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Abstract
In this paper we present our submission to the INTERSPEECH
2019 ComParE Sleepiness challenge. By nature, the given
speech dataset is an archetype of one with relatively limited
samples, a complex underlying data distribution, and subjective
ordinal labels. We propose a novel approach termed ordinal
triplet loss (OTL) that can be readily added to any deep archi-
tecture in order to address the above data constraints. Ordinal
triplet loss implicitly maps inputs into a space where similar
samples are closer to each other than different ones. We demon-
strate the efficacy of our approach on the aforementioned task.1

Index Terms: Ordinal Regression, Triplet Loss, Deep Metric
Learning

1. Introduction
1.1. Paralinguistics

Paralinguistics refers to the aspects in a speech utterance be-
yond the linguistic content such as words. Paralinguistic cues
such as accentuation are used to convey extra information such
as emphasis, focus, expressiveness, and more. Applications of
Computational Paralinguistics, the automatic analysis of such
information, have grown rapidly over the last decade, spanning
both human-human as well as human-machine interactions.

The ComPare Paralinguistics challenges have been play-
ing a significant role in driving progress in the diverse use of
paralinguistic information. Besides the traditional tasks such
as emotion recognition using suprasegmental verbal and non-
verbal aspects of speech, novel tasks such as the detection of
speaker traits, deception, conflict, eating, and autism [1, 2, 3, 4]
have been introduced. Detecting such information has the po-
tential to not only play a role in assisting technologies with
identifying affect but also play a role in detecting abnormalities
indicating disorders. Paralinguistic information also has appli-
cations in other domains of speech processing such as dialog
systems, speech synthesis, voice conversion, and more. In this
paper, we present our approach towards one such paralinguistics
task - the detection of sleepiness from speech.

The advent of deep learning has brought forth a surge
in high-performing speech models [5, 6]. They have shown
tremendous improvements in all the aspects of natural lan-
guage processing (NLP), including speech recognition [5], vi-
sual question answering [7], speech synthesis [8], and more.
The success of deep architectures in a variety of NLP tasks thus
motivates their use in related areas including paralinguistics.

However, these models have been susceptible to learning
just surface level associations and biases in the observed data,
leading to overfitting and vulnerability to adversarial attacks
[9, 10, 11, 12]. Therefore, there has been an interest towards
learning algorithms that specifically consider intraclass rela-
tionships such as Siamese and triplet loss networks. Siamese

1Code is available at https://github.com/peter-yh-wu/
ordinal

networks have shown success in training on limited amounts of
complex data [13]. Therefore, we combine a Siamese architec-
ture with ordinal regression techniques in order to effectively
train the model based on the given the data constraints.

1.2. Ordinal Data

A significant amount of data generated by our world, from nat-
ural forces to human behavior, is effectively continuous. As a
result, humans’ tendency to bin continuous data [14] has given
rise to enormous amounts of ordinal data for applications rang-
ing from healthcare to recommender systems [15, 16]. Thus,
while humans tend to assign hard labels, the underlying data
generally lies on a continuous spectrum. In order to perform
effectively, statistical models must be able to capture the un-
derlying data distribution rather than the humans’ potentially
subjective, and consequently noisy, discrete values. In a limited
data setting where using sheer data size to generalize models is
not an option, alternative techniques are required to make full
use of the available data.

Leveraging the ordinal nature of a dataset as opposed to
treating the classes as categorical is one effective approach
for extracting more information from a limited set of sam-
ples. Many ordinal regression techniques have been proposed
throughout the long-standing history of the field and have been
traditionally applied to simpler tasks and non-deep models
[17, 18]. For complex data that generally require deeper ar-
chitectures, the large number of parameters in these ordinal
techniques can tend to result in overfitting. Thus, simpler ap-
proaches are required in order to effectively integrate ordinal
techniques into deep networks.

While treating continuous values as ordinals has good bear-
ings intuitively, it is hard to train deep models that can effec-
tively work with such data since standard classification tech-
niques in deep learning are categorical. Hence, they cannot for
example take into account the fact that class 2 is closer to class
3 as opposed to class 8. In order to effectively capture this in-
formation in a model, one approach is to construct an output
distribution that reflects the relationship between classes. Soft
labeling is one such technique that has been empirically shown
to be effective with noisy ordinal data [19]. Our proposed ap-
proach builds on this idea of leveraging ordinal relations to gen-
eralize from limited noisy data, namely via learning the relative
distances between the encoded representations of different data
samples.

2. Related Work
2.1. Speech Techniques

Typical approaches for classification and prediction of paralin-
guistic features include extraction of low level descriptive fea-
tures such as Mel-Frequency Cepstral Coefficients (MFCCs),
log Mel-scale filter banks energies (FBANK) and several
suprasegmental acoustic features that can be extracted using the
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openSMILE tool [20] followed by a classification model such
as an SVM, decision tree, or neural network. While low level
features act as general purpose feature sets, automatically de-
rived neural representations using unsupervised learning [21]
have the potential to further increase model performances. Re-
cently there has been a surge in the use of pretrained generative
models such as ELMo [22], BERT [23], and more. These fea-
tures usually embed the task relevant information from the en-
tire utterance in a compact form. In accordance with this trend,
end-to-end learning models have been employed in paralinguis-
tics tasks [24, 25].

2.2. Ordinal Regression

Each audio sample in the dataset is labeled with a number based
on the KSS scale [26]. Since numbers on this scale follow a
clear ranking, approaches in ordinal regression can be applied
to this task. Namely, instead of penalizing all incorrect labels
equally as in traditional multi-class classification, we can lever-
age the intuition that an incorrectly predicted class ŷ that is nu-
merically closer to the actual class y should be penalized less
than a farther ŷ. Two primary ordinal regression techniques
that have been applied to statistical models include ordistic loss,
which represents the output distribution as a mixture of Gaus-
sians, and a thresholding-based approach which learns the de-
cision boundary between adjacent classes [18]. Since both ap-
proaches involve many parameters, utlizing them in a deep ar-
chitecture can lead to overfitting.

Soft labels have been shown to not only work effectively
with neural models, but also help with convergence and train-
ing on noisy data [27, 19]. While not originally created for
ordinal tasks, empirical results suggest that soft labelling can be
effectively applied to ordinal regression problems [19]. In this
paper, we show why soft labelling is particularly effective for
ordinal tasks and propose a general deep approach that learns
ordinal relationships through soft labels and relative distance
constraints.

2.3. Deep Metric Learning

Deep metric learning (DML) encompasses approaches that cap-
ture the similarity between datapoints via deep architectures.
One such technique is the triplet loss function [28], which con-
strains models to map input data from the same class to similar
locations in an embedding space and data from different classes
to separate locations. Specifically, the loss function for a triple
(xa, xp, xn) with respective classes ya = yp 6= yn is given by

‖f(xa)− f(xp)‖22 − ‖f(xa)− f(xn)‖22 + α,

where ‖·‖ is the Euclidean norm, f(x) is the encoded represen-
tation of x, and α is a hyperparameter representing the margin
between same-class and different-class pairs.

Previous works have shown the effectiveness of triplet loss
and Siamese architectures in limited data settings [13]. Siamese
networks perform well in such cases since they keep the number
of model parameters low through weight sharing and effectively
increase the dataset size through accepting multiple inputs at
a time. Additionally, by encouraging input representations to
cluster spatially by their class labels, these approaches can im-
plicitly accentuate features useful for downstream classification
tasks.

Like many other DML techniques, triplet loss is designed
for categorical data, and consequently does not leverage any
properties of ordinal data. We propose an augmented loss func-
tion, which we refer to as ordinal triplet loss in later sections,

that captures the ordered nature of a collection of data through
accounting for the absolute difference between class labels in
its relative distance constraints.

3. Proposed Approach
Our proposed OTL approach is mainly comprised of two parts:
soft labelling and an ordinal triplet loss function. Previous
works have demonstrated the superiority of soft labels over hard
labels for tasks with noisy data [19]. In Section 3.1., we show
that soft labels are especially suited for ordinal tasks via a sta-
tistical interpretation. The ordinal triplet loss function serves to
encourage the model to learn representations specific to the or-
dinal task at hand by adding a loss constraint to a hidden layer.
We discuss the formulation of the loss function in Section 3.2
and how to integrate it into a deep architecture in Section 3.3.

3.1. Soft Labels

Results from Zhang et al [19] suggest that soft labels are well-
suited for tasks with noisy, complex data. We reformulate their
approach through a statistical lens in order to evince its particu-
lar effectiveness for ordinal tasks.

In a K-class ordinal task, we can uniformly scale a class
label k ∈ {0, 1, . . . ,K − 1} to the interval [0, 1], i.e. mapping
class k to k/(K − 1), without losing generality. Additionally,
through associating a datapoint in original class k with a pair
(k/(K− 1), 1− k/(K− 1)) that sums to 1, we can reinterpret
the class as a combination of binary labels. In other words, we
can interpret the datapoint as being a combination of k/(K −
1)th of a class-0 datapoint and 1 − k/(K − 1)th of a class-1
datapoint. Assuming that the binary classes are generated from
a Bernoulli distribution, we can express the likelihood of a set of
data {x1, x2, . . . , xB}with respective classes {y1, y2, . . . , yB}
as

B∏
i=1

f(xi)
yi

K−1 (1− f(xi))1−
yi

K−1 ,

where f(xi) is the model output for datapoint xi. We can thus
maximize this likelihood by training the model using the class
pairs via cross-entropy loss. During test time, we invert the
class-to-soft-label function to retrieve class predictions, namely
mapping a pair (p̂, 1−p̂) to dp̂(K−1)c, where d·c is the nearest
integer function.

Training the model in this matter naturally penalizes class
predictions more the farther they are from the true class, thus
capturing the ordinal nature of the data. In fact, due to the curva-
ture of the log likelihood function, loss penalties approximately
increase exponentially with respect to distance to the middle
class, capturing the central tendency bias inherent in datasets
using the Likert scale. It is worth noting that this soft label
formulation works with ordered data in general, including con-
tinuous data.

3.2. Ordinal Triplet Loss

Ordinal triplet loss augments the traditional triplet loss function
[28] by capturing ordinal relations, thus further utilizing proper-
ties in a limited corpus. Namely, the function adds a constraint
ensuring that datapoints with farther class labels have larger dis-
tances between them in their embedded space. Each input triplet
is comprised of an anchor sample xa, another sample xs, and a
sample xd constrained to have a class farther from xa than xs.
In other words, their respective class labels satisfy

|ya − yd| > |ya − ys|+ α,

2404



where α ∈ N is a hyperparameter. Since xs does not need to
have the same class as xa, the resulting set of possible triplets is
noticeably larger than that of the traditional triplet loss formu-
lation. When appropriate techniques described in Section 3.4
are applied to select which triplets to train, this expanded set of
triplets can help the model generalize better. The ordinal triplet
loss for a triplet (xa, xs, xd) is given by

σ(‖f(xa)− f(xd)‖ − ‖f(xa)− f(xs)‖),

where f(x) is the encoded representation of x, ‖·‖ is the Eu-
clidean norm, and σ is the logistic function, given by σ(x) =
log(1 + e−x). Conceptually, the loss function penalizes cases
where the model maps the x’s to representations where xa is
closer to xd than xs. The logistic function serves to make the
loss function differentiable. Like the soft label approach, ordi-
nal triplet loss can be applied to continuous data as well.

3.3. Network Architecture

We use an architecture similar to that of Zhang et al [19] to train
our model, replacing their loss functions with ordinal triplet
loss. Namely, the model receives triplet inputs and jointly opti-
mizes the ordinal triplet loss function, which uses all three in-
puts, and the soft label cross-entropy loss, which uses only the
anchor samples. Each iteration, the model embeds all inputs us-
ing an encoder f before applying ordinal triplet loss, and passes
the anchor sample embeddings through an MLP g before apply-
ing the soft label cross-entropy loss. We add a batch norm layer
between f and g to help with convergence. The loss function
for a batch {(x1, y1), (x2, y2), . . . , (xB , yB)} is given by

1

B

(
B∑

i=1

ls(x
(i)
a , y(i)a ) + β

B∑
i=1

lt(x
(i)
a , x(i)s , x

(i)
d )

)
,

where lt is the ordinal triplet loss function, ls is the soft label
cross-entropy loss function, and β is a hyperparameter describ-
ing how much to weigh the ordinal triplet loss.

Conceptually, f serves to separate embeddings in a manner
that captures ordinal relations in order to help g in the down-
stream classification task. As with other Siamese architectures
[13], the weight sharing between elements in each triplet and the
increased number of possible inputs via grouping samples into
tuples aims to help with training effectively on limited amounts
of complex data.

3.4. Implementation Details

Since the number of possible triplets is cubic with respect to
the number of data samples, training using the traditional epoch
formulation is impractical. Thus, we choose datapoints using an
ordinal version of the triplet loss semi-hard sampling approach
[28]. Namely, given an (xa, xs) pair, we select the xd with the
minimum ‖f(xa)− f(xd)‖ that satisfies

‖f(xa)− f(xd)‖ > ‖f(xa)− f(xs)‖,

as well as the class label constraint |ya− yd| > |ya− ys|+α.

4. Experiments
We describe in the following sections the experiments we con-
ducted to achieve our best model. Our experiments generally
proceeded in four parts: selecting features to train our models,
modifying them to improve convergence, experimenting with
soft labelling, and finally testing our proposed ordinal triplet

loss formulation. All experiments used the Adam optimizer and
a learning rate scheduler which decreased the rate by a factor of
0.1 after 10 epochs of no improvement.

4.1. Feature Selection

Table 1 describes the experiments we conducted to select the
best features to use for our model. Features tested include the
ComParE baseline features, SoundNet features, MFCCs, and
raw waveforms. Of the ComParE baseline features, we ob-
served that ComParE, BoAW-2000, and auDeep-fused yielded
the best performances for both neural and statistical models.
SoundNet features are extracted from the pretrained network
with the same name [21]. We used the MFCCs to train a multi-
layer LSTM augmented with an attention mechanism. The raw
waveforms were used to train a deep network comprised of two
convolutional layers followed by a multi-layer LSTM. For the
SoundNet and baseline features, we used MLPs structured such
that each subsequent layer in the network has approximately
half the number of units as the previous one. SVM results for
ComParE, BoAW-2000, and auDeep-fused are based on those
reported in the challenge paper [29]. We observed that of the
tested features, the three listed baseline features yielded the best
results, as bolded in the table.

Table 1: Performance on Different Features

Model Spearman (Devel)

SoundNet MLP 0.030

ComParE SVM 0.251
MLP 0.300

BoAW-2000 SVM 0.269
MLP 0.313

auDeep-fused SVM 0.261
MLP 0.329

MFCC Attention LSTM 0.018

Raw Waveform CNN LSTM 0.031

4.2. Data Modification

Table 2 on the next page describes the experiments we con-
ducted to modify the input data. Namely, we tested upsam-
pling and weighting the classification loss by class label fre-
quencies as potential approaches to reconcile the skewed data
distribution. We also tested applying PCA on the input features
before feeding them into the model as a potential approach to
reduce the high dimensionality of the features. For all the ex-
periments in this section, we used MLPs with the halving prop-
erty described in the previous section. We observed that these
data modification approaches did not consistently improve the
model, and thus did not use them in subsequent experiments.

4.3. Impact of Soft Labels

Table 3 describes the results from using the soft labelling for-
mulation. All experiments in this section also used MLPs with
the halving property described earlier. We observe that mod-
els trained on soft labels perform noticeably better than models
trained on hard labels for two of the three feature types.
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Table 2: Data Modifications

Features Spearman (Devel)

Upsampling ComParE 0.271
BoAW-2000 0.308
auDeep-fused 0.303

PCA ComParE 0.279
BoAW-2000 0.325
auDeep-fused 0.254

Weighted Loss ComParE 0.279
BoAW-2000 0.301
auDeep-fused 0.243

Table 3: Soft Labels

Features Spearman (Devel)

ComParE 0.311
BoAW-2000 0.333
auDeep-fused 0.322

4.4. Impact of Ordinal Triplet Loss

Table 4 below summarizes our results using ordinal triplet loss.
We train all models in this formulation using the Adam opti-
mizer with learning rate 10−7, the joint loss described in Sec-
tion 3.3, batch sizes of 64, and early stopping with a patience
of 10. For our models trained via ordinal triplet loss, f is an
MLP with input dimensions halved for each subsequent layer,
and g is comprised of two fully connected layers. We observe
that utilizing ordinal triplet loss yields noticeable improvement
in model performance with respect to the BoAW-2000 feature
set.

Table 4: Ordinal Triplet Loss

Features Spearman (Devel)

ComParE 0.308
BoAW-2000 0.343
auDeep-fused 0.323

4.5. Analysis of Results

Figure 1 plots the t-SNE visualization of the training data in our
model’s embedding space. Lighter points represent data sam-
ples with higher class labels. The model is able to successfully
learn a space that captures desirable ordinal relations, generally
mapping data with closer class labels to closer locations in the
embedding space.

5. Conclusion
In this work, we present ordinal triplet loss as an effective way
to train deep architectures on noisy, complex, ordered data. We
show mathematically and empirically that soft labels work par-
ticularly effectively in ordinal regression tasks. We propose an
ordinal triplet loss function that captures ordinal relations in its
embedding space, which we validate empirically on the Sleepi-
ness dataset. Finally, we show that our proposed approach per-
forms well on the Sleepiness dataset. In the future, we are in-
terested in exploring how well our approach performs on con-

Figure 1: t-SNE Visualization of Embedding Space

tinuous data in order to show an effective deep technique on
complex regression tasks.
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