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ABSTRACT

In telephone-based dialog navigation systems, scheduling
and direction information are typically collected from routing
APIs in text, and then delivered to users via speech. These
systematic directions may be augmented with human descrip-
tions to provide more accurate and personalized routes and
cover broader user needs. However, manually collecting,
transcribing, correcting, and rewriting human descriptions is
time-consuming. Also its inconsistency with systematic di-
rections can be confusing to users when delivered orally. This
paper describes the construction of a pipeline to automate the
route description unification process which also renders the
resulting direction delivery more concise and consistent.

Index Terms— dialog systems, natural language genera-
tion, AI for good, assistive technologies

1. INTRODUCTION

Describing routes is essentially the simple task of providing
directions from one place to another. Yet it can be a com-
plicated research problem when it involves human language
production and perception. As people have varying spatial
reasoning abilities, when they cannot share a physical map,
effective communication is a difficult problem. Psychologists
have been studying the concept of cognitive maps in human
navigation for decades [1, 2], and cognitive linguists have
worked on spatial proposition classifications by analyzing
collections of verbal routes [3]. Previous work on computer-
generated route descriptions often relies on knowledge-based
systems, and requires graphic user interfaces [4]. The route
description generation and perception problem becomes even
more difficult (and has rarely been studied) in the case of man-
machine communication in spoken dialog systems. Route de-
scriptions generated by systems like Google Maps and Bing
Maps are concise and consistent but too general, many times
missing details with reference to landmarks that are essential,
for example, for disambiguation. Also, since these systems
aim to provide global coverage, they can only provide direc-
tions from/to the main entrances of buildings, and the routes
they provide in smaller local neighborhoods are often sub-
optimal. On the other hand, experts such as local residents
or information desk receptionists can provide more detailed

and shorter paths in areas they are familiar with. However, as
humans provide directions based on memory or a so-called
“mental map”, their route descriptions vary from time to time
and person to person, and often contain colloquial and redun-
dant information. This paper presents a pipeline to deliver
concise and accurate route information to users in a spoken
dialog system by combining human and system descriptions
into a single navigation output. A new route direction dataset
consisting of both synthesized audio and text forms of human
and system descriptions is also presented.

2. BACKGROUND

2.1. Current System

GetGoing [5] is a spoken dialog system that provides trip
planning information to users over a local phone line. The
information is delivered to users through text-to-speech
(TTS) after post-processing in the natural language gener-
ation (NLG) module. The system uses the Google Maps API
as its backend for database lookup. It is able to correct poten-
tial automatic speech recognition (ASR) errors and resolve
ambiguous locations. GetGoing also widely covers driv-
ing and public transit routes for Southwestern Pennsylvania.
Since the system has been tailored to the needs of seniors who
have limited access to smartphones or the internet, providing
accurate and detailed directions to places such as hospitals is
a top concern.

2.2. Application Scenario

Multiple major Pittsburgh hospitals are co-located on the
UPMC Presbyterian (Presby) campus. The area is steeply
sloped, giving the campus a complicated layout. Most build-
ings have multiple entrances on different levels, some being
linked either by pedestrian bridges crossing over two streets
or enclosed walkways connecting different floors of two
buildings. Though Google Maps claims to have 99% cov-
erage of the world, in our case, it fails to provide accurate
walking directions for the Presby campus. Figure 1 shows
an example of a bad route suggested by Google Maps. If a
visitor wants to go from the bus stop (Fifth Ave at Halket St.)
to the clinic (Benedum Geriatric Center), the route suggested
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Fig. 1. An example bad route suggested by Google Maps

by Google Maps would involve 108 vertical feet of climbing,
which is unnecessarily tiring for seniors with mobility diffi-
culties or individuals using wheelchairs. If, instead of using
Google Maps, visitors call the reception desk, they are told to
access the clinic by entering the Montefiore building on Fifth
Avenue, which is right across the street from the bus stop, and
taking the elevator to the fourth floor. Incorporating human
expert route descriptions in GetGoing is an essential com-
plement to Google directions. GetGoing provides automated
instructions to users who can ask for individual steps in the
instructions to be repeated or for time to be given so that they
can write something down. This makes it less intimidating to
seniors who are anxious about talking to a real person over
the phone [6]. It is also available 24/7.

3. RELATED WORK

3.1. Natural Language Generation

The goal of generating a unified route description can be con-
sidered to be a natural language generation (NLG) task. Re-
cent advances in neural network methods have resulted in
state-of-the-art results in multiple NLG tasks such as para-
phrasing, summarization, and style transfer. However, these
models generally require either parallel corpora [7] or mas-
sive amounts of data [8] for training. To the best of our knowl-
edge, there is currently no large scale publicly available route
description dataset. We therefore collected human route de-
scription data. With few sources of the human descriptions
available, system-generated descriptions were used in train-
ing and in validating the sequence-to-sequence model (Trans-
former). Human descriptions were reserved for inference.

3.2. Route Description

Previous cognitive studies on urban route description [9, 3]
show that people tend to describe routes using two major
components: (1) landmarks that are reference points in the
environment and (2) actions that are the instructions pedes-
trians are to follow. When both components are included, a
recent spatial discourse study conducted on university campus
settings [10] found that people tend to favor route descriptions
that are short and more concise, and descriptions that are gen-
erated in groups. These features are especially preferred in
communication situations where people need navigation as-
sistance in an unfamiliar environment.

4. DATASET CONSTRUCTION

4.1. Systematic Descriptions

The systematic route descriptions were synthetically con-
structed using the Google Directions API. A list of street
intersections in Pittsburgh was used to palliate ASR er-
rors. To construct the system route description dataset,
departure and arrival points were randomly chosen from
this list. These points are then used to query the Google
Directions API to obtain directions between the two loca-
tions. For example, for the route from Centre Ave and Penn
Ave to N Euclid Ave and Penn Ave, the original output is
“[Head <b>northwest</b>on <b>Penn Ave</b>toward
<b>N Sheridan Ave</b>,Slight <b>right</b>to stay on
<b>Penn Ave</b>,Take the crosswalk]”. GetGoing breaks
this down into sequences of steps, and post-processes each
individual step into natural language, template, and abstract
meaning representations. The resulting dataset has 85514
instances of steps. Some example instances can be found in
Table 1.

Natural Language Representation Since the Google
API directions are received in html format, the natural lan-
guage representation of each step is formatted by removing all
html elements, and resolving abbreviations such as Pl and Ct
into complete English words (place and court respectively).

Template Extraction The steps returned by the Google
Directions API mainly have 4 slots: (1) actions (e.g. turn,
head, continue) with directions (dir), including both cardinal
(north, south, east, and west) and relative (left, right, up, and
down) directions, (2) road names and landmarks representing
both the current place (plc) and the (3) destination (dst) to end
the action, and (4) special instructions (notes) (e.g. “signs for
S Side”, “Take the stairs”). By replacing corresponding val-
ues in these slots with special unk tokens, 40 route descrip-
tion templates were extracted.

Abstract Meaning Representation We then processed
each step into an abstract meaning representation based on its
natural language representation and the corresponding tem-
plate. These representations were used as target sequences in
the Transformer models proposed here.
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4.2. Human Descriptions

Using a list of 12 common routes from/to bus stations, garages
or parking lots, and main buildings around Presby, we inter-
viewed and recorded 3 receptionists in different hospitals on
the Presby campus with their consent. These recordings were
automatically transcribed using Google’s text to speech API
followed by manual corrections and classification.

4.3. Data Augmentation

Since Google Maps does not cover indoor walking directions,
5 more templates were manually created to handle routes in-
volving (1) vertical transportation such as elevators, escala-
tors and stairs, (2) exit information including doors, buildings,
and elevators and (3) indoor hallways. The data is thus aug-
mented by filling in the templates with random place names
from the same list that was used in dataset construction (4.1).

5. DESCRIPTION UNIFICATION

For a single trip, directly combining walking directions pro-
vided by human experts to proceeding driving or public trans-
portation returned by routing systems can be inconsistent and
thus confusing to users. An example can be found in Table 2.

5.1. Slot Recognition and Unification

To extract and unify key information from human descrip-
tions, we implemented a slot recognizer1 with a hybrid
method combining rule-based and neural methods. The
original parsing neural model was pretrained on OntoNotes
5.0 [12] with an imitation learning objective. This general-
purpose model used trigram convolution layers [13] with
residual connections as the encoder, followed by multi-layer
perception to perform prediction. With a combination of
bloom embedding strategy [14], layer normalization and
maxout non-linearity, it achieved up to 85.43 Named Entity
Recognition (NER) F score on the original evaluation data.
We fine-tuned the model to predict the additional set of slots
as defined in subsection 4.1, and further added rules to in-
corporate Part-of-speech (POS) tags and dependency relation
information into the route slot recognition task. For exam-
ple, for the description “take a second set of elevators that’s
in the eye and ear institute”, the model first recognizes the
following entity-text pairs: “cardinal:second, ele:elevators,
organization:eye and ear institute”, and this information is
processed and combined to form the single place slot value
“second set of elevators in eye and ear institute”, where the
redundant term “that’s” is removed. This step helps to get
rid of some superfluous information in human descriptions,
and provides the flexibility of transferring the descriptions to
other styles by either template filling or other NLG methods.

1based on Spacy’s NER system [11]

During the interview, all three experts were asked the
same set of route questions to ensure the correctness and
completeness of each individual route. Though their descrip-
tions show a high rate of agreement in important information,
there may occasionally be a detail missing or confused in one
person’s description in addition to different speaking styles.
The routes were therefore automatically unified by combin-
ing information, and correcting slots after key information
slots were extracted from each of their descriptions. For the
example in Table 2, the key information “lower-level” in ex-
pert 3’s description would thus be unified to “first floor” as
mentioned by the other two experts based on majority vote.
Further, expert 1’s description ended with an ambiguous “go
left or right”, but the unified direction slot was filled with the
solid value “right” since the other two experts both provided
a concrete instruction “make a right”.

This step makes future human description dataset con-
struction easier and less time-consuming. Though it still re-
quires collecting data from human experts, manual transcrip-
tion, comparison and correction can be skipped. As we only
need the key information from human descriptions, speech
recognition errors made on the other parts of the recorded de-
scription will not affect the correctness of the final route de-
scription, and word error rates of the key information can be
palliated with speech adaptation boosting.

5.2. Template Filling

For the template-filling approach, the templates extracted
from systematic descriptions are categorized into different
groups based on the set of slots they contain, regardless of
the order. For example, templates (1) “continue straight onto
[plc]”, (2) “continue straight to stay on [plc]” and (3) “con-
tinue onto [plc]” all contain a single [plc] slot and thus belong
to the same group. Then for each human description, with the
slots key value pairs extracted in the entity recognizer model,
a template with the same set of slots is randomly chosen, and
filled with the corresponding values. For the example route
in Table 2, given sentence “It can be accessed by going to the
first floor of the garage”, and the component “first floor of the
garage” being tagged with slot [plc] by the recognizer, it is
randomly filled to the “continue straight onto [plc]” template
and thus description “Continue straight onto first floor of the
garage” is generated by the template filling method.

5.3. Transformer Model

To both encode and generate varying-length texts, we adapted
the Transformer translation model [15] 2 for the NLG task.
The input of the model encoder in training is the abstract
meaning representations of routes as can be seen in Table
1. At inference, input is a sequence representation of slot
key and value pairs following the slot recognizer model (e.g.

2followed implementation from fairseq

687

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on December 27,2021 at 15:53:09 UTC from IEEE Xplore.  Restrictions apply. 



Head northwest on Penn Ave toward N Sheridan Ave. Natural Language Representation
Head [dir unk] on [plc unk] toward [dst unk]. Extracted Template

start dir northwest end dir start plc Penn Ave
end plc start dst N Sheridan Ave end dst Meaning Representation

Slight left to stay on Greenfield Ave. Natural Language Representation
Slight [dir unk] to stay on [plc unk]. Extracted Template

start dir left end dir start plc Greenfield Ave end plc Meaning Representation
Take the elevator to third floor of Children’s Hospital Natural Language Representation
Take the [ele unk] to [plc unk] Extracted Template

start ele elevator end ele start plc third floor of Children’s Hospital end plc Meaning Representation

Table 1. An example of different representations of single steps, where the third step was created by data augmentation

Google
Map

Head southeast on Darragh Street toward
Victoria St. Turn left onto Victoria St. Des-
tination will be on the left.

Expert 1 It can be accessed by going to the first
floor of the garage. And on the first floor
a person will take a second set of elevators
that’s in the eye and ear institute. It will
go to the third floor of the eye and ear in-
stitute and they can go left or right.

Expert 2 When you get out of the garage you’ll have
to go down to the first floor and then get
the elevator up to the third floor and get
off the elevator and make a right.

Expert 3 There is a lower-level lot you can get to
the Presby Garage from there by taking
the elevator up to the third floor and then
getting off on the third floor and you’ll see
a sign that says eye and ear, you would
make a right into that.

Template-
filled

Continue straight onto first floor of the
garage. Take the second set of elevators
in the eye and ear institute to third floor.
Turn right after exit elevator.

Transformer-
generated

On first floor of garage take the second
set of elevators in the eye and ear in-
stitute. On elevator take the elevator to
third floor. Turn right after exit elevator,
and you will be on third floor.

Table 2. Google map’s instruction and different experts’ de-
scriptions of the following step.

“ start plc first floor of the garage end plc ” for human
description “It can be accessed by going to the first floor of
the garage.”). As in translation tasks, the decoder predicts the
next word conditioned on the encoder output and the previ-
ous tokens in the generated sequence. Training target data
is the natural language representation of the corresponding
route as in Table 1. The encoder and decoder are trained to-
gether to optimize the label smoothing cross entropy of the
training data. Since the order of slot positions does not matter
in the direction description, we trained the transformer model
with position embeddings removed. To handle new location
names in the unseen test set, we use a negative unknown token
penalty, and copy over the unknown tokens in the source se-
quence to the target sequence. The Transformer model is as-
sessed using two sets of metrics, (1) the standard BLEU4 [16]
score as in machine translation tasks, and (2) slot matching
after description translation. The model achieves a BLEU4
score of 89.84, and a slot match accuracy of 98.45% on the
validation set. Due to the same resource of training data and
limited templates used by Google Maps, the descriptions gen-
erated by the Transformer are essentially very similar to the
ones generated by the template-filling method.

6. HUMAN EVALUATION

In order to deliver the resulting directions in GetGoing, hu-
man users’ preferences and system usefulness are a main
concern. The qualities of route descriptions were assessed
by synthesizing each of them into a single speech audio file.
For each route, there were three versions: human descrip-
tion, template generation, and Transformer generation. To
eliminate the effect of an individual person’s accent etc, hu-
man description recordings were also resynthesized using the
transcribed text. All three types of utterances were synthe-
sized using the same synthetic voice as the one in the current
version of GetGoing, with a normal speaking rate and no
additional prosody features (sample recordings can be found
in supplemental materials accompanying this submission).
Using this set of synthesized utterances, we carried out two
studies on Amazon Mechanical Turk (AMT): a memory test
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and a preference test. Each AMT worker had a HIT approval
rate (the proportion of completed tasks that are approved by
requesters) greater than 95% and supplied information about
whether they were native English speakers, and their age
group.

6.1. Memory Test

The memory test included 3 random audio files per HIT, and
at most one version was included for each route. Workers
could hear each file once, and they then responded to the
open-ended question “What key information do you remem-
ber? For example, what turn should you take, and where
should you make the turn? Which floor should you go to?
Which elevator should you take?”. To evaluate information
retention, this question appeared after the worker had finished
listening to the first audio file. There were 275 workers, and
each worker was allowed to submit this HIT only once. Noisy
answers like “yes”, “nothing” were removed in later analysis.

6.2. Preference Test

The preference test had 5 pairs of different routes per HIT,
each pair consisting of 2 versions of the same route randomly
chosen out of 3 possibilities (Transformer, template, human).
There were 100 workers who could submit multiple HITs.
For each pair, workers were asked an explicit comparison:
“Which description do you prefer?”, with 3 options “A”, “B”,
and “No Preference”, followed by an open-ended question
“Why?”. They were instructed to put “NA” if they could not
think of any particular reason, and their responses were used
for qualitative analysis. We use Fleiss’ kappa [17] to evaluate
inter-rater reliability.

6.3. Quantitative Results

Memory test: We quantified workers’ responses to the mem-
ory test by counting the slots they remembered compared to
the manually-labeled slots of a single route. Incorrectly re-
membered slots (e.g. third floor remembered as first floor)
were discarded, and compound location slots (third floor of
UPMC Presby) were counted as two separate slots. Table 3
shows the overall slot match accuracy results. The template
version outperformed the other two versions overall in this
memory test. In particular, for the first question of a HIT,
where workers did not know what the exact task was and
thus might have payed less attention to memorization, work-
ers who listened to the template version had the most stable
memory performance.

Preference test: With the order of versions randomized
within each pair, Table 4 shows the weighted preference of
each choice after outlier workers (i.e. response always differ-
ent from the majority) were removed. The N-1 Chi-Square
test, as recommended by Campbell [18] for preference test-
ing analysis, shows that significantly more people preferred

the template version to both the human (p=0.0013) and the
Transformer version (p=0.0454). While this preference test
is highly subjective (thus all 100 raters do not achieve overall
agreement (kappa < 0.2)), each set of raters has fair agree-
ment (kappa=0.4) on each individual HIT.

6.4. Qualitative Analysis

After removing all “NA” entries, the 234 preference reasons
given in the open-ended why question in preference test were
manually analyzed. Route description preferences can be
grouped in five classes: naturalness, brevity, clarity, memo-
rability and details. For all reasons given, with stopwords re-
moved and all words lemmatized, some of the most frequently
mentioned key words are “clear”,“concise”,“easy”,“understand”
and “natural”. While some reasons (16) advocate more elab-
orate and descriptive directions: “B is more helpful because it
is more descriptive. ”, more preference reasons (56) explicitly
favored the shorter template versions: “B uses fewer words to
say the same thing”.

7. DISCUSSION

Fig. 2. Line plots of slot match accuracy against sentence
length (left) and number of slots (right) in the memory task.

Fig. 3. Preference percentage against human description sen-
tence length (left) and number of slots (right). Each point
represents a version’s preference per route.

.

Whether people’s immediate recall ability is limited by
the number of chunks [19, 20] to be recalled, or the length of
the verbal list to be remembered [20] has long been debated
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Human Template Transformer p-value
% (#samples) std % (#samples) std % (#samples) std h vs t h vs s t vs s

Overall 61.07(234) 0.31 65.96(294) 0.30 61.78(219) 0.31 0.1503 0.7391 0.2881
First only 57.49(86) 0.33 65.83(85) 0.31 59.75(83) 0.32 0.1157 0.4684 0.4082

Senior overall 66.67(47) 0.30 74.35(50) 0.27 75.64(44) 0.26 0.1299 0.1553 0.9412

Table 3. Slot match accuracy results for memory task. h,t,s denotes human, template, and Transformer respectively

Version Human Template Trans. Equal
Preference (%) 40.48 51.33 40.87 8.98

Table 4. Overall weighted preference results calculated by
the number of times a version is chosen out of number of
times that version is present in the pair. Equal denotes no
preference, and Trans. denotes Transformer.

in cognitive science. In Figure 2, we show how workers’
performance on the memory task is both affected by the num-
ber of words (length) and the number of information slots
(chunks) in a single route description. The number of words
affects memory performance less regularly on shorter sen-
tences because, for example, the long location name “Eye
and Ear Institute” was listed on the task page as an en-
tity recognition hint. After close examination of individual
routes, we see that workers listening to all three versions
perform similarly (p=0.7) on directions with as few as two
slots (first floor,garage). For example, human description “It
can be accessed by going to the first floor of the garage”,
template description “continue straight onto first floor of the
garage”, and Transformer description “Continue onto first
floor of the garage” had an average accuracy of 90%, 93%,
and 91% respectively. However, the template version signif-
icantly (p=0.02) outperformed the human version on a more
complicated route with 5 slots (lower level,elevator,third
floor,Presby,Garage). The 22 workers who listened to the
human description “There is a lower-level lot you can get
to the Presby Garage from there by taking the elevator up
to the third floor” on average remembered 51.30% of the
key information, while the other 28 workers who listened to
the template description correctly remembered 66.32%. The
results thus show that delivering route descriptions using tem-
plates can help people continue to retain much information
even as the number of words or chunks increases. It should
be noted that while the Transformer version has lower re-
sults here, it is possible that other Transformer versions may
perform better.

The scatter plots fitted with regression lines in Figure
3 suggest that while listeners may have no preference for
a specific version when routes are short and simple, they
tend to explicitly prefer more structured vocal deliveries of
routes (template and Transformer versions) as the descrip-
tions get longer, containing more information. The routes
where raters’ preferences are statistically significant (p <

0.05) are the ones with more (4,5,7) slot information. This
preference result on synthesized speech further confirms De-
nis’ finding [10] on university campus directions that people
tend to favor shorter route descriptions. The only exception is
the human description “and then getting off on the third floor
and walking halfway up the bridge and you’ll see a sign that
says eye and ear institute, you would make a right into that”
compared to the template description “turn right after exiting
on third floor, and you will be on bridge (signs for eye and
ear institute)”. While some raters still preferred the template
version because “instruction is clear”, the majority of workers
(27/52) preferred the human version with reasons like “more
detailed but not too complicated” and “it is intuitive”. These
reasons motivate us to work on balancing detail and brevity
going forward.

Currently we can see the potential of Transformer model
outperforming human description in the preference test.
However, as a lot of new entity and indoor place names
are not covered in training, they are unknown tokens to the
model at inference and could lead to noisiness in the target
sequence generation. This also shows the limit of automatic
evaluation. Despite of the model’s high performance on the
dev set, a single mistake on the test set drastically affects
human perception of the audio, especially for route mem-
ory purpose. So far we have tried with increasing unknown
mapping threshold in training and tuning the unknown word
penalty at inference time, and we will continue working on
better copy mechanisms in the future. We will also work on
incorporating template selection into the Transformer model
for more controllable outputs.

8. CONCLUSIONS

This paper proposes to combine verbal human route descrip-
tions and system descriptions through an automated pipeline.
Human evaluations show that the combined directions deliv-
ered via audio are easier to remember and are preferred com-
pared to original human descriptions.
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