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Abstract The LoReHLT16 evaluation challenged participants to extract Situation
Frames (SFs)—structured descriptions of humanitarian need situations—from mono-
lingual Uyghur text. The ARIEL-CMU SF detector combines two classification
paradigms, a manually curated keyword-spotting system and a machine learning clas-
sifier. These were applied by translating the models on a per-feature basis, rather
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106 P. Littell et al.

than translating the input text. The resulting combined model provides the accu-
racy of human insight with the generality of machine learning, and is relatively
tractable to human analysis and error correction. Other factors contributing to suc-
cess were automatic dictionary creation, the use of phonetic transcription, detailed,
hand-written morphological analysis, and naturalistic glossing for error analysis
by humans. The ARIEL-CMU SF pipeline produced the top-scoring LoReHLT16
situation frame detection systems for the metrics SFType, SFType+Place+Need,
SFType+Place+Relief, and SFType+Place+Urgency, at each of the three checkpoints.

Keywords LoReHLT · LORELEI · Situation frames · Information extraction

1 Introduction

1.1 Task description

Situation frames (SFs) are semantic structures intended to “enable information from
many different data streams to be aggregated into a comprehensive, actionable under-
standing of the basic facts needed to mount a response to an emerging situation”
(Strassel et al. 2017). Each situation frame represents information relevant to human-
itarian mission planning, including the type of humanitarian need (e.g., food, water,
evacuation) or local background issue (e.g., terrorism or widespread crime), the loca-
tion of the need or issue, whether the need is current and/or urgent, and whether
the need has been partially or fully addressed. Being able to extract this information
rapidly and reliably from text (such as local newspaper articles, social media posts,
and text messages) may support humanitarian disaster relief planners.

Unfortunately, we are not in a position to apply current natural language processing
(NLP) technology directly to this problem. Roughly half of humanity speaks a lan-
guage that is not one of the top 20 languages by number of speakers (Lewis et al. 2015),
and even some of those top 20 languages still count as low-resource languages for the
purposes of NLP. Most languages on earth—even languages with tens of millions of
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The ARIEL-CMU situation frame detection pipeline... 107

Table 1 An example sentence from document IL3_WL_031228_20140215_G0040006G, and the refer-
ence situation frame that systems are attempting to predict

Original sentence

(The Aqqan Township government said, in later reports, that there were

fortunately no casualties, but the quake had caused some housing damage)

SFType Shelter

Place Aqqan Township

Need Current

Relief No known resolution

Urgency Non-urgent

speakers—do not even have rudimentary NLP pipelines in place, and the typical NLP
pipeline for a language has, in the past, taken years of development.

These challenges—a challenging classification and information extraction task,
on challenging languages, within an emergency timespan—come together in the
LoReHLT1 evaluation, in which participants received a surprise language (in 2016,
Uyhgur, a Turkic language of the Xinjiang province of China) and a surprise incident
(the February 2014 earthquake in Hotan, Xinjiang, China).

Participants had one month to develop a system that detects situation frames in
Uyghur monolingual text, evaluated at three checkpoints: 7 days, 14 days, and 28
days. An example sentence and its associated situation frame are illustrated in Table
1.

In a novel addition toNISTevaluations, participants had access toNative Informants
(NIs) for a limited number of hours per checkpoint (one hour per task before the
first checkpoint, and four additional hours per task after the first checkpoint). These
NIs could be utilized in many ways—translating data, doing validation and/or error
analysis on system outputs, brainstorming keywords and features—but teams were
not permitted to show the NI (or any other human analyst) the evaluation data itself.
This was to ensure that, while human expertise could be used to engineer and train the
systems in the first place, the systems could still detect situation frames independent
of the input of native speakers, linguists, and other subject-matter experts.

1.2 The ARIEL-CMU approach

Given the lack of annotated data in the incident language, it was necessary to transfer
from a better resourced language for which some humanitarian need/issue classifica-
tions exist (in this case, English, as detailed in Sect. 2.3). This transfer might occur
via three basic routes:

1 www.nist.gov/multimodal-information-group/lorehlt-2016-evaluations.
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1. Bydeveloping anEnglish classifiermodel, translating theUyghur text intoEnglish,
and applying the classifier to the result.

2. By developing an English classifier model, translating the model’s features (that
is, words and short phrases) into Uyghur, and applying the resulting model to
untranslated Uyghur.

3. By developing an English classifier model, classifying the English side of a
Uyghur-English parallel text, transferring the labels to theUyghur sentences, train-
ing a new Uyghur classifier model on the labeled Uyghur sentences, and applying
it to untranslated Uyghur.

The ARIEL-CMU SF team took the second route (and, to our knowledge, was the
only team to take this approach).

The model translation approach made the ARIEL-CMU system dependent primar-
ily on lexical resources, which are easier to supplement in data-poor situations or
situations where the data is out of domain (Sect. 2.4), whereas the text translation and
label transfer approaches leave systems dependent on parallel text, which is much
more difficult to supplement. The ARIEL-CMU system was thus relatively unaffected
by the very out-of-domain parallel text included in the training set (consisting mostly
of Qur’an translations and software localization files). Lexical resources have other
advantages over parallel text, too: for example, they are relatively amenable to human
manipulation. This attribute proved to be another key advantage for the ARIEL-CMU
system. Finally, this approach allowed the SF team to start work immediately, without
having to wait for a Uyghur-to-English translation module to be built by the ARIEL-
CMU MT team.

The ARIEL-CMU SF detection pipeline is shown in Fig. 1. Each classifier model
(Sects. 3.1, 3.2) consumes lemmatized (Sect. 2.5.2) Uyghur text, English-Uyghur
lexicons (Sects. 2.1, 2.4), and classified English humanitarian assistance and disaster
relief (HA/DR) text (Sect. 2.3), and produces a list of hypothesized SFs for each
sentence. The location field of each SF is then linked using the output of the ARIEL-
CMU named entity recognition pipeline (Sect. 4), and then SFs that were not found
by both classifiers are removed (Sect. 3.3). Finally, we fill the Status fields (Sect. 5)
and run special-case post-filters (Sect. 6.3).

1.3 Evaluation

Systems submitted to the LoReHLT16 competition were scored officially by a novel
metric called ‘Situation Frame Error’ (SFE), the sum of false positives and false nega-
tives, divided by the number of reference situation frames. This metric was calculated
five times at each checkpoint, for a variety of combinations of result types:

– SFTypeWhether the Type of the humanitarian need (one or more of: Water, Food,
Shelter, Medical, Evacuation, Infrastructure, Search/Rescue, Utilities/Energy/
Sanitation) or background issue (one or more of: Terrorism or Extreme Violence,
Civil Unrest or Widespread Crime, Regime Change) is correct.

– SFType+PlaceWhether both the Type and Place of the need/issue are correct; the
possibilities for Place are any relevant named entity (LOC or GPE) in the same
document.
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The ARIEL-CMU situation frame detection pipeline... 109

Fig. 1 The ARIEL-CMU situation frame extraction pipeline

– SFType+Place+Need Whether the Type, Place, and time status (Current, Past
Only, Future Only) of the need are correct.

– SFType+Place+Relief Whether the Type, Place, and relief status (Sufficient relief,
Insufficient relief orUnknown sufficiency,No relief known) of the need are correct.

– SFType+Place+Urgency Whether the Type, Place, and urgency status (Urgent,
Non-urgent) of the need are correct.

1.4 Results

Of the five primary systems submitted in the exercise, the ARIEL-CMU system had
the best (that is, lowest) SFE rate at each checkpoint, for each of the metrics except
for SFType+Place, in which the ARIEL-CMU system had the second-best SFE rate.

SFE is heavily weighted towards precision,2 and many of our decisions in the
pipeline (for example, the decision to intersect the results of the two SF extraction
engines as an ensembling method in Sect. 3.3) aimed at the goal of higher precision.
The ARIEL-CMU systems had the highest precision scores for SFType.

However, the system’s precision did not detract from its F1; the ARIEL-CMU
system also had the best F1 measure for SFType. We were again second-best for

2 It should be noted, however, that it does not vary monotonically with precision (or recall or F1), as the
SFE and precision values in Tables 5 and 6 will show.
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Table 2 SFE, P, R, and F1 scores on SFType and SFType+Place, for our primary systems at each checkpoint

Chkpt. SFType SFType+Place

SFE P R F1 SFE P R F1

CP1 1.082 0.424 0.226 0.295 1.405 0.104 0.053 0.070

CP2 1.042 0.464 0.273 0.343 1.666 0.072 0.056 0.063

CP3 1.147 0.385 0.245 0.300 1.675 0.121 0.107 0.113

Bold values indicate our best performance in a primary submission (highest score for P, R, and F1, lowest
score for SFE)

SFType+Place; comparative P/R/F1 measures for the other three metrics, or for con-
trastive systems, were not reported.

We, like some other performers, found our third-checkpoint systems underperform-
ing on SFType classification compared to our second-checkpoint systems. We believe
this to be largely because of overgeneration (especially when considering the SFE
metric). At earlier checkpoints, as the classifiers consider text in which they can rec-
ognize few words, they also generate few situation frames. By checkpoint 3, our data
preprocessing pipeline (Sect. 2.5) had improved significantly, and meanwhile the clas-
sifiers were now considering multiword phrases rather than just single words (Sects.
3.1, 3.2), meaning that systems were able to identify more meaningful elements in
each sentence, and consequently generated additional situation frames, and with that
additional spurious situation frames.

Meanwhile, however, our SFType+Place scores continued to rise (this is easier
to see in the P/R/F1 values in Table 2 than in SFE, which has a sometimes chaotic
relationship to other metrics), largely because of a substantial improvement in the
upstream named-entity recognition pipeline (Bharadwaj et al. 2016).

Our scores for the Status fields (Need, Relief, and Urgency) are considered in Sect.
5 and Table 6.

2 Data and resources

2.1 Uyghur data

We made use of many resources from LDC2016E57 (LORELEI IL3 Incident Lan-
guage Pack for Year 1 Eval) (Strassel and Tracey 2014). The most crucial resource,
for the purposes of our SF pipeline, was the Uyghur-English dictionary; the next most
crucial were the Uyghur-Mandarin dictionary and the Uyghur-English parallel text
(which we used to generate additional bilingual lexicons in Sect. 2.4).

We made use of the LDC2016E57 monolingual Uyghur text to train Uyghur word
vectors (Sect. 3.2).

Wealsomadeuseof all threeUyghur referencegrammars provided inLDC2016E57,
in building orthographic converters (Sect. 2.5.1), in building rule-based Uyghur mor-
phological parsers (Sect. 2.5.2), and in training linguistic analysts (Sect. 6).
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2.2 Mandarin data

In addition to using the Uyghur-Mandarin dictionary in LDC2016E57, we also
made use of the CEDICT Mandarin-English dictionary3 (included in LDC2016E30,
LORELEIMandarin Incident Language Pack V2.0); this was used to derive a Uyghur-
English lexicon in Sect. 2.4.

2.3 English data

2.3.1 English monolingual HA/DR corpora

A variety of in-domain, monolingual corpora were used in the evaluation. Raw docu-
ments were collected from the following sources.

ReliefWeb A corpus of more than 491K documents, totaling over 300M words, was
collected from ReliefWeb,4 an aggregator of HA/DR news and analysis sponsored
by the United Nations Office for the Coordination of Humanitarian Affairs. Approxi-
mately 28% of articles are annotated (by ReliefWeb) for one ormore disaster types and
a disaster name (e.g., ‘Myanmar: Tropical Cyclone Nargis—May 2008’). Just under
half (45%) of the articles are also annotated for a humanitarian assistance ‘theme’
(e.g., ‘Health’, ‘Water Sanitation Hygiene’, etc.).

Crisis.net An online collection of global crisis data from various social media
sources.5 Collected content was tagged for ‘disaster’ and ‘conflict’, completed
4/12/2016, and was further limited to data from Ushahidi6 (~30K words), Facebook
(~58K words), and Twitter (~415K words).

Open Source Enterprise (OSE) A set of 24K articles collected from the Open Source
Enterprise7 portal with a set of disaster keyword queries. All of the documents are
natively annotated for one or more topic areas, many of which are of relevance to
LORELEI (‘aid’, ‘terrorism’, etc.).

These data sources were used to derive a collection of more topically-focused data
sets.

2.3.2 HA/DR topic lexicon

A semi-supervised method was used to construct a set of ~ 34K terms (words and
multi-word expressions) organized around 25 ReliefWeb disaster categories and gen-
eral situation types proposed by the LORELEI community in early stages of the

3 http://cc-cedict.org.
4 http://reliefweb.int.
5 http://crisis.net.
6 www.ushahidi.com.
7 www.opensource.gov.
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program: Cold Wave, Cyclone, Drought, Earthquake, Energy, Evacuation, Flood,
Food, Heatwave, Infestation, Intervention, Landslide, Medical, Money, Politics, Res-
cue, Sanitation, Services, Shelter, Terrorism, Tsunami, Civil Unrest, Utilities, Water,
andWildfire. A set of seed terms for each defined topic area was constructed manually
with the input of a domain expert; additional terms from CrisisLex’s CrisisLexRec
(Olteanu et al. 2014) and EMTerms (Temnikova et al. 2015) lexicons were included
in these sets where appropriate.

For each seed set, candidate termswere generatedwith an ensemble ofword embed-
ding models (Mikolov et al. 2013a), including: pre-trained Google News word2vec
vectors; a word2vec model trained on over one billion English language tweets; a
word2vec model trained on the ReliefWeb and OSE data; a singular-value decompo-
sition of dependency path features constructed from the ReliefWeb and OSE data; and
a latent semantic indexing model of an English language thesaurus. For each topic,
two thousand most topically-similar terms were selected as candidates for manual
auditing; terms were ranked by average cosine similarity relative to seed set centroid
vectors. After first filtering terms to remove commonly occurring personal and place
names, non-ASCII terms, terms of three or fewer characters, and terms with non-word
punctuation, the candidate terms were audited with CrowdFlower.8

Contributors were asked to rate each term’s relevance to the topic on a five point
scale, with extreme points on the scale described as indicating a-contextual relevance
(e.g., ‘sewage’ is necessarily relevant to Sanitation without any additional context)
or irrelevance (e.g., it is difficult to imagine how ‘bubblegum’ would be relevant
to Extreme Violence/Terrorism), and the mid-range indicating contextual dependence
(e.g., ‘water’ can be relevant to a discussion of Energy in the context of hydroelectricity
plants). Terms receiving an average relevance of 3.5 or lower were dropped from the
final lexicon. Overall agreement among participants on the rating scale was 75%.

2.3.3 HA/DR topic example sentences

From the ReliefWeb and Crisis.net corpora, we created a collection of 163K topically-
categorized example sentences, The sentences were extracted by simple retrieval of
selected terms in the HA/DR Topic Lexicon: terms with a high (greater than 4 in a
1–5 scale) human-judged topic relevance and a word length greater than one.

2.3.4 Additional derived data

We also collected an English corpus ahead of the evaluation period by searching for
a small set of HA/DR keywords (e.g., ‘evacuation’, ‘earthquake’), and taking the first
several thousand articles returned as a categorized English HA/DR corpus.

During the evaluation period, we also annotated a small number of English articles
with situation frame types, using the BRAT annotation tool (Stenetorp et al. 2012).
This data was used to tune the English SFType classifier (Sect. 3.2).

8 www.crowdflower.com.
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2.4 Deriving bilingual lexicons

As described below, both extraction models (Sect. 3.1, Sect. 3.2) rely primarily on
bilingual lexicons to achieve model translation, so the completeness and correctness
of the lexicon with respect to the target domain is a matter of critical importance.

Fortunately, it is easier to create parallel lexicons than it is to create parallel text; we
created two additional lexicons to supplement the Uyghur-English lexicon included
in LDC2016E57 as follows.

First, we ran fast_align (Dyer et al. 2013), a reparameterization of IBMModel
II (Brown et al. 1993), on the LDC2016E57 parallel text to derive word-level align-
ments, then selected all word pairs above a certain frequency threshold. Those words
that we knew to be of interest to our extractors were then presented to the native
informant for validation (Sect. 6.1).

Second, we took the transitive closure of the Uyghur-Mandarin lexicon included
in LDC2016E57 and the Mandarin-English lexicon CEDICT (also included in LDC-
2016E30) to build a Uyghur-English lexicon.

Both of these derived lexiconsweremuch richer in single-word translations than the
Uyghur-English dictionary provided in LDC2016E57. The latter dictionary contained
more phrase-to-phrase translations, which turn out to be less directly useful for model
translation.

Finally, we asked the native informant to translate into Uyghur some additional
HA/DR-related terms that we did not find in other resources.

2.5 Data preprocessing

2.5.1 Orthographic conversion

ManyARIEL-CMUmodules (including the SF,machine translation, and named-entity
recognition systems) use the International Phonetic Alphabet (IPA) as their internal
representations of text. Having a standardized representation allows us to develop stan-
dard tooling (e.g., phonetic search tools) and phonetics-based cross-linguistic models
without the need to adapt each tool to each new language.

Orthography-to-IPA conversion (a type of G2P, or grapheme-to-phoneme conver-
sion) in the ARIEL-CMU pipeline is handled by the Epitran module,9 which uses
conversion tables, preprocessing rules, and postprocessing rules to convert native
orthography into IPA wherever possible. This requires some manual rule engineer-
ing, but it usually requires fewer than four person-hours of work to adapt the Epitran
system to a new language. The large number of languages and scripts already sup-
ported (currently 62 language-script pairs, with 13 different scripts) means that this
manual work is often a matter of adapting support from a related language or script.

For Uyghur orthography-to-IPA conversion, we made use of the Uyghur grammar
books in the LDC2016E57 language pack, which contained tables and usage exam-
ples for Uyghur orthography. Uyghur orthography-to-IPA conversion was relatively

9 http://github.com/dmort27/epitran.
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straightforward, when compared to conversion of other Perso-Arabic scripts, because
the Uyghur orthography fully and unambiguously indicates vowels, whereas other
Perso-Arabic scripts tend to have some unwritten or ambiguous vowels.

2.5.2 Lemmatization

We tried three different approaches to lemmatization, each based on hand-written rules
but differing in their parsing paradigm.

Regular expression-based morphlogy First, we made a quick lemmatizer (named in
our submission filenames as ‘dummorph’, for ‘dummy morphology’), derived from
the Uyghur grammar books in the LDC2016E57 language pack, operating directly
on Uyghur’s Perso-Arabic orthography, in which hand-written suffixation rules are
compiled to a regular expression which captures only the lemma. This system had
the benefit of being straightforward to code and specify, and trivial to integrate into
our systems, but the downside that it could only output a single hypothesis as the
lemma, which (as shown by manual inspection of the output) was often under- or
over-lemmatized. All of our Checkpoint 1 submissions used this lemmatizer.

We also used regular-expression-based morphology to perform some limited lem-
matization of the LDC2016E57 Uyghur-English lexicon, in particular removing the
citation form suffix -maq and its variants from verbs, since these are relatively uncom-
mon in text.

Finite-state morphology Our second lemmatizer (named in our submission filenames
as ‘franmorph’, for ‘Francis’s morphology’) was adapted from the Uyghur finite-state
morphological parser10 in the Apertium MT toolkit (Forcada et al. 2011), further
developed by its author to include additional roots and a root ‘guesser’ during the
LoReHLT16 evaluation. The system was developed using the Helsinki Finite State
Toolkit (Linden et al. 2011) according to the methods described in Washington et al.
(2014).

The benefit of the resulting lemmatizer was that it was based on a much more
sophisticated understanding of Uyghur morphophonology (e.g., the raising of front
vowels to [i]) compared to our other lemmatizers; the downside was that it was more
difficult to integrate into our pipelines than the other lemmatizers (which, like the rest
of our systems, were written in Python). Table 3 gives some example output from this
system.

Parser-combinator morphology Our third lemmatizer (named in our submission file-
names as ‘ipamorph’, since it operates on the output of our Epitran IPA system) arose
from a refactoring of the regular-expression compiler to be a recursive descent parser,
by converting the primitive elements (e.g., suffix specifications) to parser combinators
(Hutton and Meijer 1988; Frost and Launchbury 1989) rather than regular expression
snippets. We also significantly expanded the suffix inventory and morphotactic com-

10 http://svn.code.sf.net/p/apertium/svn/incubator/apertium-uig.
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Table 3 Example output from franmorph including lemmas and detailed lexical and morphological infor-
mation

In this example sentence, spurious analyses have been excluded in the interest of readability. The sentence
means “However good policy and preventative measures are, if a good implementation is not done they are
not of importance”

Table 4 Sample outputs from
the IPAMorph multiple-output
morphology system (Sect. 2.5.2)

plexity as the checkpoints progressed, based again on the Uyghur grammar books in
the LDC2016E57 language pack.

The flexibility of parser combinators with respect to outputs (Hutton 1992) and
element reordering (since they produce recursive descent parsers, rather than finite-
state automata) allowed us to make a multiple-output parser that simultaneously
produced lemmas (for the SF pipeline), morphological segmentations and glosses
(for the machine translation pipeline), and a human-readable naturalistic gloss (for
human data and error analysis). A sample of IPAMorph outputs are shown in Table 4.

The downside of IPAMorph is that it does not include the range of phenomena in the
Apertium FST, nor the more sophisticated morphophonology, the elegant integration
of morphology with phonology being a strength of FST-based systems (Beesley and
Karttunen 2003).

2.5.3 Morphological disambiguation

In the absence of gold-standard morphological breakdowns, we chose between com-
peting morphological parses using a variety of heuristic penalties.

Most important, a significant penalty is assessed if the morphological parse does
not result in a lemma that we can find in one of our Uyghur-English bilingual lexi-
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cons (After all, our models were translated, on a word-feature-by-word-feature basis,
through these Uyghur-English lexicons, so the fundamental purpose of lemmatization
within our SF pipeline is to render the data in the exact form that these models can
recognize).

When multiple parses resulted in known lexical items, we decided between them
based on the probability (according to an English bigram model) of their English

definitions. For example, (qatarliq) could have the lemma qatarliq (meaning
‘including’, ‘like’, ‘such as’, ‘et cetera’) or the lemma qatar (meaning ‘row’, ‘line’,
‘Qatar’, or ‘board game called in Chinese’). Each hypothetical parse receives an
additional penalty according to the negative log probability of its English translation
(so the parse resulting in qatar receives a higher penalty than qatarliq).11

Additional, smaller penalties accrue for the length of the lemma (so that shorter
lemmas are preferred) and number of suffixes (so that the system avoids choosing a
hypothesis with more suffixes when fewer are possible).

This disambiguation systemwas used for both theApertium and IPAMorph parsers.
The integration of more sophisticated lemmatization and heuristic disambiguation

was the primary difference between our Checkpoint 1 (using ‘dummorph’) and Check-
point 2 (using IPAMorph) primary systems; as seen in Table 2 this contributed to a
small improvement in SFE and a more substantial improvement in F1 score.

Using the Apertium parser gave very similar downstream results; the best system
using IPAMorph (our CP2 primary system) outperformed the best system using Aper-
tium (one of our CP2 contrastive systems) by only a single situation frame (out of
hundreds).

2.5.4 Naturalistic glossing

One of the outputs of the IPAMorph system, ‘naturalistic glossing’, played a signifi-
cant role in ARIEL-CMU data and error analysis. Taking advantage of the exclusively
suffixing nature of Uyghur and the Mirror Principle (Baker 1985) (that linear order
of suffixes usually reflects their syntactic derivation), we mirrored rough English
equivalents of each morpheme to the other side of the lemma (e.g., transforming
‘people-PL-GEN’ to ‘of several people’). While the resulting outputs are not nearly
as fluent as the output of a more sophisticated machine translation system, it affords a
non-speaker analyst a view of the data that is usefully close to the original (as it cannot
drop or hallucinate words to match an English language model, and can only perform
very limited word rearrangements).

As our analysts became more ‘fluent’ in this English-Uyghur hybrid, they reported
gaining competence in reading the more direct representations of Uyghur as well (e.g.,
the original and IPA renderings), in the manner of Renduchintala et al. (2016). This
additional knowledge, and the ability of the gloss to provide a second opinion about
the meaning of a sentence, independent of the conclusions the SF or MT pipelines,
was crucial in identifying systematic errors in SF classification (Sect. 6).

11 This is thus not lemmatization per se—the lemma of all of these is qatar, with -liq being a suffix—but
rather an attempt to find the most appropriate corresponding word in the lexicons, whether it is a lemma or
not.
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2.6 Date/time extraction

To support the SF coreference decision (Sect. 3.3) and time status classification (Sect.
5), we attempted to extract dates and other time-related information from incident
language texts.

The basic approach is to refer to Unicode Common Locale Data Repository
(CLDR),12 a multilingual repository which includes various types of assets such as
number patterns, date/time formats, etc. We converted the Uyghur date/time assets to
a series of regular expressions and rules for date extraction, and attached the extracted
date to the situation frame (using similar heuristics as used in Location matching in
Sect. 4). This field was then used to help determine if two generated situation frames
referred to the same event (events with incompatible date/time fieldswere notmerged),
and as one of the factors conditioning the decision between Current, Past Only, and
Future Only.

After checkpoint 1, we incorporated additional useful patterns and expressions for
extracting time information. For instance we added relative time expressions such as
‘N days ago’ or ‘last month’, and constructed an English-Uyghur time expression
dictionary.

3 SF detection: the classifiers

3.1 Model I

Our first module identifies the presence in the text of a precompiled list of keywords
and phrases that indicate the presence of SFs.

An initial English keyword list was obtained from the English corpora described in
Sect. 2.3 by applying tf.idf directly; a similar initial key-phrase list was produced by
combining pointwise mutual information (PMI) and tf.idf scores. We combined these
lists and took the top 120 ranked words for each SF type, and manually refined and
extended them to include additional morphological variants.

These keywords and phrases were then manually classified as strong, weak, or
misleading for SF detection, partly based on tf.idf score and partly based on world
knowledge and analysis of English text. Strong keywords tend, especially in concert,
to reliably indicate the presence of an SF in the text. Weak keywords are not reliable
indicators of specific needs or issues by themselves, but indicate that humanitarian
needs and safety issues are likely. Weak keywords do not provide strong enough
evidence for an SF type if too few strong keywords are present, and are never sufficient
on their own for proposing the presence of an SF. Ambiguity also affects the strength
of the keyword, with weak keywords having a higher degree of lexical ambiguity
compared to strong ones, meaning that taken by themselves they may mislead the
extractor by suggesting an SF when none is present, or by suggesting incorrect SFs.

12 http://cldr.unicode.org.
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As an example, the word shelter is a strong keyword for a shelter need, but the
word earthquake is a weak keyword for a shelter need because not every earthquake
results in a shelter need. Nursing is a weak keyword because it is ambiguous between
mothers nursing children (not indicative of an SF) and nurses providing care to vic-
tims (indicative of an SF). Power and patient are generally misleading because they
are ambiguous and too common in non-disaster situations. After misleading words
were eliminated from the SF lists, we ultimately retained about 400 words/phrases all
together.

To translate the English keywords to Uyghur we leveraged the Uyghur-English
lexicons (Sects. 2.1, 2.4). Words that were not present in the lexicons were ignored.
The resulting Uyghur keywords are used for assigning a binary score (yes or no) for
each sentence for each SF type.

Using strong and weak keywords, there are two steps in assigning a per-sentence
score. First, for SF identification, if any strong keywords appear in a sentence their
associated SF is assumed to be present in that sentence. Second, given an SF of one
type, we infer the presence of SFs of other types on the basis of their weak keywords,
but only when the first (strong) type is known in general to co-ccur with the other
(weak) types.

An additional complication arose when we discovered that many important mean-
ings in Uyghur were present in the Uyghur-English dictionary only in the form of
multi-word phrases. Many English verbs, for example, are expressed by a noun and
light-verb pair in Uyghur. At Checkpoint 3, we extended our keyword system to handle
multi-wordUyghur-English correspondences, rather than only single-word correspon-
dences.

3.2 Model II

Our second model created a list of indicator words automatically. We trained a Naive
Bayes classifier on the classified English texts (Sect. 2.3), initially using only word
features, to classify single sentences into situation frame types. We then translated the
model’s words into Uyghur using the LDC-provided bilingual dictionary and inferred
ones.

As a component in this model we also developed a graph-based word translation
algorithm to extend the dictionary (Xu et al. 2016). We applied word2vec13 (Mikolov
et al. 2013a, b) to monolingual text (English and Uyghur separately) to obtain word
vectors.Word similarity graphs were built for each language in which each node repre-
sents a word and each edge records the cosine similarity between theword embeddings
of the two words. The similarity graphs of two languages were combined to induce the
relation between the observedword translations (the seeded translations from the given
bilingual dictionary) and the unobserved ones. Using the induced relation from word
similarity graphs, the algorithm propagated the label information in the observed word
translations to the unknown ones and produced new candidate translation lexicons.

13 http://code.google.com/archive/p/word2vec/.
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Table 5 Comparative Model I,
Model II, and model intersection
scores at Checkpoint I

Model SFType

SFE P R F1

Model I 1.832 0.272 0.497 0.352

Model II 1.765 0.221 0.304 0.256

Intersection 1.082 0.424 0.226 0.295

Bold values indicate our best
performance in a primary
submission (highest score for P,
R, and F1, lowest score for SFE)

Initially this model introduced a very large number of words and other features
and overgenerated SFs. For checkpoint 2, we performed feature selection on English
to remove low-information features (as measured by PMI), reducing the number of
features from 20 to 5k and resulting in a 4% F1 score improvement on the English
test set. Some English newswire documents were annotated internally by the ARIEL-
CMU group (Sect. 2.3.4). We used the ones that contained no situation frames as
negative examples for training. We also began using the more advanced lemmatiz-
ers (Sect. 2.5.2) for this checkpoint. We asked the native informant to validate the
translations inferred by our graph-matching algorithm. Many of them turned out to be
incorrect. Therefore we adjusted the threshold to include fewer inferred translations
in our pipeline.

For checkpoint 3,we extended thismodel to include bi- and trigram features in order
to capture multi-word Uyghur-English correspondences, for the reasons mentioned in
Sect. 3.1.

3.3 Model combination

It was interesting to note that the two models produced rather different results. As is
often the case, automated training was no match for human insight, and the manually
tuned word/phrases lists of Model I outperformed the automatically acquired ones
of Model II. After the tuning of Model II features and words described above its
performance matched and later slightly exceeded that of Model I. Still, the results
were far from identical.

We therefore experimented with different ways of combing their outputs. While
Model I had the superior F1 scores, the official SFError metric is heavily weighted
toward precision, and so it was far more important to produce correct though possibly
too few SFs than to ensure coverage of all SFs. It was natural to simply intersect the
outputs of the two models, and this became our top-scoring system entry.

Table 5 shows the comparative scores of Model I alone, Model II alone, and their
intersection (our primary submission) at Checkpoint I. (We did not submit single-
model systems beyond Checkpoint I.)

As each classifier model produced hypothesized SFs at the sentence level, inter-
section was also calculated at the sentence level. If both models found the same type
of SF in the same sentence, and the SFs do not have incompatible location or time
information, these SFs are merged; other SFs are deleted. Put another way, we only
consider situation frames that can be found in a sentence in two different ways.
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4 Location detection

We used a simple most-recent location heuristic to assign locations to each situation
frame found: if the sentence that produced the situation frame contains a GPE or LOC
named entity, we use that as the location. If the sentence contains more than one GPE
or LOC named entities, we create new situation frames (with the same type and status
values) for each additional named entity. On the other hand, if the sentence doesn’t
contain any location entities, we assign the last seen GPE or LOC named entity from
the previous sentences or none (i.e. no Place mention) if no location entities could be
found from the beginning of the document to the current position.

5 Status detection

Situation Frames (specifically those that describe ‘needs’ like Shelter rather than
‘issues’ like Widespread Crime) also have three ‘Status’ fields, intended to help mis-
sion planners determine whether the situation merits an immediate response:

– Need Does the need currently exist? Possible values: Current, Past Only, Future
Only.

– Relief Is the need already being addressed, and is that relief sufficient? Possible
values: Sufficient, Insufficient/Unknown Sufficiency, No relief known.

– Urgency Is a response urgently needed? Possible values: Urgent, Non-urgent.

The ARIEL-CMU system also achieved the best SFE scores in these categories;
comparative P/R/F1 scores were not published.

The Need and Urgency categories, as specified in the SF annotation manual, have
strong default responses (to Current and Non-urgent respectively); the Relief category
does not have a clear default but the Sufficient label should (as described) be rare (and
indeed was).

Accordingly, our best-performing Status-detection systems (in both the Mandarin
dry-run evaluation and the Uyghur evaluation) were those that hewed closest to default
values (Each of our Status-detection systems had a fallback to a default value when
the system did not make a more specific decision, and given that this was usually the
correct choice, our systems performed best when not making a decision).

Because of this, and because the Status score categories (SFType+Place+Need,
SFType+Place+Relief, SFType+Place+Urgency) vary so heavily due to highly variant
SFType and Place performance, the scores of these Status systems should probably
not be interpreted as evidence for the superiority of a specific approach to Status.

Each of our SF Status systems started with hand-tuned English decision trees,
based on spotting relevant keywords (e.g., ‘now’, ‘sufficient’, ‘urgent’) and taking into
account the date/time fields produced by the system in Sect. 2.6, to classify sentences
into appropriate Status categories or, if no such keywords are found, a special Default
status that is later switched to the actual default status.

These decision trees were applied to Uyghur in one of three ways, paralleling the
three transfer approaches described in Sect. 1.2.

1. Translating the Uyghur sentences to English (or more precisely, glossing them as
in Sect. 2.5.4), then running the English decision trees on these.
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Table 6 SFE, P, R, and F1
scores on SFType+Place+Need,
SFType+Place+Relief, and
SFType+Place+Urgency, for our
primary systems at each
checkpoint

Chkpt. SFType+Place+Need

SFE P R F1

CP1 1.462 0.084 0.047 0.060

CP2 1.758 0.060 0.052 0.055

CP3 1.767 0.107 0.105 0.106

Chkpt. SFType+Place+Relief

SFE P R F1

CP1 1.486 0.062 0.034 0.044

CP2 1.791 0.042 0.036 0.039

CP3 1.828 0.073 0.070 0.071

Chkpt. SFType+Place+Urgency

SFE P R F1

CP1 1.458 0.087 0.048 0.062

CP2 1.754 0.060 0.051 0.055

CP3 1.814 0.078 0.076 0.077

Bold values indicate our best
performance in a primary
submission (highest score for P,
R, and F1, lowest score for SFE)

2. Using the Uyghur-English lexicons to translate each keyword, to make a Uyghur
decision tree.

3. Using the English decision tree to label the English side of the parallel text, trans-
ferring the labels to theUyghur sentence, and using those labeledUyghur sentences
to build an SVM classifier.

Our checkpoint 1 system used the third approach; our checkpoints 2 and 3 systems
used the first approach; we made but did not end up submitting any systems using the
second approach (Table 6).14

Which approach performed best depends on whether SFE or F1 is used as the
evaluation metric, but as noted above, most of the variance in these scores comes from
the performance of the SFType classification (Sect. 3) and Location linking (Sect. 4)
in any case.

6 Error correction

6.1 Keyword validation

As noted above, one of the primary benefits of Model I (Sect. 3.1) is its scale: with
only about 400 hand-tuned keywords, it more amenable to human inspection and error
correction than the automated Model II classifier (Sect. 3.2).

14 Compared to our SFType detection systems, the features in our English Status-detection decision trees
focused comparatively more on functional words (e.g., words more often indicative of tense, aspect, or
modality) than content words. We did not believe these words would translate well using a lexical feature-
translation approach, so we did not submit any of these results as part of a primary submission.
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When deriving translation lexicons from the LDC2016E57 Uyghur parallel data,
mistranslations inevitably surface, as well as correct word translations that are not the
correct sense for the incident domain. Since the Keyword model only begins with 400
English lexical entries, we could extract exactly those translation pairs and present
them to the Native Informant (NI) for validation: “In a disaster context, is this a valid
translation of this word?” This task is easy to understand and quick for the NI to
execute, and provided what was probably the most significant per-hour knowledge
gain during the evaluation.

6.2 Keyword-level error correction

Then, after running the entire pipeline on set0 (i.e., the LDC provided monolingual
training text), we performed manual error correction on both the keywords and the
resulting situation frames.

From each model, we took the most important keywords/features (i.e., those that
had contributed to the identification of the greatest quantity of situation frames)
and back-translated them into English (using the LDC2016E57 Uyghur-English lex-
icon) and Mandarin (using the online Uyghur-Mandarin dictionary referenced in
the LDC2016E57 documentation directory). Inspection of the resulting English and
Mandarin translations helped reveal which Uyghur keywords were likely to have non-
disaster meanings and therefore lead to spurious situation frames.

For example, the English keyword ‘clean’, which both models use as a feature to

detectWater Supply needs (as in ‘clean drinkingwater’), had a translation of
(musulman, ‘Muslim’) in one of our English-Uyghur lexicons (most likely in the sense
of ‘clean living’ or ‘halal’); this was subsequently removed from the keywords (and

downweighted in the graph alignment model) to prevent the word from
leading to Water Supply situation frames.

Other keywords contained a correct back-translation for some senses of the word,
but were judged to be too general to be a reliable indicator of a situation frame. For
example, bothmodels associated the keyword/feature ‘search’ with Search andRescue
needs, but one of this word’s correspondents in the Uyghur-English lexicon was the

verb lemma- (baq-). Back-translation revealed that this verbwas extremely general
in meaning (with back-translations including ‘observe’, ‘take care of’, ‘help oneself
to’, and ‘pertain to’), and it was likewise removed/downweighted as a Search and
Rescue keyword.15

6.3 Sentence-level error correction

Finally, we examined a sample of set0 sentences that the models had identified as
containing situation frames. Both the Native Informant and our non-speaker linguists
attempted this task, the non-speaker linguists using an interface that simultaneously

15 The error correctionwas performedonbothmodels, but in the keywordmodel itwasmore straightforward
to fix (i.e., by simply removing the keyword) and to know that the fix had worked.
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Fig. 2 The ARIEL-CMU analyst interface, displaying a Uyghur news article in the original Perso-Arabic
text, an IPA rendering, a naturalistic gloss, and machine translation output

showed the original text, an IPA rendering of it (Sect. 2.5.1), the ‘naturalistic glossing’
(Sect. 2.5.4), and our best machine translation output.

The analyst interface is seen in Fig. 2; the analyst can turn on and off different
representations of the data on the left side, and on the right side, dynamic highlighting
informs the analyst which pieces of each representation correspond to each other.

This task was much slower that keyword validation for the Native Informant, due
in part to the number of spurious situation frames (after all, set0 was not specifically
disaster-related text). On the other hand, the non-speaker linguist analysts could more
quickly scan larger amounts of data to diagnose real problems in the model, but,
obviously, could only spot some of the more egregious errors.

For example, user comments on disaster-related news articles were often some
variation on “May God shelter us!”. Both systems understood this as a request for
shelter, but nonetheless this is not a Shelter need SF. Since the word for ‘shelter’
is indeed a good Shelter-related keyword, we wrote a small ad-hoc classifier (using
features like sentence length and presence of religiouswords) for the end of the pipeline
that tries to classify ‘thoughts and prayers’-type comments from more informative
comments.

It is worth emphasizing here that the non-speaker linguists were aided by infor-
mation that was largely independent of the SF pipeline itself. Within the larger
ARIEL-CMU system, the machine translation and SF pipelines diverge relatively
early—they share only the G2P (Sect. 2.5.1) and lemmatization (Sect. 2.5.2) steps—
so the naturalistic glossing andmachine translation output provide a second (and third)
opinion on what the data means. This is in contrast to an approach in which the data
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is first run through a MT system, and the model classifies the MT output. In that
approach, using the MT output to diagnose classification errors would not count as a
second opinion in the same way; both the classifier and the analyst would be using the
same opinion (the MT system’s opinion) of the meaning of the sentence.

7 Further research

Comparing the two SF classifiers’ outputs, it is clear that their different approaches
and data requirements make them complementary in a number of ways, and we plan
to retain and develop each separately, as well as investigate methods for combining
them. In challenges tasks with a lot of training data (even if not exactly parallel), the
data-hungry Model II is likely to find more-obscure and situation-specific indicator
words/features (for example, the namesof relevant places) thatModel I’s fixedkeyword
list would obviously miss. But in data-poor situations, the converse holds, sinceModel
II would not have enough material to learn reliable features. Balancing their relative
contributions, and perhaps differentiating parts of the contributions depending on SF
type or other aspects is a promising line of work.

We are also starting to look at including other information, obtained from back-
ground knowledge and compiled before the challenge task starts, that might be useful
for need and SF type determination. We have developed a generic model of joint prob-
abilities of various classes of information that might have some predictive effect, but
populating this model before the incident is known with enough information to be
relevant to each new incident remains a challenge.

8 Conclusion

The ARIEL-CMU situation frame detection pipeline took a different approach to
English-Uyghur transfer than other teams’ pipelines, translating the models’ features
into Uyghur rather than translating the Uyghur text into English. This approach led to
the best scores (by both SFE and F1) among primary submissions in SFType classifica-
tion, demonstrating the viability of a model translation approach for cross-linguistic
information extraction. We believe this is in part because such systems depend on
bilingual lexicons rather than bilingual text; in the absence of high-quality in-domain
data, the former can be more easily supplemented than the latter. Parallel text can be
utilized if it is available, but it is not a requirement of the system.

The core of the system is an intersection-based combination of two classifiers, one
a manually curated keyword-spotting system and the other a Naïve Bayes classifier.
This intersection (between a ‘human-scale’ system and a machine learning system)
meant that constraining the former also constrained the latter, essentially allowing us
to perform targeted human analysis and error correction that would otherwise be very
difficult to perform on a pure machine learning system.

In the absence of Uyghur SF training data—indeed, in the absence of in-domain
Uyghur data in general—this human analysis was crucial to avoid the inevitable mis-
categorizations that the system produces. However, this does not necessarily mean that
the system cannot function without the presence of a native informant. We found that,
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given appropriate affordances in the user interface and access to multiple additional
opinions about the meaning of the document, non-speaker analysts can rapidly gain
enough proficiency to perform crucial data and error analysis.

This approach reflects the ‘omnivorous’ philosophy of the ARIEL-CMU project:
making use of valuable but scarce resources (like parallel text, bilingual lexicons,
annotations, and native informants) when they are available but able to fall back to
more-readily-available but less-specific resources (like monolingual text, monolin-
gual domain lexicons, and non-native speaker human judgments) when they are not.
While there will always be some limitations on the former, we are exploring ways to
significantly enhance the latter, by for example exploring the utility of geographical
and numerical information typical of the SF needs in general. Being so data-poor, the
LORELEI challenge encourages NLP to make some small but necessary steps toward
using semantic knowledge and reasoning.
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