
The Festvox Indic Frontend for Grapheme-to-Phoneme Conversion

Alok Parlikar, Sunayana Sitaram, Andrew Wilkinson and Alan W Black
Carnegie Mellon University

Pittsburgh, USA
aup, ssitaram, aewilkin, awb@cs.cmu.edu

Abstract
Text-to-Speech (TTS) systems convert text into phonetic pronunciations which are then processed by Acoustic Models. TTS frontends
typically include text processing, lexical lookup and Grapheme-to-Phoneme (g2p) conversion stages. This paper describes the design and
implementation of the Indic frontend, which provides explicit support for many major Indian languages, along with a unified framework
with easy extensibility for other Indian languages. The Indic frontend handles many phenomena common to Indian languages such as
schwa deletion, contextual nasalization, and voicing. It also handles multi-script synthesis between various Indian-language scripts and
English. We describe experiments comparing the quality of TTS systems built using the Indic frontend to grapheme-based systems.
While this frontend was designed keeping TTS in mind, it can also be used as a general g2p system for Automatic Speech Recognition.

Keywords: speech synthesis, Indian language resources, pronunciation

1. Introduction
Intelligible and natural-sounding Text-to-Speech

(TTS) systems exist for a number of languages of the world
today. However, for low-resource, high-population lan-
guages, such as languages of the Indian subcontinent, there
are very few high-quality TTS systems available. One of
the bottlenecks in creating TTS systems in new languages
is the development of a frontend that can take sentences or
words in the language and assign a pronunciation in terms
of phonemes from a phone set defined for the language.

In some languages, such a frontend may make use
of a lexicon, which is a list of words in the language
with their pronunciations, and of a Letter-to-Sound (LTS)
model that predicts the pronunciation of Out-of-Vocabulary
(OOV) words. Other frontends may not have a lexicon and
may only use LTS or Grapheme-to-Phoneme (g2p) rules
to predict the pronunciations of all words. Languages that
have fairly close relationships between the orthography and
pronunciation typically fall in the latter category.

In this work, we improve upon previous grapheme-
based approaches to create a unified frontend that imple-
ments various g2p rules for Indian languages. The Indic
frontend can be used for g2p conversion for building TTS
systems in various Indian languages for use with the Fes-
tival Speech Synthesis engine (Taylor et al., 1998). While
this frontend was designed keeping TTS in mind, it can also
be used as a general g2p system for speech recognition.

2. Relation to Prior Work
The lack of lexical resources and clearly defined

phone sets can be an impediment to building TTS and other
speech-processing systems in new languages. Previously,
two techniques have been proposed to build voices in new
low-resource languages (Sitaram et al., 2015b). The first
technique assumes no knowledge of the language and sim-
ply treats each grapheme or letter as a phoneme. This al-
lows us to build a voice without having to define a phone set
for the language. The disadvantage of this technique is that
we lose out on phonetic features that typically give gains

in models of the spectrum and the prosody. Another prob-
lem with this approach is that since each grapheme maps
to a single “phoneme” in all contexts, this technique does
not work well in the case of languages that have pronun-
ciation ambiguities. We refer to this technique as “Raw
Graphemes.”

Another technique exploits a universal transliteration
resource (UniTran) (Qian et al., 2010) that provides a map-
ping from graphemes to phonemes in the X-SAMPA phone
set. The UniTran implementation in Festvox (Sitaram et
al., 2015b) provides a single mapping from each grapheme
in the Unicode specification to a phoneme, with the excep-
tion of a few scripts such as Chinese and Japanese. While
this technique allows us to use phonetic features in mod-
els downstream, it has the same limitation as the previ-
ous technique because there is a single mapping between
a grapheme and a phoneme.

(Choudhury, 2003) describes a rule-based g2p map-
ping scheme for Hindi, which can be used to build a TTS
system for Hindi. Schwa deletion, syllabification, and con-
textual nasalization are handled by the rules stated in this
work, with exceptions to these rules being handled by list-
ing in a lexicon.

(Bali et al., 2004) also describes a rule-based Hindi
frontend to be used with the Festival Speech Synthesis
system. Schwa deletion is handled with rules. However,
these rules fail when dealing with compound words. In
light of this, an algorithm to detect compound words is de-
scribed which results in an improvement in the g2p con-
version when schwa deletion is applied to the individual
constituents.

As per our knowledge, there has been no prior work
in creating a freely available, common frontend for all the
Indian languages that can be used for g2p conversion. Our
motivation for creating such a frontend is to be able to ad-
dress many common pronunciation issues in Indian lan-
guages using a single frontend to facilitate rapid develop-
ment of TTS systems in Indian languages.

To build the Indic frontend, we build upon the
Festvox UniTran implementation. The UniTran mappings



have some limitations when it comes to handling the g2p
rules in Indian languages. From a pronunciation point of
view, most Indian languages have a fairly consistent map-
ping from graphemes to phonemes. However, some con-
textual rules need to be applied in some languages. For
example, the UniTran mapping assigns an inherent schwa
to all consonants by default. However, in some languages
such as Hindi and Bengali, schwas are deleted at the ends
of words and sometimes in the middle of words. This is
something we need to handle explicitly. Still, the UniTran
mappings provide a good starting point for building a fron-
tend for Indian languages.

3. Indic Frontend Description
The Indic frontend has been developed on top of the

Festvox voice-building tools (Black and Lenzo, 2002), to
be used in the Festival Speech Synthesis engine (Taylor et
al., 1998). We will also describe implementations of the
Indic frontend for Flite (Black and Lenzo, 2001), a low-
footprint speech synthesizer; and Flite for Android (Par-
likar, 2014), an Android application that can be used on a
smartphone. For the next few sections, we focus on the de-
sign and implementation of the Indic frontend for Festvox.

All Unicode characters defined for Indian languages
are first mapped to a phoneme from the X-SAMPA set, sim-
ilar to the mappings provided by UniTran. In addition, each
Unicode character is mapped to its corresponding ordinal
for ease of processing. Lastly, a set of rules are defined
which are associated with language lists. If a language is
in the list for a particular rule, the rule is fired for that lan-
guage.

Next, we describe the rules implemented in the fron-
tend to handle various phenomena.

3.1. Schwa Deletion
Indo-Aryan languages such as Hindi, Bengali, Gu-

jarati, et cetera, exhibit a phenomenon known as schwa
deletion, in which a final or medial schwa is deleted from
a word in certain cases. For example, in Hindi, the final
schwa (realized as the sound [@]) in the word kml (pro-
nounced ‘kamal’) is deleted. None of the consonants k,
m, or l have an attached vowel; hence, they have inherent
schwas, and the inherent schwa on the last consonant l gets
deleted. The word lgBg (pronounced ‘lagbhag’) has con-
sonants l g B g, from which both the medial schwa on
the first consonant g and the final schwa on the second con-
sonant g get deleted. If schwa deletion did not take place,
these words would erroneously be pronounced as ‘kamala’
and ‘lagabhaga’ respectively. In both these cases, the or-
thography does not indicate which inherent schwas should
be deleted.

Schwa deletion has been well studied in the context
of TTS systems. There are well defined linguistic rules to
predict when a schwa gets deleted and when it does not.
However, there are exceptions to these rules that reportedly
affect around 11% of the vocabulary (Narasimhan et al.,
2004), including cases such as consonant clusters.

Previous work on schwa deletion includes ap-
proaches that take into account morphology to preserve
schwas that may otherwise be deleted (Narasimhan et al.,

2004). Other approaches have used syllable structure and
stress assignment to assign schwa deletion rules (Naim R
and Nagar, 2009). (Choudhury et al., 2004) uses ease of
articulation, acoustic distinctiveness and ease of learning to
build a constrained optimization framework for schwa dele-
tion.

Recently, (Sitaram et al., 2015a) proposed a tech-
nique to automatically discover LTS rules such as schwa
deletion using acoustics for low-resource languages. They
use the UniTran mappings and a cross-lingual technique
to automatically discover schwa deletion rules for Hindi,
which is considered to be a low-resource language in this
case, by using acoustic models trained on other Indian lan-
guages and schwa deletion rules for Assamese.

Schwa deletion for Hindi occurs in both word-final
and word-medial positions, while for languages like Ben-
gali it occurs only in word-final positions. The schwa dele-
tion rules we implemented in the Indic frontend are based
on a simpler version of (Narasimhan et al., 2004) and are as
follows:

• Process input from right to left

• If a schwa is found in a VC CV context, delete it

Taking the examples of kml ‘kamal’ and lgBg
‘lagbhag’ mentioned earlier, we now see how these rules
apply. In the case of kml, the consonants k, m, and l
all have inherent schwas, and the last schwa is deleted ac-
cording to the first rule. Since none of the other schwas are
in a VC CV context, they remain. In the case of lgBg,
the consonants l g B g also have inherent schwas, and
once again the final schwa gets deleted. The schwa attached
to the second g is in a VC CV context, and hence also gets
deleted. This rule gives us the correct pronunciation in both
these cases.

3.2. Contextual Nasalization
The anuswaar character is used to indicate nasaliza-

tion, which can be realized as different phonemes depend-
ing on the context. For example, in the words ev\, p\p, t\t� ,
and a\k (‘evam,’ ‘pump,’ ‘tantu,’ ‘ank’) the dot above the
consonants indicates nasalization, which is realized as dif-
ferent nasal phonemes in each of these words depending on
the consonant. We implemented rules for contextual nasal-
ization as follows:

• If it’s a schwa, it’s not nasalized. nX becomes m

• nX followed by velar becomes nG

• nX followed by palatal becomes n

• nX followed by alveolar becomes nr

• nX followed by dental becomes nB

• nX followed by labial becomes m

• all other nX become nB



3.3. Tamil Voicing
Most Indian languages have distinct representations

in their orthography for voiced and unvoiced sounds. How-
ever, this is not the case with Tamil, which does not have
distinct letters for voiced and unvoiced stops. There are
well defined rules for predicting voicing in Tamil. For ex-
ample, the voiceless stop [p] occurs at the beginning of
words, while the voiced stop [b] does not.

(Ramakrishnan and Laxmi Narayana, 2007) de-
scribes a frontend for Tamil with rules for predicting voic-
ing, similar to those described below. They also use a lex-
icon for foreign words of Sanskrit and Urdu origin, which
do not follow these rules.

The rules that we implemented for Tamil voicing are
taken from (Albert and others, 1985) and are as follows:

• Initial and geminated stops are voiceless

• Intervocalic and postnasal stops are voiced

• Stops after voiced stops are voiced

3.4. Lexical Stress
Prosody and lexical stress have not been well studied

in Indian languages. A technique for automatically identi-
fying stress based on power, energy, and duration by clus-
tering units is described in (Laxmi Narayana and Ramakr-
ishnan, 2007). Experiments were carried out on Tamil for
syllable-level lexical stress, based on which a rule was cre-
ated for assigning stress in Tamil as follows: The first syl-
lable is stressed if it does not contain a short vowel; other-
wise, the second syllable is stressed.

Our implementation of stress rules for Indian lan-
guages is based on (Hussain, 1997). This is based on the
concept of syllable weights, which are decided by vowel
context. A light syllable ends in a short vowel, while a
heavy syllable ends in either a long vowel, or a short vowel
and a consonant. An extra-heavy syllable ends in either a
long vowel and a consonant, or a short vowel and two con-
sonants. This is similar to the ideas presented in (Pandey,
2014), who also describe pitch and amplitude based cues
for schwa deletion, which we did not implement.

Stress is based on the syllable with the highest
weight. In the case of a tie, the last syllable with the highest
weight is stressed. The last syllable of the word does not
participate in tie-breaking; it is stressed only when there
are no ties. For example, in the word kArFgrF (‘kaari-
igarii’), the syllables with highest weights are ‘kaa,’ ‘rii’
and ‘rii.’ Since the last syllable is not considered, the first
‘rii’ is stressed in this case.

3.5. Other Post-Lexical Rules
The halant character under a consonant indicates that

a schwa is deleted, so we remove schwas after consonants
that have this character under them.

We handle consonants with nukta characters under
them by mapping them to the consonant without the nukta,
as these characters are usually very rare in our training cor-
pora.

We also added rules for schwa realization, in which
the schwa is replaced with another vowel (rahna vs rehna),

for which we replace the schwa with the phoneme /e/ in the
post-lexical rules.

For Malayalam, we added rules to process Chillu let-
ters. Consonants represented by Chillu letters are never
followed by an inherent vowel, and we added appropriate
mappings in the frontend.

3.6. English Language Support
We extended the Indic frontend to be capable of syn-

thesizing not just words written in Indian languages in Uni-
code, but also English words. It is often seen on Indian-
language websites such as newspapers and Wikipedia that
a few English words are written in the Latin script.

The task was to synthesize test sentences containing
mixed-script sentences, but the training synthesis databases
contained no English in the recordings and their corre-
sponding prompts. However, there may have been some
words written in the native script that were not truly native,
such as proper names, technical terms, et cetera.

Since we only had data in the Indian languages to
train from, we employ a straightforward approach to han-
dle English words in Indian-language sentences. When
we detect a word in the Latin script, we use the US En-
glish text-processing frontend to process it. This means
that all Non-Standard Words that are covered by the (much
higher-resource) US English frontend are also available to
us, including special symbols except numbers, which we
describe next.

Then, we use a mapping between the US English
phone set and the Indic phone set (which is common for
all the lower-resource Indian languages) to convert the US
English phonemes to Indic phonemes. This is a simple
one-to-one mapping, which has its limitations, since some
phonemes in English do not exist in the Indian languages
and vice-versa. Mapping phonemes between English and
Hindi is a one-time cost, but ideally such mappings should
be done automatically. We are exploring techniques to
automatically map phonemes cross-lingually using knowl-
edge about phonetic features, context, and acoustics.

3.7. Numbers
There has been very little work in creating text-

processing frontends for Indian languages that can han-
dle numbers, abbreviations, and other non-standard words.
(Ramakrishnan and Laxmi Narayana, 2007) describes a
text-processing frontend for Tamil that categorizes and ex-
pands numbers into ordinary numbers, phone numbers,
dates, times, and currency, based on delimiters and length.

We provide support for synthesizing numbers writ-
ten as numerals in different scripts. Indian language texts
may employ the numerals native to the script of the lan-
guage, or may employ the standard numerals common to
most of the world today (known as “Arabic” or “Indo-
Arabic” numerals; we refer to them as “English” numer-
als for simplicity). In modern Indian-language texts, En-
glish numerals are more commonly used than native numer-
als—sometimes much more commonly, depending on the
language. In most cases, there is a one-to-one correspon-
dence between native and English numerals, so it is simple
to map from one numeric representation to the other. One



exception is the Tamil system, which has distinct numerals
for 10, 100, and 1000, and hence is not a true base-10 sys-
tem. Another is certain traditional systems of writing frac-
tions, such as those of Telugu and Bengali. Writing rules to
handle these exceptions is future work.

In the case of integers, we currently synthesize num-
bers written with English numerals in English, and num-
bers written in a native script in the corresponding lan-
guage. This reflects a compromise between respecting the
desires both of authors who use English numerals and wish
the text to be accessible to a wide audience (including peo-
ple who may not have full familiarity with the native num-
ber system), and of authors who use native numerals and
wish to continue the traditions of the language. We plan
to make these representation options (English, native, or
mixed numbers) a choice in the future for the user.

Speaking numbers in Indian languages requires use
of a pronunciation lookup table for all numbers between
zero and one hundred, because these numbers take id-
iosyncratic forms that cannot be deterministically gener-
ated. For large numbers, one issue is when to speak num-
bers in multiples of “lakh” and “crore” (corresponding to
one hundred thousand and ten million, respectively), and
when to use “thousand,” “million,” et cetera. When a num-
ber in English holds to the lakh/crore pattern in comma-
separated groupings of digits, it is spoken according to that
paradigm. Thus, “12,34,56,789” is “twelve crore, thirty-
four lakh, fifty-six thousand, seven hundred eighty-nine”;
whereas “123,456,789” is “one hundred twenty-three mil-
lion, four hundred fifty-six thousand, seven hundred eighty-
nine.” Numbers over twelve digits are spoken one digit at
a time. For native-script numbers, numbers up to nine dig-
its are mapped to lakh and crore, and for longer strings are
spoken one digit at a time.

3.8. Creating Support for New Languages
The Indic frontend has explicit support for a number

of Indian languages and has been designed to make it sim-
ple to add support for new languages. To add support, all
the Unicode characters in the language need to mapped to
an ordinal as described earlier, and each ordinal needs to
be mapped to a phoneme from X-SAMPA. The UniTran
mappings can be used as a starting point for doing this.
The rules described above that have been implemented for
other languages can be toggled for any new language, and
any language-specific rules can be created in a similar man-
ner. For example, schwa deletion does not occur in all In-
dian languages, and can be toggled for Hindi, with both
word-final and medial schwa deletion, and Bengali, with
only word-final schwa deletion.

3.9. Creating an Offset-Based Frontend
So far, we described the design of the frontend avail-

able in Festival. Our Flite implementation of the frontend
follows an offset-based approach instead of having to cre-
ate explicit support for each Indian language. Chapter 9 of
the Unicode specification (Unicode Staff, 1991) has offset-
based character tables for each script, with each script con-
taining up to 128 characters. Within each script, there is a
fixed sequence of characters which makes it easy to build

general rules for the phenomena described above. This
makes it possible to have a single mapping with offsets for
all scripts for Indian languages.

4. Data and Experiments
The Blizzard Challenge (Black and Tokuda, 2005)

is an annual community-wide evaluation of TTS systems.
Participants are provided with common databases to build
synthetic voices, and a common test set to synthesize. Sys-
tems are evaluated on a wide variety of subjective metrics
by volunteers and paid listeners. In the last two years, the
Blizzard Challenge has included an Indian-language syn-
thesis task, which drove our work on the Indic frontend.

The metrics in the Blizzard Challenge did not test
the quality of frontends explicitly. The closest metric that
tested pronunciation quality was Word Error Rate, in which
our systems did well for Tamil, Telugu, Malayalam, and
Marathi.

The data for the Blizzard 2015 tasks consisted of six
Indian languages, with four hours of data each in Hindi,
Tamil, and Telugu, and two hours of data each in Marathi,
Bengali, and Malayalam. The databases were recorded by
professional speakers in recording studios. Each database
had corresponding transcripts in UTF-8. We used the data
from Blizzard 2015, as well as Assamese and Rajasthani
data from Blizzard 2014 (Prahallad et al., 2014), which also
consisted of two hours of data in each language.

In order to compare the knowledge-based Indic fron-
tend to previous grapheme-based approaches, we used an
objective metric of speech synthesis quality. We varied
only the frontends of the systems and kept everything else
the same. We compared the synthetic speech with held-out
reference recorded speech by computing the Mean Mel-
Cepstral Distortion (Mashimo et al., 2001) (MCD) of the
predicted cepstra. Since this is a distance measure, a lower
value suggests better synthesis. Kominek (Kominek, 2009)
has suggested that MCD is linked to perceptual improve-
ment in the intelligibility of synthesis, and that an improve-
ment of about 0.08 is perceptually significant and an im-
provement of 0.12 is equivalent to doubling the data. The
MCD is a database-specific metric which cannot be com-
pared across databases.

Table 1 shows the MCD for Hindi, Tamil and Telugu
built with the two grapheme-based frontends described ear-
lier and the Indic frontend. We performed this comparison
only on these languages, although we built systems using
the Indic frontend for all the languages mentioned above.

Table 1: MCD for languages built with Raw Graphemes,
UniTran, and the Indic frontend

Language Raw UniTran Indic Frontend
Hindi 5.10 5.05 4.94
Tamil 5.10 5.04 4.90
Telugu 5.54 5.85 5.12

From the results above, we can see that the MCD of
the voices built with the Indic frontend are significantly bet-
ter than the voices built with UniTran, which are in turn
better than voices built with the raw graphemes frontend



except in the case of Telugu, where UniTran is significantly
worse.

5. Availability
The Indic frontend has been released as part of the

standard Festvox distribution. Documentation is provided
in the Festvox manual (Black and Lenzo, 2003) for building
voices using the Indic frontend and for adding support for
new voices. Our current version of Flite also has support
for Indic voices created using Festvox.

The Flite TTS for Android application is built with
support for Indian languages. Voices in Hindi, Gujarati,
Marathi, Tamil, and Telugu are available for download.

6. Conclusion
In this paper, we described the design and devel-

opment of the Indic frontend, a common frontend for
Grapheme-to-Phoneme conversion in Indian languages.
The Indic frontend has been designed to provide a common
framework to implement various Letter-to-Sound rules for
Indian languages, allowing easy extensibility to new Indian
languages.

We used an objective metric of speech synthesis qual-
ity to compare the Indic frontend with previous grapheme-
based frontends used for low-resource languages, and
found that voices built with the Indic frontend were sig-
nificantly better. We also described preliminary work on
synthesizing numbers in Indian languages and handling En-
glish words written in the Latin script.

We have recently begun work on synthesizing Code-
Mixed text using the Indic frontend, in which Indian lan-
guages may be mixed with languages such as English, and
in which the entire sentence may be written in the Latin
script. Synthesizing words that are written in the “wrong”
script can also apply to foreign words and Named Entities.
An additional challenge that such text poses is that spellings
are not standardized, particularly if the text is from Social
Media. Our approach to solving this problem is to identify
the language the word is in, normalize spellings and then
transliterate Indian language words into their native scripts
so that the Indic frontend can be used to synthesize them.

Text processing of non-standard words for Indian lan-
guages is an area where very little work has been done.
Text-processing modules are usually implemented on a
language-by-language basis, so creating a common text-
processing frontend for Indian languages would be an in-
teresting future direction. Likewise, there has been very
little work done on prosody in Indian languages for TTS
systems.

Finally, although the Indic frontend is a general g2p
converter, we have only performed experiments on Speech
Synthesis. Using the Indic frontend to generate or boot-
strap lexicons for Automatic Speech Recognition (ASR) in
Indian languages would be an interesting future direction.

7. Bibliographical References
Albert, D. et al. (1985). Tolkāppiyam Phonology and Mor-

phology: An English Translation, volume 115. Interna-
tional Institute of Tamil Studies.

Bali, K., Talukdar, P. P., Krishna, N. S., and Ramakrishnan,
A. (2004). Tools for the development of a Hindi speech
synthesis system. In Fifth ISCA Workshop on Speech
Synthesis.

Black, A. W. and Lenzo, K. A. (2001). Flite: a small fast
run-time synthesis engine. In 4th ISCA Tutorial and Re-
search Workshop (ITRW) on Speech Synthesis.

Black, A. W. and Lenzo, K. (2002). Building Voices in the
Festival Speech Synthesis System, http://festvox.org/bsv.

Black, A. W. and Lenzo, K. A. (2003). Building synthetic
voices. Language Technologies Institute, Carnegie Mel-
lon University and Cepstral LLC.

Black, A. W. and Tokuda, K. (2005). The Blizzard Chal-
lenge 2005: Evaluating corpus-based speech synthesis
on common datasets. In in Proceedings of Interspeech
2005.

Choudhury, M., Basu, A., and Sarkar, S. (2004). A di-
achronic approach for schwa deletion in Indo Aryan lan-
guages. In Proceedings of the 7th Meeting of the ACL
Special Interest Group in Computational Phonology.

Choudhury, M. (2003). Rule-based grapheme to phoneme
mapping for Hindi speech synthesis. In 90th Indian Sci-
ence Congress of the International Science Congress As-
sociation (ISCA), Bangalore, India.

Hussain, S. (1997). Phonetic correlates of lexical stress in
Urdu. Unpublished dissertation.

Kominek, J. (2009). TTS From Zero: Building Synthetic
Voices for New Languages. Ph.D. thesis, Carnegie Mel-
lon University.

Laxmi Narayana, M. and Ramakrishnan, A. (2007). Defin-
ing syllables and their stress labels in MILE Tamil TTS
corpus. In Proc. Workshop in Image and Signal Process-
ing (WISP-2007), IIT Guwahati.

Mashimo, M., Toda, T., Shikano, K., and Campbell, N.
(2001). Evaluation of cross-language voice conversion
based on GMM and STRAIGHT.

Naim R, T. and Nagar, I. (2009). Prosodic rules for schwa-
deletion in Hindi text-to-speech synthesis. International
Journal of Speech Technology, 12(1):15–25.

Narasimhan, B., Sproat, R., and Kiraz, G. (2004). Schwa-
deletion in Hindi text-to-speech synthesis. International
Journal of Speech Technology, 7(4):319–333.

Pandey, P. (2014). Akshara-to-sound rules for hindi. Writ-
ing Systems Research, 6(1):54–72.

Parlikar, A. (2014). Flite TTS engine for Android. Open-
source Software.

Prahallad, K., Vadapalli, A., Kesiraju, S., Murthy, H. A.,
Lata, S., Nagarajan, T., Prasanna, M., Patil, H., Sao,
A. K., King, S., Black, A. W., and Tokuda, K. (2014).
The Blizzard Challenge 2014.

Qian, T., Hollingshead, K., Yoon, S. y., Kim, K. y.,
and Sproat, R. (2010). A python toolkit for universal
transliteration. In LREC 2010.

Ramakrishnan, A. and Laxmi Narayana, M. (2007).
Grapheme to phoneme conversion for Tamil speech syn-
thesis. In Proc. Workshop in Image and Signal Process-
ing (WISP-2007), IIT Guwahati.

Sitaram, S., Jeblee, S., and Black, A. W. (2015a). Using
acoustics to improve pronunciation for synthesis of low



resource languages. In Sixteenth Annual Conference of
the International Speech Communication Association.

Sitaram, S., Parlikar, A., Anumanchipalli, G. K., and Black,
A. W. (2015b). Universal grapheme-based speech syn-
thesis. In Sixteenth Annual Conference of the Interna-
tional Speech Communication Association.

Taylor, P., Black, A. W., and Caley, R. (1998). The archi-
tecture of the Festival speech synthesis system. In The
Third ESCA/COCOSDA Workshop (ETRW) on Speech
Synthesis.

Unicode Staff, C. (1991). The Unicode standard: world-
wide character encoding. Addison-Wesley Longman
Publishing Co., Inc.


