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Abstract
We experiment with unsupervised methods for deriving and
clustering symbolic representations of speech, working towards
speech-to-speech translation for languages without regular (or
any) written representations. We consider five low-resource
African languages, and we produce three different segmental
representations of text data for comparisons against four dif-
ferent segmental representations derived solely from acoustic
data for each language. The text and speech data for each lan-
guage comes from the CMU Wilderness dataset introduced in
[1], where speakers read a version of the New Testament in
their language. Our goal is to evaluate the translation perfor-
mance not only of acoustically derived units but also of discov-
ered sequences or “words” made from these units, with the intu-
ition that such representations will encode more meaning than
phones alone. We train statistical machine translation models
for each representation and evaluate their outputs on the basis
of BLEU-1 scores to determine their efficacy. Our experiments
produce encouraging results: as we cluster our atomic phonetic
representations into more word-like units, the amount infor-
mation retained generally approaches that of the actual words
themselves.
Index Terms: speech-to-speech, machine translation, seg-
mentation, unit discovery, low-resource, unwritten languages,
Wilderness

1. Introduction
Our work is motivated by the idea of speech-to-speech trans-
lation for unwritten languages. Many speech-to-speech trans-
lation pipelines today consist of machine translation systems
trained on text corpora preceded by a speech recognition com-
ponent and succeeded by a speech synthesis component. How-
ever, this pipeline breaks down when either language has no
adequate written form. This is true when a language lacks a
written form altogether, but it is also true whenever a language
has an inconsistent or inadequate written form. Indigenous lan-
guages without a literary tradition, regional dialects without
widespread standardization, and conversational dialects with-
out a need for written communication can all be characterized
as such. Furthermore, we can imagine a low resource language
documentation scenario where audio data is recorded but where
a writing system is unknown or unavailable to the field worker.
In each of these cases, the standard speech-to-speech pipeline
will fail; nonetheless, the technology would be as or more so-
cially and economically valuable to these languages as to any
other.

We can reconcile these scenarios by inducing the necessary
intermediate textual representations from the unwritten audio
itself, in a form of primitive writing system discovery. Once a
textual representation has been induced, translation can proceed
as normal, with the representation fulfilling the same function

as a transcription of written “words”. [2] first demonstrated the
viability of this approach. When the textual representation con-
sists only of phones as atoms of meaning, translation quality
predictably suffers: the semantic density of words and atomic
phones differs on orders of magnitude. While we cannot simply
construct words from of a phonetic transcription, constructing
some higher-order, more word-like representation from the sim-
ple transcription is an intuitive approximate.

In pursuit of this idea, we investigate methods to approach
the semantic density of orthographic transcriptions by cluster-
ing raw phonetic representations of real speech data into more
word-like units. We use statistical machine translation to trans-
late the experimental representations of the source language
speech to English, our consistent target language. Translation
quality is measured for our purposes by BLEU-1 scores, and
we assert that a representation producing a better translation has
preserved more information from the source speech data.

2. Related Work
Historically, the inventory of a language’s phonemes was hand-
crafted and refined by expert linguists. Today, there exist many
methods to automatically discover an phone inventory. This is
not the same as a linguistically-motivated phonemic inventory,
but findings in [3] suggest that it makes a functional approx-
imate. Many approaches to identifying this inventory involve
cross lingual transfer from high-resource languages to lower-
resource ones. [4] uses a model trained on a high resource lan-
guage to predict Articulatory Features for a low resource lan-
guage, which can then be clustered into phones. This is taken
a step further in [5], which derives a phoneme-like segmental
representation of the Articulatory Features. This approach is
again advanced in [6], where BiLSTMs are used to first identify
segment boundaries before extracting and clustering the Artic-
ulatory Features.

With similar cross-lingual motivations, [7] produces pho-
netic transcriptions of low-resource speech by first using En-
glish language and acoustic models for ASR, whereby the raw
transcription is iteratively refined to more closely align with the
speech data. Extending their approach to produce higher-level
units, in [8] they cluster the best phonetic transcription using
Festival heuristics for syllables and a CRF model for words.
A similar approach with an intermediate step is proposed in [9],
which extrapolates and adds the low-resource acoustic units that
are absent from the high-resource acoustic model before the ini-
tial transcription.

Taking a more probabilistic approach towards Acoustic
Unit Discovery, [10] innovates on the inference process used
in nonparametric phone-loop Bayesian models first proposed
by [11] for unit discovery in speech, exchanging Gibbs Sam-
pling for Variational Bayes. They follow this work by refin-
ing the process with a Hierarchical Pitman-Yor based bigram
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langauge model [12]. [13] combines the process of segment-
ing and clustering speech data with a efficient approximation
of a Bayesian model, representing word segments as acoustic
word embeddings and clustering them through K-means. They
present a supplemental approach for fully unsupervised acous-
tic word embeddings in [14].

Language independent bottleneck features have also been
used to represent speech units [15], [16]. In [17], both LDA
and bottleneck features are used to augment the model in [10].
Bottleneck features are learned pairwise over frames in [18] to
model word-like segments. Approaches to finetuning bottle-
neck features are explored in [19], which also comparatively
demonstrates their effectiveness.

For a more detailed survey of many of these methods,
please reference [20].

Speech translation systems today are becoming more robust
to the absence of a stable writing system as they move towards
end-to-end models. [21] and [22] do not require an explicit in-
termediate representation of speech at all—it is latent to the
neural model—and a subsequent work uses explicit transcrip-
tion only during training [23]. The lessened dependency on an
explicit intermediate representation of a neural model comes in
turn with a demand for data beyond the reality for most unwrit-
ten languages, although recent work ([24] and [25]) casts neural
models for low resource languages as increasingly attainable.

Particularly relevant to our work is that of [26], which
makes identically motivated investigations into optimal meth-
ods for clustering phonetic transcriptions of speech with respect
to translation results. Their experiments were constrained to
Europarl textual data, from which they were forced to simulate
acoustic representations. Their acoustic data were generated us-
ing speech synthesizers, which means that they did not have the
variation of natural speech. Furthermore, the languages in their
experiments (English and Spanish) have both a closer relation-
ship and far more resources than would normally be available
for such work. We now have the opportunity to work with gen-
uine and deeply different acoustic data, thanks to the Wilderness
dataset.

3. Data
The speech and text data for these experiments comes from the
CMU Wilderness dataset. The five languages we work with are:

• Avatime/Sidame (AVN)

• Oromo (ORM)

• Hausa (HAU)

• Masaba/Gisu (MYX)

• Lunyole/Nyule (NUJ)

ORM and HAU are languages in the Afroasiatic family, and
the remainder are in the Niger-Congo language family. All five
languages have over 20 hours of recorded speech. The Wilder-
ness data ranks the quality of the alignment based on how well
a grapheme-based speech synthesizer trained on the data can re-
construct a held out test set. We selected languages with a good
score because we want to be able to compare the translation re-
sults of our acoustically-informed representations with those of
our Written Words representation.

MCD stands for Mel Cepstral Distortion [27] is a scaled
Euclidean distortion metric used to compare a synthesized ut-
terance with a held out original. Lower is better. In the CMU
Wilderness data MCD numbers less that 7 are typically good (it
is easy to understand the synthesized output), and when under 6

Table 1: Duration and MCD for each language

Duration (h:m:s) MCD
AVN 23:52:43 6.33
ORM 23:48:29 6.48
HAU 20:40:13 5.74
MYX 22:59:17 6.14
NUJ 24:12:56 5.93

are very good (the synthesis quality is very easy to understand).
Also for ease of comparison all chosen languages use a (mostly)
latin-based alphabet. Nothing in our work depends on that, but
for it provides initial simplicity when reading the text.

4. Methods
We represent the utterances in six different ways, in addition
to the oracle orthographic representation of words. We ex-
amine two approaches to generating symbolic representations
and three approaches to clustering the individual units of these
representations into higher-order meaning representations. All
methods are unsupervised and applicable for low-resource lan-
guages.

Table 2: Examples of different representations for MYX

Written Words Aryo Saulo
Text-Based Phones pau eh1 r ih1 ow0 s ao1 l ow0

BPE T-BP paueh1rih1ow0@@ sao1low0@@
Audio-Based Phones HH AH T EH S AH UW N

BPE A-BP HHAH@@ TEH@@ SAH@@ UWN@@
Ngram A-BP HH AH T EH S AH UW N

Goldwater A-BP HH AHT EH SAH UWN

4.1. Written Words

The words read by the speakers serve as an upper bound to con-
textualize the performance of our methods. It is plausible that
there exists a higher-order representation of speech that could
exceed the semantic density of words for a language’s writing
system, but we leave that to future work. Written Words is the
approach to intermediate representation of speech data for ma-
chine translation generally taken for languages with adequate
written forms.

4.2. Text-Based Phones

The Festvox software package provides a universal pronunci-
ation model, based on [28] with substantial additions to cover
the 700 languages in the Wilderness dataset. These predicted
phones, using the X-SAMPA phoneset, remain somewhat sim-
plistic; all the same, they are based on the actual text, while
the following sets are derived from the acoustics without any
constraints imposed by text. There is no acoustic consideration
to creating this Text-Based Phones representation, but it illus-
trates a lower-level representation of our oracle Written Words
approach. This representation still produces a result close to the
oracle words.
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4.3. Audio-Based Phones

In this approach, we use the method and software introduced by
[7] to discover a phonetic representation of speech data. This
approach requires only speech data; it is a representation in-
formed purely by acoustics.

We would like to be clear that we do not make any asser-
tions about the quality, integrity, or efficacy of this particular
method for phone discovery: the application was available to
us, and it meets our need of an atomic, phonetic representa-
tion of speech, but there are certainly other methods we could
have used. Ultimately, we are not concerned with using the best
method for atomic phone discovery; we are instead interested
in the best way to improve whichever phonetic-like representa-
tion is available by generating units comparable in function to
written words from its atomic symbols.

This approach discovers phones by iteratively rebuilding
and decoding acoustic models and transcripts from parallel
speech-transcription data. In order to do so, it first produces an
initial transcript of the speech data by doing ASR using a cross-
lingual acoustic model. In our case, the seed acoustic model
was an English Wall Street Journal model from Sphinx with the
CMU-DICT phone set. That initial transcript is very rawespe-
cially for very different languagesbut it makes the iterative pro-
cess which follows possible. Again, there may be better ways to
derive such phonetic-like units (indeed, we welcome alternative
methods for deriving initial phone-level segmentations), but we
know this technique is at least reasonable.

The new speech-transcription corpus is used in parallel to
train an acoustic model for the target language, which is used
in turn to re-decode the audio data. This continues for 10 itera-
tions. After every iteration, a new phonetic transcript and a new
target acoustic model have been produced. Each time, these
two are used to build a synthetic CLUSTERGEN [29] voice us-
ing Festvox. The statistical parametric synthesis is used with
consideration to the noise inevitably present in the data. The
newly built voice is evaluated over a heldout test set on the ba-
sis of MCD scores, where the best automatically and iteratively
generated transcription is determined to be the one producing
a synthetic voice with the lowest distortion score. This pho-
netic transcription becomes our atomic phonetic representation
for the target language.

4.4. Clustering By Subword Units (BPE)

We use the unsupervised segmentation technique 1 proposed by
[30] to merge atomic phones into more word-like units. Clus-
tering by subword units using byte pair encoding [31] works by
identifying the most common pairs of consecutive characters,
which are then merged together. Subword units are delimited
by ‘@@’. We did not change any default hyperparameters, ap-
plying all learned merges with no vocabulary threshold.

4.5. Clustering By Ngrams

In a similar spirit as clustering by subword units using BPE, we
cluster atomic phones on the basis of ngram frequency using the
method proposed in [26]. We make p passes through our corpus
of discovered phones, and for each pass we tabulate the most
frequent ngrams. The top k most frequent ngrams (which were
almost exclusively bigrams for our atomic phones) are merged
into a single unit, separated by an underscore. We took the hy-
perparameters presented with the method in [26] as-is, with k =

1https://github.com/rsennrich/subword-nmt.git

10 and p = 25. Had we tuned the hyperparameters for our data,
we may have seen better evaluation results; however, being that
we are entirely more interested in relative performance of all
methods than in absolute performance of each, we took them as
stock.

4.6. Clustering By the Goldwater Approach

The Goldwater approach for word segmentation uses a Dirichlet
process/Gibbs sampler algorithm to build a whole word acous-
tic model to cluster unlabeled speech, as proposed in [32]. We
use this approach to cluster our discovered phones, taking their
optimal hyperparamters as-is. We made a single modification to
their algorithm to account for the length of the utterances in our
Discovered Phone representation. They established a threshold
of 500 for utterance length, which we had to extend to accom-
modate our data.

5. Experimental Setup
5.1. Text Matching

While we are pleased to be working with real speech data, do-
ing so becomes much messier than working with synthetic data.
In this case, we have the speech and text data from the Wilder-
ness dataset, which comes from Bible.is. Separately, we have
a parallel corpus of foreign-English bible data scraped from
Bible.com (the same corpus used in [33]), which is unfortu-
nately not assigned verse numbers. This forced us to calculate
best matches between the Wilderness text data and the foreign
text of the parallel translations in order to create new parallel
corpora with our symbolic representations for evaluation.

We tried several different methods for doing this text match-
ing. Simple edit distance would have been intractably slow: we
had around 10,000 utterances for each language, and the foreign
text in the parallel file averaged approximately 8000 utterances,
leaving us with almost 80 million n-cross-n pairs to evaluate.

So, we tried a TF-IDF approach over ngrams 2 where we
compared the strings on the basis of cosine distance, which
was sufficiently fast but was only able to produce around 2500
matches per language.

Then, we substituted sent2vec 3 embeddings in for TF-IFD
and again compared on the basis of lowest cosine distance. With
this method, we were able to match approximately 3000 verses
for each language using the Actual Word representations, which
we sanity-checked by keyword matching proper nouns between
the foreign and English texts. There was a significant spread
across the number of matches we were able to make for each
language, and they were all certainly lower than we would have
liked, but we determined them to be sufficient for our experi-
ments.

Table 3: Number of matched utterances for each language

AVN ORM HAU MYX NUJ
3232 3301 3318 2853 2966

2https://bergvca.github.io/2017/10/14/super-fast-string-
matching.html

3https://github.com/epfml/sent2vec.git
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5.2. Translation

We use the Moses statistical translation system introduced
in [34] to evaluate our results. We apply their tokenization
and truecasing, and tune using their implementation of Mini-
mum Error Rate Training (MERT) on 300 heldout development
verses. We produce test results on 300 separately heldout test
verses, always translating from one of our foreign languages
into English. We acknowledge the instability inherent in eval-
uating translation results on a corpus of this size, but we are
working within the confines of our data.

6. Results
Generally, machine translation results are evaluated using the
BLEU metric [35]. However, this metric imposes fluency con-
straints based on higher-order ngram scores which are not ap-
propriate for our purposes. Instead, we evaluate on the basis of
BLEU-1 scores, utilizing unigrams to measure the adequacy of
information retained in translation. These results are far more
salient to our investigation of the relative semantic densities of
symbolic representations of speech.

Table 4: Translation Results (BLEU-1)

AVN ORM HAU MYX NUJ Mean

Written Words 0.18 0.16 0.19 0.18 0.17 0.18

Text-Based
Phones

0.17 0.06 0.18 0.15 0.13 0.14

BPE T-BP 0.12 0.09 0.12 0.12 0.11 0.11

Audio-Based
Phones

0.08 0.02 0.02 0.02 0.10 0.05

BPE A-BP 0.08 0.13 0.09 0.13 0.09 0.10
Ngram A-BP 0.04 0.12 0.17 0.17 0.16 0.13
Goldwater A-BP 0.04 0.09 0.15 0.14 0.14 0.11

7. Discussion
For four out of our five languages, we were able to improve
upon the translation results of our symbolic representations of
audio by clustering the atomic phonetic representations into
higher-order, word-like transcriptions. For three out of these
four, the most effective approach was the ngram clustering tech-
nique from [26]; for the remainder, ORM, the most effective
approach was the BPE subword segmentation of the discovered
phones. AVN contradicts our hypothesis, as the information re-
tained after translation refused to improve from the Discovered
Phone representation.

In generating these experiments, we were forced to confine
ourselves to several uncertainties. Firstly, we cannot be cer-
tain that the Wilderness source data originates from the same
version of the New Testament as the target English text (or as
the foreign text we had to match the Wilderness data with, for
that matter). Similarly, different translations of the same New
Testament often separate verses differently. Furthermore, we
cannot be certain that our text matching was optimal: over a
relatively small corpus and a concentrated domain, there were
almost always multiple candidate matches with very similar co-
sine distances in the embedding space. Finally, we cannot be
certain that our translation results are stable given our data. De-
spite these uncertainties, the trend of the results seems clear:

by clustering atomic representations of speech in unwritten lan-
guages, we can approach the semantic density of traditionally
transcribed words. Our results strongly indicate that building
models with automatically clustered sequences of acoustic units
improves translations.

In the future, we envision creating a lexicon of word-like
speech representations and then leveraging that lexicon to train
a language model, which could in turn be used as a prior to con-
strain whichever phone discovery method we chose to employ.
Then, after clustering a new transcription into word-like units,
the new and improved lexicon could be used to similarly im-
prove phone discovery, and so-forth. In this way, we hope to
move towards the translation performance of written words as
an intermediate representation for speech-to-speech translation
for languages without that luxury.
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[16] K. Veselỳ, M. Karafiát, F. Grézl, M. Janda, and E. Egorova, “The
language-independent bottleneck features,” in 2012 IEEE Spoken
Language Technology Workshop (SLT). IEEE, 2012, pp. 336–
341.

[17] C. Liu, J. Yang, M. Sun, S. Kesiraju, A. Rott, L. Ondel, P. Ghahre-
mani, N. Dehak, L. Burget, and S. Khudanpur, “An empirical eval-
uation of zero resource acoustic unit discovery,” in 2017 IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 2017, pp. 5305–5309.

[18] Y. Yuan, C.-C. Leung, L. Xie, H. Chen, B. Ma, and H. Li,
“Extracting bottleneck features and word-like pairs from untran-
scribed speech for feature representation,” in 2017 IEEE Auto-
matic Speech Recognition and Understanding Workshop (ASRU).
IEEE, 2017, pp. 734–739.

[19] E. Hermann and S. Goldwater, “Multilingual bottleneck features
for subword modeling in zero-resource languages,” arXiv preprint
arXiv:1803.08863, 2018.

[20] O. Scharenborg, L. Besacier, A. Black, M. Hasegawa-Johnson,
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