
Segment Level Voice Conversion with Recurrent Neural Networks

Abstract
Voice conversion techniques aim to modify a subject’s

voice characteristics in order to mimic the one’s of another per-
son. Due to the difference in utterance length between source
and target speaker, state of the art voice conversion systems of-
ten rely on a frame alignment pre-processing step. This step
aligns the entire utterances with algorithms such as dynamic
time warping (DTW) that introduce errors, hindering system
performance. In this paper we present a new technique that
avoids the alignment of entire utterances at frame level, while
keeping the local context during training. For this purpose, we
combine an RNN model with the use of phoneme or syllable-
level information, obtained from a speech recognition system.
This system segments the utterances into segments which then
can be grouped into overlapping windows, providing the needed
context for the model to learn the temporal dependencies. We
show that with this approach, notable improvements can be at-
tained over a state of the art RNN voice conversion system on
the CMU ARCTIC database. It is also worth noting that with
this technique it is possible to halve the training data size and
still outperform the baseline.
Index Terms: voice conversion, recurrent neural networks,
deep learning, spectral mapping

1. Introduction
Voice conversion (VC) is the process of giving an utterance of
a source speaker the characteristics of a target speakers voice,
while keeping the original textual content. The use of VC has
multiple applications such as identity switching in a text-to-
speech (TTS) system, de-identification for privacy reasons, vo-
cal restoration in cases of impaired speech, speech-to-speech
translation and movie dubbing, among others.

A speaker’s voice is characterized by properties such as tim-
bre and pitch that are associated with the vocal tract and glottal
source. The main goal of a voice conversion system is thus to
model these physical systems. Following [1], we focus on the
conversion of timbral characteristics, more specifically spectral
envelope features, while leaving some prosodic characteristics
of the source unaltered. Spectral features are believed to convey
more speaker individuality and are easier to extract and model.

In the literature various approaches can be found that tackle
the problem of VC. One of the most popular is the Joint Density
Gaussian Mixture Model (JD-GMM) based technique [2, 3],
which models the joint density between data of the source and
target speakers using a GMM and finds local linear transforma-

tions for each Gaussian used. This approach has a tendency to
both overfit the training data and produce over-smoothed con-
verted spectra, which results in a loss of speech quality. In or-
der to mitigate these problems, techniques such as Global Vari-
ance (GV) [4] and a mutual information criterion [5] have been
proposed on top of the JD-GMM approach. Such techniques
improve the results, but do not solve them completely. Be-
sides the popular JD-GMM, techniques such a Dynamic Kernel
Partial Least Squares Regression (DKPLS) [6] and Exemplar
based approaches [7] have also reported some degree of suc-
cess in performing voice conversion, even outperforming the
JD-GMM in some cases. With the rising popularity deep learn-
ing, researchers have turned to these techniques to tackle spec-
tral mapping for VC. Research works utilizing variations of re-
stricted Boltzmann machines (RBM) [8], recurrent neural net-
works (RNNs) [9] and convolutional neural networks (CNNs)
[10], have shown to be successful in performing VC. How-
ever, most of these techniques rely on training a model with
aligned source and target spectral features for full utterances,
without questioning the effectiveness of the alignment opera-
tion or handling the effects the high variability present within
sentence. Recent work from [11] uses a phoneme level align-
ment to achieve a high quality alignment, although there is not
any performance comparison with the traditional full utterance
alignment provided.

In this paper we propose a method to reduce the variability
of the input data and mitigate possible alignment mismatches
that would occur more often at a full utterance level. For this
purpose, we propose to break down the VC conversion pro-
cess into smaller segments of syllables or phonemes, perform-
ing both alignment and conversion at this level, but incorpo-
rating additional local context to facilitate learning. We apply
this approach to the high-performing RNN model proposed in
[9] and obtain notable improvements over the reported perfor-
mance. Most notably, we show that with this procedure it is
possible to drastically reduce the amount of training data while
still outperforming the original model.

The organization of this paper is as follows: Section 2 sum-
marizes the fundamental concepts behind RNNs, which will be
the basis for our model. Section 3 describes the baseline voice
conversion system adopted by this paper. Section 4 describes
the feature and model engineering behind our proposed VC sys-
tem. Section 5 describes the experimental setup used, as well
as the results obtained from our experiments, and analyses the
feature alignment errors. Finally, Section 6 summarizes and
presents some conclusions of this work, as well as possible fu-
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ture work directions.

2. Recurrent Neural Networks
2.1. Standard RNNs

An RNN is a type of neural network that is able to model se-
quences of variable length. For this purpose the network passes
information from one time-step to another, in the same way a
human being would process the meaning of each word based
previous context.

In more formal terms, the standard RNN is defined in terms
of an input sequence x = (x1, · · · , xT ), the hidden state
vectors h = (h1, · · · , hT ) and the predicted output vector
y = (y1, · · · , yT ). Hidden and output values can be computed
from the input by recursively applying:

ht = σ(Wh · [ht−1, xt] + bh) (1)
yt =Wy · [ht−1, xt] + by (2)

where σ is a non-linear activation function and Wy , Wh and
by , bh are weight matrices and biases, corresponding to the net-
work’s parameters. Such a network can be trained using back
propagation through time (BPTT) in a similar fashion to simpler
models such as feed-forward networks.

However, the standard RNN model has a limited abilty to
learn long-term dependencies and training these networks with
the traditional BPTT algorithm has been proved to be extremely
difficult, due to the exploding and vanishing gradient problems
[12]. Motivated by this, the Long Short-Term Memory (LSTM)
[13], and other variants such as the GRU [14] were proposed.

2.2. Long Short-term Memory

The LSTM was originally proposed by Hochreiter and Schmid-
huber in 1997, and developed by many in following works. The
current form of the LSTM is capable of learning long-term de-
pendencies, and works very well in a wide variety of problems.

While standard RNNs have a very simple cell structure,
LSTMs have a complex structures with various gates (four in
total). These gates interact with each other to process informa-
tion in order to better handle long-term information. Each of
these gates can be viewed as separate layers that when com-
bined together, form an LSTM cell.

The LSTM equations replace equation 1 in the RNN oper-
ation and are described as following:

ft = σ(Wf · [ht−1, xt] + bf ) (3)
it = σ(Wi · [ht−1, xt] + bi) (4)
c̃t = tanh(Wc · [ht−1, xt] + bc) (5)
ct = ft ∗ ct−1 + it ∗ c̃t (6)
ot = σ(Wo · [ht−1, xt] + bo) (7)
ht = ot ∗ tanh(ct) (8)

where i, f , o, c, c̃ refer to the input gate, forget gate, output
gate, cell state and shadow gate, respectively. The LSTM cell
receives information continuously from the previous states via
its ct−1 and ht−1 inputs. With this information, combined with
the cell’s parameters, the LSTM is able to decide what to read,
write and forget.

2.3. Bidirectional RNNs

In order to improve the modelling of long sequences, a common
technique within RNNs is the use of a bidirectional network. A

bidirectional RNN consists of a group of two distinct RNNs
networks that process the data from the two separate ends of the
sequence. A forward RNN processes the sequence from start
to end, while a backward RNN inverts the input’s time axis and
processes it from end to start. The outputs from both networks
are then joined with a merge process. For simplicity, we admit
the merge process to be the sum h = hf + hb.

3. Baseline Framework
The baseline framework adopted in this paper is based on the
architecture proposed in [9], with Deep Bidirectional LSTMs
(DBLSTMs). The authors proposed 6 layers of bidirectional
LSTMs to map aligned Mel Generalized Cepstral (MGC) fea-
tures [15], corresponding to full utterances, between source
and target speakers. A set of speech parameters is extracted
via STRAIGHT analysis [16]. This set of features includes a
smooth spectrogram, a fundamental frequency (F0) trajectory
and an aperiodic component, which is defined as the ratio be-
tween the lower and upper smoothed spectral envelopes in the
frequency domain. The MGC features are then derived from
the spectrogram. After the feature extraction process, source
and target spectral features are aligned with DTW. Once the
alignment is complete, the model is trained using a simple back
propagation algorithm, in order to be able to map a set of source
features into a set of target features. In [9], the authors keep the
source’s aperiodic component and the F0 trajectory is trans-
formed into logF0 and then converted through a popular linear
conversion method, by equalizing the mean and the standard de-
viation of the source and target speech. Specifically, each frame
is converted with the expression:

x′ =
σx

σy
(x− µx) + µy (9)

where x is the source speakers F0 value, µx and µy are the
means and σx and σy are the standard deviations of the source
and the target speakers data, respectively. This method modifies
the global F0 level and dynamic range, while keeping the shape
of the source contour [1].

An illustration of the baseline DBLSTM framework is
shown in figure 1.

4. Proposed Framework: Segment Level
Voice Conversion

4.1. Training Strategy

Training a big RNN model such as the one in [9] yields some
of the current state of the art results. However, the model is
being trained with very long sequences, which makes learning
difficult, given the large variability of the data from utterance
to utterance. The accuracy of the DTW alignment might also
suffer from the length of these sequences.

In this work, we propose the introduction of an extra step
that segments the data into several smaller pieces of data i.e.
syllabes or phonemes. This will reduce the variability of the
training examples seen by the model at any given time and also
facilitate the DTW alignment.

Since speech data has a temporal structure deeply con-
nected to the structure of a sentence, it is possible to break
each utterance down into smaller segments such as syllables or
phonemes with the help of a speech recognition system. By do-
ing so, we are both drastically reducing the variability of each
example seen by our model, as well as reducing the amount of
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Figure 1: Overview of the baseline voice conversion framework.

inter segment misalignments that could occur during the fea-
ture alignment process. However, isolating single segments of
syllables or phonemes, implies removing the temporal context
of each training example. This implies that the RNN model
will lose acess to long-term information and will not be able to
capture any inter segment temporal dependencies. To tackle this
problem, we propose a windowing system of triplets of syllables
and phonemes to allow the model to have a peek at the previous
and following context of the current segment. This windowing
process is depicted in figure 2. Each segment is grouped with its
previous and following segment into a triplet. In the case of the
first and last segments of an utterance, the windowing is done
considering the last segment of the previous utterance and the
first segment of the following utterance, respectively.

Figure 2: Windowing technique illustration. Each segment is
windowed with its previous and following segments. The last
segment from the previous utterance is represented by seg−1

while the first segment from the following utterance is repre-
sented by seg+1.

4.2. Runtime Strategy

At runtime, it is still necessary to provide the additional context
utilized during training. The conversion process thus applies the
same windowing approach consisting in the mapping of multi-
ple windowed segments, as many as the number of segments in
the source utterance to be converted. However, for each con-
verted segment window only the middle segment is kept, with
the context converted segments being discarded. The kept seg-
ments are then concatenated and the speech is synthesized. By
discarding the context segments we make sure that we are al-
ways converting with context, taking full advantage of the struc-
ture of our model.

5. Experiments
5.1. Experimental Setup

In our voice conversion experiments we use the CMU ARC-
TIC corpus [17]. We select two male speakers (BDL and RMS)
and a female speaker (SLT) to be able to perform male to male
and male to female conversions. The databases used have a to-
tal of 1132 utterances and are divided into three separate data-
sets, with 80% allocated for training, 20% for validation and
10% for testing. The acoustic signals are 16 bit, 16 kHz mono
wave files. 49-dimensional MGC features are extracted from a
real spectrogram outputted from STRAIGHT, with a 1024 Fast
Fourier Transform (FFT) window size, and a 5ms frame shift.
The first coefficient corresponding to the energy component of
the Mel Cepstral features is removed before training, not being
modelled by the network.

To extract both phoneme and syllable segments, we use
the Festival Speech Synthesis System [18] which has a speech
recognition module that allows to extract time locators for both
phonemes and syllables. In our experiments the speech recog-
nition module was used in forced alignment mode, where the
text is provided prior to the recognition process.

The model was set up with 6 layers of bidirectional LSTMs
with a 256 hidden size. The training process was conducted
using the ADAM [19] optimizer and an early stopping crite-
rion with a patience mechanism was used. The data was fed
into the model in mini-batches that were padded with zeros up
to the batch’s maximum length, and the samples were sorted
by length (bucketed) in order to reduce the amount of padding
done. Furthermore, the output of each layer of the model was
masked according the lengths of each sample in the batch.

The model architecture was implemented in Python with
Theano [20] and training was conducted under GPU accelera-
tion with an NVidia Tesla K40c graphical card.

5.2. Objective Evaluation

We evaluate the different architectures and compare them with
each other, using the Mel cepstral distortion (MCD) as an ob-
jective evaluation metric. MCD is defined as follows:

MCD[dB] =
10

ln 10

√√√√2

N∑
d=1

(cd − cconverted
d )2 (10)

where cd and cconverted
d denote the d-th coefficient of the target

and d converted Mel-cepstrum respectively. N is the dimension
of Mel-cepstrum (except the energy feature) [9].

We verified that both syllable and phoneme segment level
systems outperform the full utterance baseline in both male to
male and male to female conversions, as shown in Table 1.

The improvement over the baseline can be explained by the
reduction of the variability of the data, which limits each train-
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Table 1: Mel cepstral distortion comparison between the base-
line system and the proposed segment level methods of perform-
ing voice conversion (lower is better).

Model Source Target MCD

Full Utt. ([9]) bdl (♂) rms (♂) 6.52
Syllable bdl (♂) rms (♂) 5.53
Phoneme bdl (♂) rms (♂) 5.38

Full Utt. ([9]) bdl (♂) slt (♀) 6.43
Syllable bdl (♂) slt (♀) 5.26
Phoneme bdl (♂) slt (♀) 4.93

ing example to a single segment and drastically increases the
number of training examples, when compared to a full utterance
database. With a segmented utterance database, the same seg-
ment will appear multiple times during training with variations,
allowing the model to improve its learning process and gen-
eralization capabilities. This phenomenon is noticeable in the
difference of performance between the voice conversion sys-
tems with syllable and phoneme based segmentations. Using a
phoneme based segmentation yields a better performance over
syllable segmentation, since we are further reducing the vari-
ability of the training examples and increasing the amount of
data once again, while keeping the same number of utterances
in our database.

In a real world scenario, it is ideal to have a system that
uses as little data as possible, as parallel data for two speakers
is something that is not easy to obtain. With this in mind, we
tested our system against the baseline in a scenario where there
is progressively fewer training data. The results on table 2 show
that our system still outperforms the baseline with 50% of the
data-set using a syllable segmentation strategy and 6.25% of the
data-set using a phoneme segmentation strategy. This means
that with as little as 49 parallel training samples, it is possible
to obtain a state of the art voice conversion system.

Table 2: Comparison of the amount of data required to achieve
quality speech between the baseline and proposed solutions for
a BDL(♂) to RMS(♂) conversion.

MCD

Training Utt. Full Utt. ([9]) Syllable Phoneme

792 (100%) 6.52 5.53 5.38
396 (50%) 6.69 6.44 6.14
198 (25%) 6.88 6.98 6.21
99 (12.5%) 6.98 6.64 6.28
49 (6.25%) 7.22 6.65 6.45

5.3. Feature Alignment Errors

Another factor that may be contributing to the performance of
our system is the additional constraints over the feature align-
ment process that the segmentation of the data introduces. Nev-
ertheless, it is not immediately clear how much the alignment
improves, or if it improves at all, with this additional constraint.
In order be able to answer this pending question, we developed
an error metric to evaluate the amount of frame mis-alignment
resultant from the spectral features alignment.

In order to evaluate and compare the alignment error of both

full utterance and segment level approaches, we propose an er-
ror metric that counts the number of misaligned frames with
respect to its correspondent syllable. This is achieved by pro-
ducing an array with the same number of frames as the MGC
feature, for each source and target speaker, that in each index
contains an ID number corresponding to the syllable to which
that frame belongs. With both source and target arrays, we then
force an alignment using the same alignment path resultant from
the alignment process of both source and target MGC features.
At this point, we end up with two arrays of the same size that
should, if the DTW alignment was flawless, have a match of
ID numbers at each index. Thus, by computing the differences
between the number of IDs for the aligned array, we can get
an approximate metric related to the DTW alignment error. In
Table 3 we compare the percentage of misaligned frames with
respect to the total number of frames in the data-set.

Table 3: Alignment errors computed with the proposed heuristic
measure for bdl to rms conversion.

Model Source Target % of alignment errors

Full Utt. ([9]) bdl (♂) slt (♀) 13.84
Syllable bdl (♂) slt (♀) 10.44

From these empirical results, it is possible to confirm that
the additional constraint on the DTW alignment process im-
posed by the segment level system has in fact an impact on the
amount of alignment errors. We believe that the observed error
reduction resultant from the segmentation does not play a major
role in the increase of the system performance as much as the
reduction of the variability of the training data does. However,
it certainly contributes to the improvement.

6. Conclusions
We proposed an improvement of a state-of the art RNN voice
conversion system that uses a speech recognition system to split
the data into smaller segments, such as syllables or phonemes,
but compensates for the loss of context by using a window-
ing approach. With an objective evaluation metric and the
well known CMU ARTIC data set we verified that our system
achieves state of the art results. Further experiments also re-
vealed that, even with a very small fraction of utterances avail-
able, the proposed approach is still able to beat the baseline sys-
tem. In addition to these experiments, we hypothesize over the
possible sources of the observed improvement and completed
the experiments by providing an analysis of the DTW align-
ment error. This analysis showed that the proposed approach
reduces the amount of errors created by applying DTW on en-
tire sentences. The technique here proposed opens possibilities
to different directions of future work, including the integration
of segment level information into the model, or the extension of
the concept to a non-parallel database or even to a cross-lingual
system.
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