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ABSTRACT

With recent advancements in language technologies, humans
are now speaking to devices. Increasing the reach of spo-
ken language technologies requires building systems in lo-
cal languages. A major bottleneck here are the underlying
data-intensive parts that make up such systems, including au-
tomatic speech recognition (ASR) systems that require large
amounts of labelled data. With the aim of aiding develop-
ment of spoken dialog systems in low resourced languages,
we propose a novel acoustics based intent recognition system
that uses discovered phonetic units for intent classification.
The system is made up of two blocks - the first block is a
universal phone recognition system that generates a transcript
of discovered phonetic units for the input audio, and the sec-
ond block performs intent classification from the generated
phonetic transcripts. We propose a CNN+LSTM based archi-
tecture and present results for two languages families - Indic
languages and Romance languages, for two different intent
recognition tasks. We also perform multilingual training of
our intent classifier and show improved cross-lingual transfer
and zero-shot performance on an unknown language within
the same language family.

Index Terms— Intent, Low Resource, Cross Lingual,
Multilingual, Long short term Memory

1. INTRODUCTION

In order to bring technology closer to humans, it is impor-
tant to provide accessible mechanisms of interaction. Speech
is regarded as the most natural form of interaction for hu-
mans and its accessibility has been aided by improvements
in language technologies such as Automatic Speech Recogni-
tion and Speech Synthesis. However, lack of annotated data
is a major bottleneck for scaling speech technologies to new
languages and domains. Therefore, it is useful to design tech-
niques that can perform well in low data scenarios. A funda-
mental resource required to build such systems is a phonetic
lexicon which can translate acoustic input to textual represen-
tation. In this paper, we present a novel approach to perform
intent recognition purely from acoustics using such a phonetic
lexicon. A block diagram representing our system is shown

in Figure 1. Through our approach, we bypass the need to
build language specific ASR systems, which are very data in-
tensive, and demonstrate deployable performance for intent
recognition using discovered phonetic units.

We test the performance of our system on two language
families - Indic and Romance languages, each having a dif-
ferent intent recognition task. We also train our intent clas-
sification system multilingually and evaluate its zero-shot
performance for a language not in the training set, although
still within the same language family. This simulates a zero
resource scenario and helps us understand the extent of cross-
lingual transfer between languages for our acoustics based
intent recognition system. We find that a multilingually
trained classification model performs significantly better than
a monolingually trained model for an unknown language.

2. RELATED WORKS

Spoken Language Understanding (SLU) systems aim to pro-
cess spoken utterances for various downstream tasks. Current
research in high resourced languages is moving towards
building end-to-end SLU systems [1] [2] to eliminate prop-
agating errors through the SLU pipeline. A typical SLU
pipeline is made up of two blocks - a speech to text module
followed by a natural language understanding (NLU) mod-
ule. Building speech to text modules require large amounts
of labelled speech data, which is scarce for low resourced
languages. [3] [4] have previously used outputs of an English
ASR system and English phonemes for intent classification
in Sinhala and Tamil.

To the best of our knowledge, this paper is the first attempt
in literature to use the phonetic units for intent classification.
There have been numerous attempts[5, 6] to discover such
acoustic units in an unsupervised fashion. In [7], authors pre-
sented an approach to modify the speaker diarization system
to detect speaker-dependent acoustic units. [8] proposed a
GMM-based approach to discover speaker-independent sub-
word units. However, their system requires a separate Spoken
Term Detector. Our work is closest to [9] where authors dis-
cover symbolic units in an unsupervised fashion for speech
to speech translation. Contrary to this work, we employ the
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Intents Number of Utterances
ordering pizza 711

auto-repair appointment 484
order ride service 450

order movie tickets 549
order coffee 292

restaurant reservations 757

Table 1. Class distribution for the Indic dataset.

symbolic units generated by Allosaurus [10] which is trained
in a supervised fashion.

3. DATASETS

We study the performance of our acoustics based intent recog-
nition system for two language families - Indic Languages
and Romance Languages. For each family we use a different
dataset and each language family has a different intent recog-
nition task.

3.1. Dataset for Indic Languages

We use Google’s Taskmaster-1 Dataset [11] for Indic Lan-
guages which contains data for user interactions with an au-
tonomous dialogue system collected using the Wizard of Oz
methodology [12]. The user dialogues are a written tran-
scripts of the conversations in English. The dataset contains
labelled intents and slots for the conversation. We extract the
sentence responsible for the labelled intent from the dataset
and create an intent recognition dataset. We obtain 3243 utter-
ances in total distributed amongst 6 intents as shown in Table
1. After creating the intent classification dataset, we translate
the transcripts in Engish into four Indic languages - Hindi,
Gujarati, Bengali and Marathi, using the Google Translate
API. The translated text was used to synthesize audio using
the Google Text-To-Speech API for Hindi, Gujarati and Ben-
gali. CLUSTERGEN [13] was used synthesizing for Marathi
voice. The voice quality of Marathi is much worse when com-
pared to the other voices generated from Google’s API. The
dataset in each language contains two voices - one male and
one female. The audios are then passes into Allosaurus [10]
to discover phonetic units and create a phonetic transcription
of the audio.

3.2. Dataset for Romance Languages

To work with Romance languages, we create an intent recog-
nition dataset from the MultiWoz dataset [14]. The dataset
contains a large number of dialogues between humans and
robots where each utterance is associated with a json object
containing the conversational context. The context has rich
information about the intent of humans. The largest context

Intents Number of Utterances
Monday 743
Tuesday 718

Wednesday 757
Thursday 738

Friday 763
Saturday 779
Sunday 806

Table 2. Class distribution for the Romance dataset.

class in the dataset is about the reservation day whose distri-
butions are shown in the Table 2. This class is used as our
Romance languages dataset. This dataset is then prepared in
a similar way as done for the Indic language, where we trans-
late the original English utterances into 4 different Romance
languages - Italian, Portuguese, Romanian and Spanish. The
translated text is synthesized with the Google TTS engine,
and then transcribed into phonetic units with Allosaurus [10].

4. MODELS

A block diagram depicting our acoustics based intent recog-
nition system utilizing a phonetic transcription is shown in
Figure 1. The input audio is directly fed into a system that can
generate hypothesized phonetic units. For our work, we use
the Allosaurus library [10] which is a nearly-universal phone
recognition system. For this work, we employ the language
dependent phones, which basically means we’re providing
an identifier to Allosaurus for audio language. The pho-
netic transcription is then sent to an intent classifier that does
the classification purely based on the generated sequence of
phones. Such very simple systems can be used to build pow-
erful tools, especially for low resource languages, as shown
in [15].

Fig. 1. Block Diagram showing a general acoustics based
intent recognition system.

We use a Naive Bayes classifier as our baseline with add-1
smoothing and absolute discounting. We also propose a neu-
ral network architecture shown in Figure 2 to compare with
the baseline results. The architecture is based on LSTMs
(long-short term memory) [16] for modeling sequential in-
formation where the contextual information is encoded using
CNNs (convolutional neural network).

The input to the network is a sequence of phones x =
x1, x2, . . . xt, where each phonetic unit is passed to a 128 di-
mensional embedding vector. The embedding layer converts
the input sequence into a dense vector representation which is
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Fig. 2. Block Diagram depicting the architecture of our pro-
posed neural network.

then sent to two 1-d CNN layers of kernel size k = 3,5. The
CNN layers have 128 filters and capture trigram and 5-gram
features from the phonetic transcription. The outputs of each
of the CNN layers are concatenated to create a 256 dimension
long embedding vector where each embedding vector now has
contextual information encoded in it.

The concatenated embeddings are passed through the
LSTM layer consisting of 128 neurons. The hidden state of
the LSTM layer at the final time step is sent to a linear layer
for intent classification.

5. EXPERIMENTS

We test our acoustics based intent recognition system for two
sets of languages across two different language families - In-
dic and Romance language families. We perform monolin-
gual and multilingual training for both baseline and our pro-
posed neural network architecture and test the model perfor-
mance for multiple languages.

5.1. Monolingual Training Results

In this section we present results for intent classification ar-
chitectures trained on a single language. Table 3 presents the
classification results for Indic languages and Table 5 for Ro-
mance languages. The diagonal elements in the tables show
the classification accuracy for training and testing performed
on the same language. The numbers in the bracket show per-
formance with the baseline (Naive Bayes) classifier. We see
that our proposed neural network architecture improves on
our baseline significantly.

Cross-lingual testing results for monolingually trained
classification models are also shown in Tables 3 and 5. The
performance is relatively poor when the classification model
is trained on only one language due to minimal cross-lingual
transfer. Language pairs for linguistically similar languages
show higher performance. This can be seen for language

Train
Test Hin Guj Mar Ben

Hin 92.0(89.3) 54.7(59.7) 43.7(36.7) 54.3(45.3)
Guj 52.3(50.3) 93.3(91.7) 52.0(47.0) 63.0(39.3)
Mar 52.0(35.0) 66.3(49.7) 87.7(84.3) 58.0(37.0)
Ben 48.0(41.7) 54.7(38.3) 45.7(31.3) 95.0(93.0)

Table 3. Classification Accuracy for monolingual training for
Indic Languages - Hindi (Hin), Gujarati (Guj), Marathi (Mar)
and Bengali (Ben). The numbers in the bracket are the base-
line results using a Naive Bayes classifier.

Train
Test Hin Guj Mar Ben

HGM 85.3(84.7) 90.3(86) 75.6(78.3) 80.7(58.3)
HGB 87.3(84) 90.0(84) 61.7(54.3) 90.3(89.3)
HMB 84.3(88.7) 62(65.4) 80.7(76.6) 88.3(88)
GMB 65.3(63.7) 86.7(84.7) 83.0(80) 92.0(89.7)

Table 4. Average Classification Accuracy for a multilingually
trained model. The languages in bold are the languages that
are not present in the train set. The numbers in the bracket are
the baseline results using a Naive Bayes classifier.

pairs Hindi-Gujarati and Gujarati-Marathi in Indic language
family and pairs Italian-Portuguese and Italian-Spanish in
the Romance language family. These language pairs are also
geographically close. The cross lingual results are in general
better for the Indic Dataset when compared to the Romance
dataset. We believe this is because all Indic languages have
some amount of code mixing within them. Therefore, there
is a larger cross-lingual transfer of features between any pair
of languages in the Indic language family when compared to
the Romance language.

5.2. Multilingual Training Results

With the aim of improving performance on a language not
present in our training set and simulating a zero resource sce-
nario, we train a multilingual model. The training set size is
kept the same and the exact same train-test split is used for
accuracy scores as used for monolingual results. Let T = [L1,
L2, . . .Ln] be the set of languages we use to train the clas-
sifier. Then the training set is divided randomly and equally
amongst the ’n’ languages present in the training set.

The results for multilingual training can be seen in Ta-
ble 4 and Table 6 when trained on n = 3 languages. The
results in bold are for the language not in the training set.
The numbers in the bracket show performance with the base-
line (Naive Bayes) classifier. We see that our proposed neural
network architecture improves on the baseline results signif-
icantly in almost all cases. The power of multilingual train-
ing becomes apparent when we look at the performance on a
language not present in T. We find that a multilingual classi-
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Train
Test Ita Por Ron Spa

Ita 88.6(82.4) 27.6(24.2) 28.6(33.9) 39.0(32.5)
Por 30.6(23.3) 88.6(74.6) 28.2(22.2) 36.0(26.2)
Ron 32.6(31.6) 29.6(17.4) 86.6(76.5) 46.0(33.3)
Spa 46.1(35.8) 43.9(40.2) 35.4(33.9) 88.7(83.3)

Table 5. Classification Accuracy for monolingual training for
Romance Languages - Italian (Ita), Portuguese (Por), Roma-
nian (Ron and Spanish (Spa). The numbers in the bracket are
the baseline results using a Naive Bayes classifier.

Train
Test Ita(I) Por(P) Ron(R) Spa(S)

IPR 87.0(78.8) 88.9(62.1) 85.4(69.1) 60.4(43.9)
IPS 88.6(77.2) 88.9(62.9) 37.4(40.7) 88.9(80.4)
IRS 88.1(88.2) 41.3(30.0) 86.6(73.2) 88.7(80.0)
PRS 50.3(40.9) 87.8(59.9) 84.9(69.1) 88.3(79.9)

Table 6. Classification Accuracy for a multilingually trained
model. The languages in bold are the languages that are not
present in the train set. The numbers in the bracket are the
baseline results using a Naive Bayes classifier.

fier always performs better on an unknown language Lu /∈ T
when compared to zero-shot transfer by monolingual model
without significant performance loss in individual languages.
Its important to consider that we haven’t augmented the data
in any form, thus the multilingual model see far fewer exam-
ple of a specific language than monolingual models.

The results in Table 4 and Table 6 show that there is larger
amount of cross-lingual transfer when the model is trained on
many languages from the same language family. In a practi-
cal scenario, this means that a deployed multilingual model
is more likely to generalize better to an unknown language or
variation in dialect than a monolingual model. This is espe-
cially useful for the case of low-resource languages for which
it’s hard to collect any training data. We illustrate this point
by taking the example of Bengali in the Indic language fam-
ily. There are four models across Tables 3 and 4 that do not
have Bengali in the training set. These are the models not
highlighted in the Bengali column in Table 3 and the high-
light value in the Bengali column in Table 4. The multilin-
gual model performs best out of these four models. This is
also true for Spanish in Tables 5 and 6.

The performance for an unknown language Lu /∈ T can
further be improved by injecting a very small amount of data
for Lu in the training set. We added training data for lan-
guage Lu in increments of a ratio of 0.05 of the training set as
shown in Figure 3. We see that introducing even the slightest
amount of training data for the unknown language increases
its performance significantly while not affecting the perfor-
mance of the other languages. Figure 3 shows an increase
in performance of about 9% for Marathi, 14% for Hindi and

17% for Gujarati only by an injection of data 5% the size of
training dataset.

Fig. 3. Plot showing performance of a multilingual intent
classification model for when data for a language is injected
into the training set in increments of ratio of 0.05 for In-
dic languages. For example, HGM -> B represents a model
trained on Hindi, Gujarati, Marathi and we’re checking the
increase in perfromance on Bengali by injecting Bengali data
into the training dataset.

6. DISCUSSION

We present a novel approach for intent recognition in low
resourced languages with experiments on two different lan-
guage families. It was shown that zero-shot performance for
a language not in the training set of the model but still within
the language family can be improved with multilingual train-
ing. This helps in maximal cross-lingual transfer between
languages that are linguistically and geographically closer to
each other. We also found that performance for such a lan-
guage not in the training set can be improved significantly by
introducing a minimal amount of training data.

Our present work was based on synthesized data due
to the absence of enough natural speech datasets for intent
recognition for low resource languages. Future work can
include corroboration of our results with natural speech. The
synthesized speech also had little speaker variation in terms
of speaker style or prosody though we did include variation
in speaker gender.

7. CONCLUSION

We present a novel acoustics based intent recognition system
that classifies intents from phonetic transcripts generated us-
ing a (nearly-)universal phone recognizer, bypassing the need
to build language specific ASR. We also show that multilin-
gual training within same language families produce better
zero shot transfer within same the language family when com-
pared to monolingual models.
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