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ABSTRACT

Phones are critical components in various computational
linguistic fields, for example, phone distributions could be
helpful in speech recognition and speech synthesis. Tradi-
tional approaches to estimate phone distributions typically
involve G2P systems which are either manually designed
by linguists or trained on large datasets. These prohibitive
requirements make research on low resource languages ex-
tremely challenging. In this work, we propose a novel ap-
proach to estimate phone distributions by only requiring raw
audio datasets: We first estimate the phone ranks by combin-
ing language-independent recognition results and Learning
to Rank results. Next, we approximate the distribution with
Expectation-Maximization by fitting Yule distribution. The
results on 7 languages show the joint-model has better perfor-
mance in both ranking estimation and distribution estimation
tasks.

Index Terms— phone distribution estimation, low re-
source languages, multilingual speech recognition, ranking
models

1. INTRODUCTION

Phones are one of the fundamental elements widely used in
traditional linguistic fields [1, 2] and computational linguistic
fields [3, 4, 5, 6]. Phone distribution, which indicates how
phones are distributed within its inventory in each language,
has broad applications in both traditional and computational
linguistic research. For instance, in the traditional linguistic
fields, phone distributions are central components of phonet-
ics, phonology, and typology [1, 7], they can be applied to
estimate how sound changes in historical linguistics [2]. In
the applied fields, they serve as a prior to transform between
posterior and likelihood in speech recognition [4, 3]. Addi-
tionally, they are useful when creating phonetically balanced
speech datasets to minimize human costs [8]. Therefore, es-
timating the phone distribution is an important task.

We note that the task of estimating phone distribution
is related to, but different from the task of estimating the
phone inventory. The latter focuses on identifying a set of
the phoneme or phone inventory for the target language,

Fig. 1. An illustration of the phone distribution from the
Amharic experiment. The horizontal axis shows the top
ranked phones within the Amharic phone inventory, the verti-
cal axis shows the estimated distributed frequencies.

whereas the former task is about estimating how phones are
distributed within the fixed given phone inventory as illus-
trated in Figure.1, and hence the task of estimating phone
distribution typically assumes the existence of predefined
phone inventories. This assumption is reasonable in practice,
because many languages including the low-resource ones
have been studied carefully by phoneticians, and their phone
inventory has been developed by those experts. For example,
Phoible is a large phonological inventory that covers more
than 2000 languages [9].

The phone distribution estimation task has not been fully
explored so far. Although the phone distribution for rich-
resource languages such as English and Mandarin could be
easily estimated by applying a good G2P system to some text
corpora [10], this is not the case for low-resource languages.
Well-performing G2P systems are typically designed either
manually by linguists or trained on large datasets [11], both
of which are not usually available for most low-resource lan-
guages. Moreover, even a G2P system could be trained or
transferred from other languages [12], the textual corpus itself
might not be available as many low-resource languages do not
possess writing systems. Therefore, estimating the phone dis-

7233978-1-7281-7605-5/21/$31.00 ©2021 IEEE ICASSP 2021

IC
A

SS
P 

20
21

 - 
20

21
 IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 A
co

us
tic

s, 
Sp

ee
ch

 a
nd

 S
ig

na
l P

ro
ce

ss
in

g 
(I

C
A

SS
P)

 | 
97

8-
1-

72
81

-7
60

5-
5/

20
/$

31
.0

0 
©

20
21

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IC
A

SS
P3

97
28

.2
02

1.
94

15
01

4

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on December 27,2021 at 15:22:59 UTC from IEEE Xplore.  Restrictions apply. 



tribution for low resource languages has been a challenging
task.

In this work, we propose a novel approach to estimate
phone distribution only using the phone inventory and the raw
audios of the target language, which are both collectible even
for unwritten languages [13, 9]. We first apply a language-
independent phone recognizer to count the occurrence of each
phone. For the recognizable phones, their frequencies can
be used as the empirical distribution towards the phone dis-
tribution. In this step, there would be some missing phones
that could not be recognized by the model as they are not in-
cluded in the recognizer’s inventory. We estimate the missing
phones’ ranks based on a trained ranking model. Then the oc-
currences and ranks are combined to fit Yule distribution [14]
with Expectation-Maximization algorithm. We apply our ap-
proach to generate phone distributions and evaluate our re-
sults on 7 languages in detail. The result shows that the joint
model produces the best performance.

2. APPROACH

2.1. Phone Recognition

In this work, only the raw audios are used to estimate the
phone distribution. To cover as many languages as possible,
we use the CMU Wilderness dataset [15] which is a collection
of Bible recordings from around 800 different languages. The
phone inventory is obtained from Phoible [9]. We associate
languages from two datasets with ISO639-3 code and extract
676 languages. To recognize phones of various languages,
a language-independent phone recognition model is required
because any language-dependent systems could only discover
phones of that specific language [16]. Additionally, language-
dependent systems could not distinguish allophones which
might be crucial in other languages [17]. To handle this issue,
we adopt a recently proposed language-independent phone
recognition model as the recognition tool in this work [18].

One critical issue with most multilingual recognition
models is that their phone coverage is hardly complete [19].
For example, our trained model could cover around 200
phones, whereas the Phoible inventory has around 2000 dis-
tinct phones. For each low resource language, we estimate
that around 20% phone inventory is missing from the model,
which prevents us from measuring those phones’ distribution.
Suppose the phone inventory for a specific language is I and
the model’s recognizable inventory is Irec. The distribution
of phones within the inventory p ∈ Irec can be estimated eas-
ily by counting its occurrences in the audio dataset. The core
problem to solve in this work is to estimate phone distribution
for the missing phone inventory Imiss = {p|p ∈ I, p /∈ Irec}.
To tackle the missing phones, we break this problem into two
steps: 1) We estimate ranks for all phones including the miss-
ing phones in each language’s inventory. 2) We approximate
the entire phone distribution with Yule distribution and fill the

Recognizer's InventoryTarget Language's Inventory

Missing
Phones

Recognizable
Phones

Fig. 2. Recognizable phones Irec and missing phones Imiss

values for the missing phones.

2.2. Phone Rank Estimation

The problem of phone rank estimation can be seen as a Learn-
ing to Rank problem, which is heavily used in the field of
information retrieval to estimate ranks of documents [20]. In
this work, we apply the same framework to estimate the phone
ranking. In particular, we use the rank SVM approach to train
a pair-wise model to assign ranks for all phones [21]. We use
the articulatory feature as the feature to rank phones. For each
phone, we use a fixed set of 37 articulatory feature templates
extracted from Phoible, each template is encoded as a cate-
gory feature. The ranking model could be easily trained with
well-resource languages where actual phone ranks are avail-
able. Then the model is applied to low-resource languages:
for each phone in its inventory I , a ranking score Srank ∈ R
would be assigned.

Empirically, the ranks of phones are highly correlated
with their occurrences. To quantify it, we introduce another
score Srec ∈ [0, 1] which denotes the empirical score esti-
mated from the recognition results: for every recognizable
phone in Irec, we use its frequency percentage in the entire
dataset as the score Srec. For other phones in Imiss, we
assign 0 as they do not appear in the recognition. Finally, to
consider both Srec and Srank, they are linearly combined to
obtain a new score Sjoint, which we use to sort and obtain
the final ranks as the equation below. Note that the coefficient
α here can be optimized using the training languages.

Sjoint = Srec + αSrank (1)

2.3. Phone Distribution Estimation

The next step is to estimate the full distribution for all phones
I , especially the distribution for the missing phones Imiss.
It is known that the phone distribution can be modeled with
Yule distribution [10]. The phone distribution with rank r is
defined as

P (r; a, b) =

 |I|∑
i=1

ai

ib

−1(ar
rb

)
(2)

where the distribution is determined by two parameters
a, b ∈ R. Our goal here is to estimate the full distribution
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Language Recognition Ranking Model Estimated Ranking Model Joint-Ranking Model

Amharic 0.818(***) 0.716(***) 0.785(***)
Cebuano 0.161(-,-,-) 0.631(***) 0.579 (-,**)
Ilocano 0.068(-,-,-) 0.645(***) 0.489 (-,-,*)
Kurmanji -0.080(-,-,-) 0.342(-,-,*) 0.340 (-,-,*)
Swahili 0.788(***) 0.684(***) 0.774(***)
Tagalog 0.841(***) 0.695(***) 0.770(***)
Zulu 0.768(***) 0.576(***) 0.646(***)

Average 0.490(*) 0.612(***) 0.626(***)

Table 1. Results of the ranking evaluations on 7 languages. Three ranking models are compared using Spearman’s ρ where
a higher value shows better performance. It indicates that the joint-ranking model performs best on average. All numbers are
shown with its statistical significance: (-,-,*) p ≤ 0.05 (-,**) p ≤ 0.005 (***) p ≤ 0.0005

including the missing phones using Yule distribution. To es-
timate the missing phone’s distribution, the parameters a, b
should be specified. However, they are dependent on the
missing phone’s distribution. This is a typical problem that
can be effectively solved by the Expectation-Maximization
algorithm [22], where the missing distributions are latent vari-
ables to be estimated, a, b are parameters to be optimized. In
the E-step, we estimate the missing phone distribution from
parameter a, b, in the M-step, we optimize the parameter a, b
with the full distribution including the missing phone distri-
bution. After its convergence, both parameters a, b and the
full distribution of inventory I are obtained.

3. EXPERIMENT

In this work, 10 languages are selected as the training lan-
guages: English, Mandarin, German, French, Italian, Ja-
vanese, Kazakh, Russian, Spanish, Turkish, Vietnamese. The
10 languages are used to train both the language-independent
phone recognizer and the ranking model. Those languages
are selected as training languages because they have a large
amount of speech data to train the recognizer and good G2P
systems to estimate actual phone distributions. Addition-
ally, 7 different languages are used as the testing languages:
Amharic, Cebuano, Ilocano, Kurmanji, Swahili, Tagalog,
Zulu. These are selected from various language families and
they have reasonable G2P systems to extract distribution as
the golden dataset [11]. For the recognizer training, we follow
the approach and dataset in the original work [18]. For the
ranking model, we optimize the parameter α with all training
languages and use α = 20 in this work.

For each testing language, two golden datasets are pre-
pared: the rank dataset and distribution dataset. The distribu-
tion dataset contains the golden phone distribution which is
estimated by applying G2P system to the entire text dataset
for each language (which is a subset of the speech training
corpus). Then we obtain the rank dataset by only keeping the

Fig. 3. The effect of using different α in the phone ranking es-
timation. The horizontal axis is the different values of α, the
vertical axis is the Spearman’s ρ in the joint-ranking model.
The blue line moving up and down is the joint-ranking model
with different α, the straight orange line is the estimated rank-
ing model.

ranks for phones.

3.1. Phone Ranking Estimation

First, we evaluate our approach by only using phone rank
scores. In particular, three models are compared: The recog-
nition ranking model is based on the recognition score Srec,
the estimated ranking model uses the scores Srec estimated
from the ranking model, the joint-ranking model applies the
combined score Sjoint. For each model, we sort phones
with their scores and then evaluate them using Spearman’s
ρ, which estimates the correlation between their ranks and
golden ranks. The results are shown in Table.1. Overall,
it shows that most ranks are statistically significantly cor-
related with the golden ranks. However, the recognition
ranking model is unstable across languages: it shows a very
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Language Recognition Ranking Model Estimated Ranking Model Joint-Ranking Model

Amharic 0.440 0.281 0.225
Cebuano 1.333 0.397 0.368
Ilocano 1.924 0.455 0.366
Kurmanji 4.605 0.404 0.559
Swahili 0.386 0.345 0.242
Tagalog 0.100 0.282 0.231
Zulu 0.595 0.319 0.263

Average 1.340 0.354 0.332

Table 2. Results of the distribution evaluations on 7 languages. Three ranking models are compared using KL divergence with
the golden dataset where a lower value indicates better performance.

high positive score on Tagalog but an even negative correla-
tion on Kurmanji. This can be explained by the instability
of the underlying recognition model because many phones
are not recognized correctly. The estimated ranking model
shows more stable results in all languages and significantly
outperforms the recognition model by 0.12 on average. Ad-
ditionally, by combining two scores from two models, our
joint-ranking model achieves the best average 0.626 score
and shows the most stable results across all languages. More
detailed results show that the average performance of missing
phones is 0.465 and recognizable phones’ score is 0.655. The
deviation is reasonable as the recognizable phones have more
information from the empirical rankings.

Additionally, we investigate the effect of using different
α in the joint ranking model. The results is illustrated in
Figure.3. The joint ranking model with a small range of α per-
forms better than the estimated ranking model. But the per-
formance becomes worse very fast when α becomes larger.
The reason might be the estimated ranking are much more
stable than the recognition one. Using the empirical results
can improve the ranks marginally, but relying too much on it
could harm the performance.

3.2. Phone Distribution Estimation

Next, we evaluate the phone distribution estimated from those
three models: In the recognition ranking model, we take the
phone frequency as the distribution and assign all missing
phones a fixed distribution (0.01) to avoid the 0 frequency
issue. For the estimated ranking model, we use the ranks esti-
mated from the ranking model and assign its distribution with
a fixed Yule distribution whose parameters are estimated from
training languages. In the joint ranking model, we estimate
both missing phone distributions and parameters with EM al-
gorithm. Three models are compared with the golden dis-
tribution using KL divergence. The results are demonstrated
in Table.2. Similar to the results for phone ranking estima-
tion, the recognition ranking model is unstable on phone dis-
tribution estimation as well: the Tagalog score is better than

the other two models but the Kurmanji score is significantly
worse than the two others. The Kurmanji recognition also
affects the joint-ranking model’s score through its score com-
bination. Compared with the recognition ranking model, both
the estimated ranking model and the joint-ranking model give
consistent results across all languages. On average, the joint-
ranking model performs the best among the three models.

4. DISCUSSION AND FUTURE WORK

While the joint-ranking model performs reasonably well in
this work, we note there are several points that could be im-
proved in the future. First, the joint-ranking model is easily
affected by the recognition results as shown in the Kurmanji
case. To make the result more robust in new languages, the
recognition confidence score should be considered in the α
parameter. Additionally, the training language for the rank-
ing model is limited to a few language families which might
not reflect distribution characteristics for other language fami-
lies. For instance, phones heavily used in Romance languages
might tend to have high ranks. Despite these potential im-
provements, however, this work paves the road to the future
work in the phone distribution estimation.

5. CONCLUSION

In this work, we propose a novel approach to estimate phone
distribution in low resource languages from only raw audio
datasets. We combine the language-independent recognition
model and the ranking model to estimate phone rank, then
we optimize the distribution with EM algorithm. The results
show that the joint-ranking model has the best performance in
both ranking estimation and distribution estimation tasks.
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