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Abstract

The  speed  with  which  pronunciation  dictio-
naries can be bootstrapped depends on the ef-
ficiency of learning algorithms and on the or-
dering of words presented to the user. This pa-
per presents an active-learning word selection
strategy that is mindful of human limitations.
Learning rates approach that of an oracle sys-
tem that knows the final LTS rule set. 

1 Introduction

The  construction  of  speech-to-speech  translation
systems is difficult, complex, and prohibitively ex-
pensive for all but handful of major languages. De-
veloping  systems  for  new  languages  is  a  highly
skilled job requiring considerable effort, as is the
process of training people to acquire the necessary
technical knowledge. 

Ideally, a native speaker of a (minor) language –
with the right tools – should be able to develop a
speech  system with  little  or  no technical  knowl-
edge  of  speech  recognition,  machine  translation,
dialog management, or speech synthesis. Rapid de-
velopment of machine translation, for example, is
the goal  of  (Lavie  et  al.,  2003).  Similarly,  com-
bined  development  of  speech  recognition  and
speech synthesis is the stated goal of (Engelbrecht
and Schultz, 2005). 

Here  we  concentrate  on  lexicon  creation  for
synthesis and recognition tasks, with the affiliated
problem  of  letter-to-sound  rule  inference.  Two
central  questions of dictionary  building are: what
letter-to-sound rule representation lends itself well
to incremental learning? – and which words should
be presented to the user,  in what order? 

In this paper we investigate various approaches
to the word ordering problem, including an active
learning algorithm. An “active learner” is a class
of machine learning algorithms that choose the or-
der  in  which  it  is  exposed  to  training  examples
(Auer,  2000).  This is valuable when there isn't a
pre-existing set of training data and when the cost
of  acquiring such data is high. When humans are
adding dictionary entries the time and accuracy de-
pends on the selected word (short words are easier
than long; familiar are easier than unfamiliar), and
on how quickly the learner's error rate drops (long
words  are  more  informative  than  short).  Also,
mindful  that  no  answer  key  exists  for  new lan-
guages – and that humans easily become impatient
– we would like to know when a language's letter
to sound rule system is, say, 90% complete. This
turns out to be surprising elusive to pin down.

The next section outlines our working assump-
tions and issues we seek to address. Section 3 de-
scribes our LTS learning framework, an elabora-
tion  of (Davel and Barnard,  2003).  The learning
behavior on multiple test languages is documented
in Section 4, followed in Section 5 by a compari-
son of several word selection strategies.

2 Assumptions and Issues

In  designing  language  technology  development
tools we find it helpful to envision our target user,
whom  may  be  characterized  as  “non-technical.”
Such a person speaks, reads, and writes the target
language, is able to enumerate the character set of
that  language,  distinguish  punctuation  from
whitespace,  numerals,  and  regular  letters  or
graphemes,  and  specify  if  the  language  distin-
guishes upper and lower casing.  When presented
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with the pronunciation of a word (as a synthesized
wavefile),  the user can say whether it  is  right or
wrong. In addition, such a person has basic com-
puter fluency, can record sound files, and can navi-
gate the  HTML interface of our software tools. If
these latter requirements present a barrier then we
assume the  availability of a field agent to config-
ure the computer, familiarize the user, plus trans-
late the English instructions, if necessary.

Ideally, our  target  user  need not  have explicit
knowledge of their  own language's phoneme set,
nor even be aware that a word can be transcribed
as a sequence of phonemes (differently from let-
ters).  The ability to reliably discover a workable
phoneme set from an unlabeled corpus of speech
is not yet at hand, however. Instead we elicit a lan-
guage's phoneme set during an initialization stage
by presenting examples  of  IPA wavefiles  (Wells
and House, 1995). 

Currently, pronunciations are spelled out using
a romanized phonetic alphabet. Following the rec-
ommendation of (Davel and Barnard, 2005) a can-
didate pronunciation is accompanied with a wave-
file generated from a phoneme-concatenation syn-
thesizer. Where possible, more than one pronunci-
ation is generated for each word presented, under
that assumption that it is easier for a listener to se-
lect from among a small  number of choices than
correct a wrong prediction.

2.1 Four Questions to Address

1. What  is  our  measure  of  success? Ultimately,
the time to build a lexicon of a certain coverage
and correctness. As a proxy for time we use the
number of characters presented. (Not words, as
is typically the case, since long words contain
more information than short, and yet are harder
for a human to verify.)

2. For  a  given  language,  how many words  (let-
ters) are needed to learn its LTS rule system?
The true,  yet not too useful  answer  is  “it  de-
pends.”   The  complexity  of  the  relation  be-
tween  graphemic  representation  and  acoustic
realization varies greatly across languages. That
being the case, we seek a useful measure of a
language's degree of  complexity.

3. Can the asymptote  of the LTS system be esti-
mated,  so  that  one  can  determine  when  the
learned rules are 90 or 95% complete? In Sec-
tion 4 we present evidence that this may not be

possible.  The  fall-back position  is  percentage
coverage of the supplied corpus.

4. Which words should be presented to the user,
and  in  what  order? Each  additional  word
should maximize the marginal information gain
to the system. However, short words are easier
for humans to contend with than long. Thus a
length-based weighting needs to be considered.

3 LTS Algorithm Basics 

A wide variety of approaches have been applied to
the problem of letter-to-sound rule induction. Due
to simplicity of representation and ease of manipu-
lation, our LTS rule learner follows the Default &
Refine  algorithm  of  Davel  (Davel  and  Barnard,
2004). In this framework, each letter  c is assigned
a default production p1-p2... denoting the sequence
of zero or  more phonemes most  often associated
with that letter. Any exceptions to a letter's default
rule is explained in terms of the surrounding con-
text  of  letters.  The  default  rules  have  a  context
width of one (the letter itself), while each addition-
al letter increases the width of the context window.
For example, if we are considering the first occur-
rence of  's'  in  the  word  basics, the  context  win-
dows are as listed in Table 1. By convention, the
underscore  character  denotes  the  predicted  posi-
tion, while the hash represents word termination.

width context sets ordered by increasing width
1 {_}

2 {a_ , _i}

3 {ba_ , a_i , _ic}

4 (#ba_ , ba_i , a_ic , _ics}

5 {#ba_i , ba_ic , a_ics , _ics#}

6 {#ba_ic , ba_ics , a_ics#}

7 {#ba_ics , ba_ics#}

8 {#ba_ics#}
Table 1. Letter contexts for the first 's' in basics.

In this position there are 20 possible explanatory
contexts. The order in which they are visited de-
fines an algorithm's search strategy. In the class of
algorithms knows as “dynamically expanding con-
text (DEC)”, contexts are considered top-down as
depicted in Table 1. Within one row, some algo-
rithms follow a fixed order (e.g. center, left, right).
Another variant tallies the instances of productions
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associated  with  a  candidate  context  and  chooses
the  one  with  the  largest  count.  For  example,  in
Spanish the letter 'c' may generate K (65%), or TH
when followed by e or i (32%), or CH when fol-
lowed by h (3%). These are organized by frequen-
cy into a “rule chain.”

Rule rank RHS Context Frequency
1 K _ 65.1%

2 TH _i 23.6%

3 TH _e 8.5%

4 CH _h 2.8%
If desired,  rules  2 and 3 in  this  example  can be
condensed into 'c' → TH /_{i,e}, but in general are
left separated for sake of simplicity.

In our variant, before adding a new rule all pos-
sible contexts  of all  lengths are considered when
selecting the best one. Thus the rule chains do not
obey a strict order of expanding windows, though
shorter  contexts generally  precede longer ones in
the rule chains.

One  limitation  of  our  representation is  that  it
does not support gaps in the letter context. Consid-
er  the  word  pairs  tom/tome,  top/tope,  tot/tote.  A
CART tree can represent this pattern with the rule:
if (c-1 = 't' and c0='o' and c2='e') then ph=OW. In prac-
tice, the inability to skip letters is not a handicap. 

3.1 Multiple Pronunciation Predictions

Given a word, finding the predicted pronunciation
is easy. Rule chains are indexed by the letter to be
predicted, and possible contexts are scanned start-
ing from the most specific until a match is found.
Continuing  our  example,  the  first  letter  in  the
Spanish word ciento fails rule 4, fails rule 3, then
matches rule 2 to yield TH. For additional pronun-
ciations the search continues until another match is
found: here, the default rule 'c' → K /_. This proce-
dure  is  akin  to  predicting  from  progressively
smoother models. In a complex language such as
English,  a  ten  letter  word  can  readily  generate
dozens  of  alternate  pronunciations,  necessitating
an ordering policy to keep the total manageable.

4 Language Characterization

English is notorious for having a highly irregular
spelling  system.  Conversely,  Spanish  is  admired
for its simplicity. Most others lie somewhere in be-
tween.  To estimate  how many words  need to  be

seen in order  to acquire 90% coverage of a lan-
guage's LTS rules, it helps to have a quantitative
measure.  In  this  section  we  offer  a  perplexity-
based measure of LTS regularity and present mea-
surements of several  languages with varying cor-
pus  size.  These  measurements  establish,  surpris-
ingly,  that  a  rule  system's  perplexity  increases
without bound as the number of training words in-
creases.  This  holds  true  whether  the  language is
simple  or  complex.  In  response,  we  resort  to  a
heuristic  measure  for  positioning languages  on a
scale of relative difficulty.

4.1 A Test Suite of Seven Languages

Our test suite consists of pronunciation dictionar-
ies from seven languages, with English considered
under two manifestations.

English.  Version  0.6d of  CMU-DICT,  consid-
ered without stress (39 phones) and with two level
stress marking (58 phones).  German. The Celex
dictionary of 321k entries (Burnage, 1990). Dutch.
The  Fonilex  dictionary  of  218k entries  (Mertens
and  Vercammen,  1998).  Fonilex  defines  an  ab-
stract  phonological  level  from which  specific di-
alects  are specified.  We tested on the “standard”
dialect. Afrikaans. A 37k dictionary developed lo-
cally. Afrikaans is a language of South Africa and
is  a  recent  derivative  of  Dutch.  Italian.  A 410k
dictionary  distributed  as  part  of  a  free  Festival-
based  Italian  synthesizer  (Cosi,  2000).  Spanish.
Generated by applying a set of hand written rules
to a 52k lexicon. The LTS rules are a part of the
standard Festival Spanish distribution. Telugu. An
8k locally  developed dictionary.  In its  native or-
thography, this language of India possess a highly
regular  syllabic  writing system. We've adopted  a
version  of  the  Itrans-3  transliteration  scheme
(Kishore 2003) in which sequences of two to four
English letters map onto Telugu phonemes.

4.2 Perplexity as a Measure of Difficulty

A useful  way of considering letter  to sound pro-
duction is as a Markov process in which the gener-
ator passes through a sequence of  states (letters),
each  probabilistically  emitting  observation  sym-
bols  (phonemes)  before  transitioning  to  the  next
state  (following letter).  For a letter  c,  the unpre-
dictability  of  phoneme  emission  is  its  entropy
H c=−∑  pi log pi or equivalently its perplexity
P c=eH c . The perplexity can be interpreted as
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the average number of  output  symbols  generated
by a letter. The production perplexity of the char-
acter set is the sum of each individual letter's per-
plexity weighted by its unigram probability pc.

   (1)

Continuing with our Spanish example, the letter 'c'
emits the observation symbols (K, TH, CH) with a
probability distribution of (.651, .321, .028), for a
perplexity  of  2.105.  This  computation applies
when each letter is assigned a single probabilistic
state. The process of LTS rule discovery effective-
ly splits the state 'c' into four context-defined sub-
states:  (-,c,-),  (-,c,i),  (-,c,e),  (-,c,h).  Each of these
states emits only a single symbol. Rule addition is
therefore an entropy reduction process;  when the
rule set is complete the letter-to-sound system has
a perplexity of 1, i.e. it is perfectly predictable.

The “price paid” for perfect  predictability is a
complex set of rule chains. To measure rule com-
plexity we again associate a single state with each
letter. But, instead of phonemes, the  rules  are the
emission  symbols.  Thus  the  letter  'c'  emits  the
symbols (K/_, TH/_i, TH/_e, CH/_h) with a distri-
bution of (.651, .236, .085, .028), for a perplexity
of 2.534. Applying equation (1) to the full set of
rules defines the LTS system's average perplexity. 

4.3 Empirical Measurements

In  the  Default  & Refine  representation,  the  rule
chain for each letter is is initialized with its most
probably  production.  Additional  context-depen-
dent rules are appended to cover additional letter
productions, with the rule offering the greatest in-
cremental  coverage  being  added  first.  (Ties  are
broken in an implementation-dependent way.)

Figure 1 uses Spanish to illustrate a characteris-
tic  pattern:  the  increase  in  coverage as  rules  are
added one at  a time. Since the figure of merit  is
letter-based, the upper curve (% letters correct) in-
creases monotonically, while the middle curve (%
words correct) can plateau or decrease briefly. 

In the lower curve of Figure 1 the growth proce-
dure is constrained such that all width 1 rules are
added before width 2 rules, which in turn must be
exhausted  before  width  3  rules  are  considered.
This  constraint  leads  to  its  distinctive  scalloped
shape. The upper limit of the W=1 region shows
the performance of the unaided default rules (68%
words correct).

Figure 1. Coverage of Spanish (52k corpus) as a
function of rule size. For the lower curve, W indi-
cates the rule context window width. The middle
(blue) curve tracks near-optimal performance im-
provement with the introduction of new rules.

For more complex languages the majority of rules
have a context width in the range of 3 to 6. This is
seen in Figure 2 for English, Dutch, Afrikaans, and
Italian. However, a larger rule set does not mean
that the average context width is greater. In Table
2, below, compare Italian to Dutch.

Language Number of Rules Average Width
English 40k  19231 5.06

Dutch 40k  10071 4.35

Afrikaans 37k  5993 4.66

Italian 40k  3385 4.78

Spanish 52k  76 1.66
Table 2.  Number of LTS rules for five language
and their average context width.

Figure  2.  Distribution  of  LTS  rules  by  context
window width for four languages: English, Dutch,
Afrikaans, and Italian.
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Beyond a window width of 7, rule growth tapers
off  considerably.  In  this  region  most  new  rules
serve  to  identify  particular  words  of  irregular
spelling, as it is uncommon for long rules to gener-
alize beyond a single instance. Thus when training
a  smoothed  LTS rule  system it  is  fair  to  ignore
contexts larger than 7, as is done for example in
the Festival synthesis system (Black, 1998).

Figure 2 contrasts four languages with training
data of around 40k words, but says nothing of how
rule sets grow as the corpus size increases. Figure
3 summarizes measurements taken on eight encod-
ings of seven languages (English twice, with and
without stress marking), tested from a range of 100
words  to  over  100,000.  Words  were  subsampled
from each alphabetized lexicon at equal spacings.
The results are interesting, and for us, unexpected.

Figure 3. Rule system growth as the corpus size is
increased,  for  seven languages.  From top to bot-
tom:  English  (twice),  Dutch,  German,  Afrikaans,
Italian, Telugu, Spanish. The Telugu lexicon uses
an Itrans-3 encoding into roman characters, not the
native  script,  which  is  a  nearly  perfect  syllabic
transcription. The context window has a maximum
width of 9 in these experiments.

Within  this  experimental  range  none  of  the  lan-
guages  reach  an  asymptotic  limit,  though  some
hint  at  slowed  growth  near  the  upper  end.  A
straight line on a log-log graph is characteristic of
geometric growth, to which a power law function
y=axb+c is an appropriate parametric fit. For diffi-
cult  languages the growth rates  (power  exponent
b) vary between 0.5 and 0.9, as summarized in Ta-
ble 3. The language with the fastest growth is En-
glish, followed, not by Dutch, but Italian. Italian is
nonetheless the simpler of these two, as indicated
by the smaller multiplicative factor a.

Language a b
English (stressed) 2.97 0.88

English (plain)  3.27 0.85

Dutch  12.6 0.64

German  39.86 0.49

  Afrikaans  15.34 0.57

Italian  2.16 0.69
Table 3. Parameters a and b for the power law fit
y=axb+c to the growth of LTS system size. 

It would be good if a tight ceiling could be estimat-
ed from partial data in order to know (and report to
the lexicon builder) that  with  n rules defined the
system is m percent complete. However, this trend
of  geometric  growth  suggests  that  asking  “how
many letter-to-sound rules does a given  language
have?” is an ill-posed question. 

In light of this, two questions are worth asking.
First, is the geometric trend particular to our rule
representation?  And  second,  is  “total  number  of
rules”  the  right  measure  of  LTS complexity?  To
answer the first  question we repeated the experi-
ments with the  CART tree builder available from
the Festival  speech  synthesis  toolkit.  As it  turns
out  –  see  Table  4  –  a  comparison  of  contextual
rules and node counts for Italian  demonstrate that
a CART tree representation also exhibits geometric
growth with respect to lexicon size.

Num Words
in Lexicon

Contextual
LTS Rules

CART Tree
Nodes

100 80 145
250 131 272
500 198 399

1000 283 601
2500 506 1169
5000 821 1888

10,000 1306 2840
20,000 2109 4642
40,000 3385 7582
80,000 5524 13206

Table 4. A comparison of rule system growth for
Italian as the corpus size is increased. CART tree
nodes (i.e. questions) are the element comparable
to LTS rules used in letter context chains. The fit-
ted parameters to the  CART data are  a=2.29 and
b=0.765. This compares to  a=2.16 and b=0.69.
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If geometric growth and lack of an obvious asymp-
tote  is  not  particular  to  expanding  context  rule
chains,  then  what  of  the  measure?  The  measure
proposed in Section 4.2 is average chain perplexi-
ty. The hypothesis is that a system close to satura-
tion will still add new rules, but that the average
perplexity levels off. Instead, the data shows little
sign of saturation (Figure 4). In contrast, the aver-
age  perplexity  of  the  letter-to-phoneme  distribu-
tions remains level with corpus size (Figure 5). 

Figure 4. Growth of average rule perplexity as a
function  of lexicon size.  Except  for  Spanish and
Telugu,  the  average  rule  system  perplexity  not
only grows, but grows at an accelerating rate. 

Figure  5.  Growth  of  average  letter-to-phoneme
production perplexity as a function of lexicon size.

Considering  these  observations  we've resorted  to
the following heuristic to measure language com-
plexity: a) fix the window width to 5, b) measure
the average rule perplexity at lexicon sizes of 10k,
20k,  and  40k,  then  c)  take  the  average  of  these
three  values.  Fixing  the  window  width  to  5  is
somewhat arbitrary, but is intended to prevent the
system from learning an unbounded suite of excep-
tions. Available values are contained in Table 5.

Language Ave Letter
Perplexity

Heuristic
Perplexity

Perplexity
Ratio

English 3.25 50.11 15.42

Dutch  2.73 16.80 6.15

German  2.41 16.70 6.93

Afrikaans  2.32 11.48 8.32

Italian  1.38 3.52 2.55

Spanish  1.16 1.21 1.04
 Table 5.  Perplexity measures  for  six languages.
The  third  (rightmost)  column is  the  ratio  of  the
second divided by the first.  A purely phonetic sys-
tem has a heuristic perplexity of one.

From these measurements we conclude, for exam-
ple, that Dutch and German are equally difficult,
that English is 3 times more complex than either of
these, and that English is 40 times more complex
than Spanish.

5 Word Selection Strategies

A selection strategy is  a method for choosing an
ordered  list  of  words  from a lexicon.  It  may be
based on an estimate of expected maximum return,
or be as simple as random selection. A good strate-
gy should enable rapid learning, avoid repetition,
be robust, and not overtax the human verifier. 

This  section  compares  competing  selection
strategies on a single lexicon. We've chosen a 10k
Italian lexicon as a problem of intermediate diffi-
culty, and focus on early stage learning. To pro-
vide a useful frame of reference, Figure 6 shows
the results of running 5000 experiments in which
the word sequence has been chosen randomly. The
x-axis is number of letters examined.

Figure 6. Random sampling of Italian 10k corpus.
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Figure 7 compares average random performance to
four deterministic strategies.  They are:  alphabeti-
cal word ordering, reverse alphabetical, alphabeti-
cal sorted by word length (groups of single charac-
ter  words first,  followed by two character  words,
etc.), and a greedy ngram search. Of the first three,
reverse alphabetical performs best because it intro-
duces  a  greater  variety  of  ngrams  more  quickly
than the others. Yet, all of these three are substan-
tially  worse  than  random.  Notice  that  grouping
words  from short  to  long degrades  performance.
This implies that strategies tuned to the needs of
humans will incur a machine learning penalty.

Figure 7. Comparison of three simple word order-
ings  to  the  average  random  curve,  as  well  as
greedy ngram search. 

It might be expected that selecting words contain-
ing the most popular ngrams first  would out-per-
forms random, but as is seen in Figure 7, greedy
selection  closely  tracks  the  random  curve.  This
leads  us to investigate  active  leaning algorithms,
which we treat as variants of ngram selection. 

5.1 Algorithm Description

Let W = {w1,w2,...} be the lexicon word set, having A =
{'a', 'b',...} as the alphabet of letters. We seek an ordered
list V = (... wi ...) s.t. score(wi) ≥ score (wi+1). V is initial-
ly empty and is extended one word at a time with wb, the
“best” new word. Let g=c1c2...cn ` A* be an ngram of
length n, and Gw={gi}, gi ` w are all the ngrams found in
word w. Then GW =  5 Gw,  w  `  W, is  the set  of  all
ngrams in the lexicon W, and GV = 5 Gw, w ` Vis the set
of all ngrams in the selected word list V. The number of
occurrences of g in W is score(g), while score(w) =  ∑
score(g) st.  g  `  w and g  v GV. The scored ngrams are
segmented  into separately sorted  lists,  forming an  or-
dered list of queues Q = (q1,q2,...qN) where qn contains
ngram of length n and only n. 

Algorithm
for q in Q

g = pop(q)
for L = 1 to |longest word in W|

Wg,L = {wi} s.t. |wi| = L, g ` wi and wi v V
wb = argmax score(Wg,L)
if score (wb) > 0 then

V = V + wb

GV = GV 4 Gwb

return wb

In this search the outer loop orders ngrams by length,
while the inner loop orders words by length. For selec-
tion based on ngram coverage, the queue Q is computed
only once for the given lexicon W. In our active learner,
Q is re-evaluated after each word is selected, based on
the ngrams present in the current LTS rule contexts. Let
GLTS = {gi} s.t. gi ` some letter context in the LTS rules.
Initially GLTS,0 = {}. Then, at any iteration k, GLTS,k are
the ngrams present in the rules, and G'LTS,k+1 is an ex-
panded set of candidate ngrams that constitute the ele-
ments of Q. G' is formed by prepending each letter c of
A to each g in G, plus appending each c to g. That is,
G'LTS,k+1 = A%GLTS,k 4 GLTS,k%A where % is the Cartesian
product. Executing the algorithm returns wb and yields
GLTS,k+1 the set of ngrams covered by the expanded rule
set.  In  this  way knowledge  of  the  current  LTS  rules
guides the search for maximally informative new words.

5.2 Active Learner Performance

Figure  8  displays  the  performance  of  our  active
learner  on  the  Italian  10k corpus,  shown  as  the
blue  curve.  For  the  first  500  characters  encoun-
tered,  the  active  learner's  performance  is  almost
everywhere better  than average random, typically
one half to one standard deviation above this refer-
ence level.

Two  other  references  are  shown.  Immediately
above the active learner curve is “Oracle” word se-
lection. The Oracle has access to the final LTS sys-
tem  and  selects  words  that  maximally  increases
coverage of the known rules. The topmost curve is
for  a  “Perfect  Oracle.”  This  represents  an  even
more unrealistic  situation in which each letter  of
each  word  carries  with  it  information  about  the
corresponding production rule.  For example,  that
'g' yields /F/ 10% of the time, when followed by
the letter 'h' (as in “laugh”) . Carrying complete in-
formation with each letter allows the  LTS system
to be constructed directly and without mistake. In
contrast,  the  non-perfect  oracle  makes  mistakes
sequencing rules  in each  letter's  rule  chain.  This
decreases performance.
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Figure 8. From top to bottom: a perfect Oracle, a
word selection Oracle, our active learner, and av-
erage random performance. The perfect Oracle de-
marcates  (impossibly  high)  optimal  performance,
while  Oracle  word  selection  suggests  near-opti-
mality.  For  comparison,  standard  deviation  error
bars are added to the random curve. 

Encouragingly, the active learning algorithm strad-
dles  the  range  in  between  average  random  (the
baseline) and Oracle word selection (near-optimal-
ity). Less favorable is the non-monotonicity of the
performance curve; for example, when the number
of  letters  examined  is  135,  and  210.  Analysis
shows that these drops occur when a new letter-to-
sound  production  is  encountered  but  more  than
one  context  offers  an  equally  likely  explanation.
Faced  with  a  tie,  the  LTS  learner  sometimes
chooses incorrectly. Not being aware of this mis-
take  it  does  not  seek  out  correcting  words.  Flat
plateaus occur when  additional words (containing
the next most popular ngrams) do not contain pre-
viously unseen letter-to-sound productions. 

6 Conclusions

While this work does not definitively answer the
question of “how may words to learn the rules,”
we  have  developed  ways  of  characterizing  lan-
guage  complexity,  which  can  guide  developers.
We've devised a word selection  strategy that  ap-
pears to perform better than the (surprisingly high)
standard  set  by  randomly  selection.  Further  im-
provements  are  possible  by incorporating knowl-
edge of  word  alignment  and rule  sequencing  er-
rors.  By  design,  our  strategy  is  biased  towards
short words over long, thereby being “nice” to lex-
icon developers – our original objective. 
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