calculation.

Although the function feature implementation is very efficient in
Festival, it can still sometimes be expense to constantly evaluate
these functions in the middle of a time critical loop. A global
evaluation facility is therefore provided which can evaluate all the
feature functions in items in a relation and re-write the features
with their evaluation. After the loop, these can be discarded and
the feature functions used again, thus ensuring little chance of out
of date information being present.

Function features can be used for a variety of purposes other than
timing. Another common usage in Festival is to use functions for



intonation. Typically, intonation accents are associated with syl-
lables. Thus one can ask whether a syllable is accented or not.
However it is also useful to know if words are accented also. In
this case we define a function feature on word items which looks
at that word’s main stressed syllable and returns true if that sylla-
ble is accented.

3.3. Utterances

Utterance structures are collections of relations. The best way to
visualize an utterance is to think of it containing a unordered set of
items, each of which is made up from a set of features. Relations
are then structures comprising of nodes, each of which indexes
into an item. An utterance structure simply collects these together
to form a single object.

4. IMPLEMENTATION

While we will not go into the actual low level details of our im-
plementation here, it is useful to raise some points about how the
nature of the programming language used affects the implemen-
tation.

Festival is implemented in two languages, C++ and scheme (a
variant of lisp). While in principle it would be attractive to imple-
ment the system in a single language, practical reasons concerning
the nature of programming languages necessitate the approach we
have taken here.

In addition to being a research platform, Festival also operates as
a run-time system and hence speed is vital. Because of this, it
is necessary to have substantial amounts of the code written in
a compiled low-level language such as C or C++. For particular
types of operations, such as the array processing often used in
signal processing, a language such as C/C++ is much faster than
higher-level alternatives. However, it is too restrictive to use a
system that is 100% compiled, as this prevents essential run-time
configuration as the following examples demonstrate.

In developing an algorithm, it is often useful to try alternatives.
With a completely compiled system, trying alternatives would in-
volve changing the code and then re-compiling and running the
program. While this may be an acceptable effort for two or three
algorithm variations, it soon becomes impractical for larger num-
bers, especially when a large set of alternatives need to be tried
as part of an experiment. With an interpreter, the changes can be
made at run time, and it is often a simple matter to write a scheme
script which can iterate through all the alternatives and produce a
table of results.

Festival is used for synthesizing many languages and it would be
impossible to re-configure the compiled code for each. In practi-
cal usage, Festival must therefore be flexible enough so that any
algorithm in any language can be implemented without the re-
compilation of existing code. Due to this requirement, structures
such as features, items and relations have been implemented so

that any number of each with any name can be used. Specifically
the use of C structures, where the fields in the structure would
correspond to entities such as “stress”, “end” or “part of speech”
have been avoided as the addition of any new feature would re-
quire a re-compilation. Instead, features are represented by ex-
tensible key-value lists. Feature names are stored as strings and
efficient functions are used to return the value of a feature given
the string name. The relations in an utterance are also stored as
an extensible list, with strings being used to provide access to a
given relation. Hence there is nothing in the C++ architecture
which dictates what relations, items or features should be called.
All items, relations and features are of exactly the same type in
C++ regardless of what linguistic information they carry. It is
only at run time that their linguistic function is designated.

We have found from experience that when designing a complex
architecture such as this, it is important to take into account the
expectations of a programmer with regard to a language their are
experienced with. In a previous architecture we developed ([3])
we achieved the some of the generality and run-time flexibility
described above. However the C language constructs we used we
often obscure, stretching the language to its very limits. Because
of this, even experience C programmers found the system very
difficult to program with simply because much of the code didn’t
look like recognizable C to them. In Festival we have paid much
more attention to this problem as the current C++ interface seems
fairly natural and unobtrusive.

File I/O functions have been written so that utterance structures
be saved and loaded to and from disk at any time in the synthesis
procedure. In fact, this facility has proved so useful that we now
store many of our speech databases (which contained phone, word
and intonation information) in this format.

4.1. Core System and Modules

In Festival we make a firm distinction between the core system
and the modules which actually perform speech synthesis tasks.
The core system, which includes the architecture is written com-
pletely in C++ and doesn’t change. Modules on the other hand
can be written in C++ or scheme and can be added or taken away
form the system with minimal disruption (adding or taking away
a C++ module requires a re-linking of course, but not a major re-
compilation). The decision of which language to write a module
in is largely a matter of choice. Because of the interpreter aspect,
it is usually easiest to develop modules in scheme and maybe for
efficiency re-write them in C++ after they are stable. Some types
of programming (e.g. arrays in C++, recursion in scheme) are
more natural in one language than another. Finally, depending on
personal experience, some programmers simply prefer one to the
other.

As far as possible we have provided identical interfaces to the
architecture in both languages which makes switching between
each relatively easy.



4.2. Other Languages

Nothing in the design of the system architecture is specific to the
languages we have used in our implementation. C++ was used
to facilitate better data abstraction in the classes/structures of the
architecture, but C could have also been used. Scheme was used
firstly because it is a small and clean scripting language and sec-
ondly because the lisp s-expression (bracketed string) data struc-
ture allows a generic way to store complex data structures.

Other languages would be also be suitable, and we have made
some progress towards providing alternative scripting languages
in the style of perl/unix shell and Java etc. Ideally the compiled
part and interpreted part would be in the same language. Until
recently no available language has this degree of flexibility, but
perhaps a future generation of Festival could accomplish this by
using Java.

5. CONCLUSION

In summary, we feel that the following features of the current Fes-
tival architecture go a substantial way to reaching the design goals
mentioned in the introduction.

� Complex relations: allows trees, lists and other linguistic
structures to be represented in the same formalism. Inter-
secting relations allow an item to be in more than one rela-
tion which saves on redundancy.

� Feature structures in items: allows arbitrary amounts and
types of information to be used to describe linguistic objects.
Due to run-time configurability, no re-compilation is needed
for new types of information to be stored.

� Function features: allows useful information to be calcu-
lated on the fly, reducing redundancy.

� Speed: efficient implementation ensures that the expres-
sive power of the architecture does not impose a prohibitive
speed cost.

� Natural interface: quick to learn and hence programmers
are not intimidated when learning to write modules for Fes-
tival.

That said, we acknowledge that architecture design is never a
solved problem. As the standard of the architecture increases,
so do the demands and expectations of the programmers using it,
and hence new design features are always required. However, we
feel that the features listed above are a substantial improvement
on previous architectures and go along way to facilitating quick
and easy speech synthesis programming and algorithm implemen-
tation.

Acknowledgements

We gratefully acknowledge the support of the UK Engineering
and Physical Science Research Council (grants GR/L53250 and
GR/K54229) and Sun Microsystems.

6. REFERENCES

1. J. Allen, S. Hunnicut, and D. Klatt. From Text to Speech: the MITalk
System. Cambridge University Press, 1987.

2. A. W. Black and P. Taylor. The Festival Speech Synthesis System:
system documentation. Technical Report HCRC/TR-83, Human Com-
munciation Research Centre, University of Edinburgh, Scotland, UK,
1997. Avaliable at http://www.cstr.ed.ac.uk/projects/festival.html.

3. Alan W. Black and Paul A. Taylor. CHATR: A generic speech synthe-
sis system. In COLING ’94, Kyoto, Japan, 1994.

4. Louis Boves. Considerations in the design of a multi-lingual text-to-
speech system. Journal of Phonetics, 19(1):309–327, 1991.

5. W. N. Campbell, S. D. Isard, A. I. C. Monaghan, and J. Verhoven. Du-
ration, pitch and diphones in the CSTR TTS system. In International
Conference on Speech and Language Processing ’90, Kobe, Japan,
1990.

6. Susan R. Hertz. The delta programming language: an integrated ap-
proach to non-linear phonology, phonetics and speech synthesis. In
John Kingston and Mary E. Beckman, editors, Papers in Laboratory
Phonology 1. Cambridge University Press, 1990.

7. Richard Sproat and Joseph Olive. A modular architecture for multi-
lingual text-to-speech. In Second ESCA/IEEE Workshop on Speech
Synthesis, New York, 1994.


