
Proceedings of the SIGDIAL 2015 Conference, pages 42–50,
Prague, Czech Republic, 2-4 September 2015. c©2015 Association for Computational Linguistics

An Incremental Turn-Taking Model with Active System Barge-in for
Spoken Dialog Systems

Tiancheng Zhao, Alan W Black and Maxine Eskenazi
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

{tianchez,awb,max+}@cs.cmu.edu

Abstract

This paper deals with an incremental turn-
taking model that provides a novel solution
for end-of-turn detection. It includes a flex-
ible framework that enables active system
barge-in. In order to accomplish this, a sys-
tematic procedure of teaching a dialog sys-
tem to produce meaningful system barge-in
is presented. This procedure improves sys-
tem robustness and success rate. It includes
constructing cost models and learning op-
timal policy using reinforcement learning.
Results show that our model reduces false
cut-in rate by 37.1% and response delay
by 32.5% compared to the baseline system.
Also the learned system barge-in strategy
yields a 27.7% increase in average reward
from user responses.

1 Introduction

Human-human conversation has flexible turn-
taking behavior: back channeling, overlapping
speech and smooth turn transitions. Imitating
human-like turn-taking in a spoken dialog system
(SDS) is challenging due to the degradation in qual-
ity of the dialog when overlapping speech is pro-
duced in the wrong place. For this, a traditional
SDS often uses a simplified turn-taking model with
rigid turn taking. They only respond when users
have finished speaking. Thus past research has
mostly focused on end-of-turn detection, finding
the end of the user utterance as quickly as possible
while minimizing the chance of wrongly interrupt-
ing the users. We refer here to the interruption issue
as false cut-ins (FCs).

Recent research in incremental dialog processing
promises more flexible turn-taking behavior (At-
terer et al., 2008; Breslin et al., 2013). Here,
the automatic speech recognizer (ASR) and nat-
ural language understanding (NLU) incrementally

produce partial decoding/understating messages for
decision-making. This allows for system barge-in
(SB), starting to respond before end-of-utterance.
Although this framework has shown promising re-
sults in creating flexible SDSs, the following two
fundamental issues remain:

1. We need a model that unifies incremental pro-
cessing and traditional turn-taking behavior.

2. We also need a systematic procedure that trains
a system to produce meaningful SBs.

This paper first proposes a finite state machine
(FSM) that both shows superior performance in
end-of-turn detection compared to previous meth-
ods and is compatible with incremental processing.
Then we propose a systematic procedure to endow a
system with meaningful SB by combining the the-
ory of optimal stopping with reinforcement learn-
ing.

Section 2 of the paper discusses related work;
Section 3 describes the finite state machine; Sec-
tions 4, 5, and 6 describe how to produce mean-
ingful SB; Section 7 gives experimental results of
an evaluation using the CMU Let’s Go Live system
and simulation results on the Dialog State Track-
ing Challenging (DTSC) Corpus and Section 8 con-
cludes.

2 Related Work and Limitations

This work is closely related to end-of-turn detection
and incremental processing (IP) dialog systems.

There are several methods for detecting the end-
of-turn. Raux (2008) built a decision tree for
final pause duration using ASR and NLU fea-
tures. At runtime, the system first dynamically
chooses the final pause duration threshold based
on the dialog state and then predicts end-of-turn
if final pause duration is longer than that thresh-
old. Other work explored predicting end-of-turn
within a user’s speech. This showed substantial im-
provement in speed of response (Raux and Eske-

42



nazi, 2009). Another approach examined prosodic
and semantic features such as pitch and speaking
rate in human-human conversation for turn-yielding
cues (Gravano, 2009).

The key limitation of those methods is that the
decision made by the end-of-turn detector is treated
as a “hard” decision, obliging developers to com-
promise in a tradeoff between response latency and
FC rate (Raux and Eskenazi, 2008). Although
adding more complex prosodic and semantic fea-
tures can improve the performance of the detector,
it also increases computation cost and requires sig-
nificant knowledge of the SDS, which can limit the
accessibility for non-expert developers.

For IP, Kim (2014) has demonstrated the possi-
bility of learning turn-taking from human dialogs
using inverse reinforcement learning. Other work
has focused on incremental NLU (DeVault et al.,
2009), showing that the correct interpretation of
users’ meaning can be predicted before end-of-turn.
Another topic is modeling user and system barge-in.
Selfridge (2013) has presented a FSM that predicts
users’ barge-ins. Also, Ghigi (2014) has shown that
allowing SB when users produce lengthy speech in-
creases robustness and task success.

Different from Kim’s work that learns human-
like turn-taking, our approach is more related to
Ghigi’s method, which tries to improve dialog ef-
ficiency from a system-centric perspective. We take
one step further by optimizing the turn-taking us-
ing all available features based on a global objective
function with machine learning methods.

3 A Finite State Turn-Taking Model

3.1 Model Description

Our model has two distinct modes: passive and ac-
tive. The passive mode exhibits traditional rigid
turn-taking behavior while the active mode has the
system respond in the middle of a user turn. We first
describe how these two modes operate, and then
show how they are compatible with existing incre-
mental dialog approaches.

The idea is to combine an aggressive speaker
with a patient listener. The speaker consists of the
Text-to-Speech (TTS) and Natural Language Gen-
eration (NLG) modules. The listener is composed
of the ASR and Voice Activity Detection (VAD)
modules. The system attempts to respond to a user
every time it detects a short pause (e.g. 100ms). But
before a long pause (e.g. 1000ms) is detected, the
user’s continued speech will stop the system from

responding, as shown on Figure 1:

Figure 1: Turn-taking Model as a finite state ma-
chine

Most of the system’s attempts to respond will
thus be FCs. However, since the listener can stop
the system from speaking, the FCs have no effect
on the conversation (users may hear the false start
of the system’s prompt, but often the respond state
is cancelled before the synthesized speech begins).
If the attempt is correct, however, the system re-
sponds with almost 0-latency, as shown in Figure
2. Furthermore, because the dialog manager (DM)
can receive partial ASR output whenever there is
a short pause, this model produces relatively stable
partial ASR output and supports incremental dialog
processing.

Figure 2: The first example illustrates the system
canceling its response when it detects new speech
before LT. The second example shows that users
will not notice the waiting time between AT and LT.

We then define the short pause as the action
threshold (AT) and the long pause as the listening
threshold (LT), where 0 < AT ≤ LT, which can
be interpreted respectively as the “aggression” and
“patience” of the system. By changing the value of
each of these thresholds we can modify the system’s
behavior from rigid turn taking to active SB.

1. Passive Agent: act fast and listen patiently
(AT = small value, LT = large value)

43



2. Active Agent: act and listen impatiently.
(AT = LT = small value)

This abstraction simplifies the challenge: “when
the system should barge in” as the following transi-

tion: PassiveAgent
Φ(dialog state)−−−−−−−−−→ ActiveAgent

where Φ(·) : dialog State → {true, false} is
a function that outputs true whenever the agent
should take the floor, regardless of the current state
of the floor. For example, this function could out-
put true when the current dialog states fulfill cer-
tain rules in a hand-crafted system, or could output
true when the system has reached its maximal un-
derstanding of the user’s intention (DeVault et al.,
2009). A natural next step is to use statistical tech-
niques to learn an optimized Φ(·) based on all fea-
tures related to the dialog states, in order to support
more complex SB behavior.

3.2 Advantages over Past Methods

First our model solves end-of-turn detection by us-
ing a combination of VAD and TTS control, in-
stead of trying to build a perfect classifier. This
avoids the tradeoff between response latency and
FC. Under the assumption that the TTS can oper-
ate at high speed, the proposed system can achieve
almost 0-lag and 0-FC by setting AT to be small
(e.g. 100ms). Second, the model does not require
expensive prosodic and semantic turn-yielding cue
detectors, thus simplifying the implementation.

4 Toward Active System Barge-in

In state-of-the-art SDS, the DM uses ex-
plicit/implicit confirmation to fill each slot and
carries out an error recovery strategy for incorrectly
recognized slots (Bohus and Rudnicky, 2009). The
system should receive many correctly-recognized
slots, thus avoiding lengthy error recovery. While a
better ASR and NLU could help, Ghigh (2014) has
shown that allowing the system to actively respond
to users also leads to more correct slots.

Transcription ASR Output
To Forbes, you know, at
Squirrel Hill

To Forbes, herron vee
lyn road

Leaving from Forbes,
〈Noise〉

Leaving from Forbes
from highland bus

〈Noise〉, Leaving from
Forbes

PA 71C Pittsburgh, lib-
erty from Forbes

Table 1: Examples of wordy turns and noise pres-
ence. Bold text is the part of speech incorrectly rec-
ognized.

Table 1 demonstrates three cases where active SB
can help. The first two rows show the first half of
the user’s speech being correctly recognized while
the second half is not. In this scenario, if, in the
middle of the utterance, the system can tell that
the existing ASR hypothesis is sufficient and ac-
tively barges on the user, it can potentially avoid the
poorly-recognized speech that follows. The third
example has noise at the beginning of the user turn.
The system could back channel in the middle of the
utterance to ask the user to go to a quieter place or
to repeat an answer. In these examples active SB
can help improve robustness:

1. Barge in when the current hypothesis has high
confidence and contains sufficient information
to move the dialog along.

2. Barge in when the hypothesis confidence is
low and the predicted future hypothesis will
not get better. This can avoid recovering from
a large number of incorrect slots.

A natural choice of objective function to train
such a system is to maximize the expected quality of
information in the users’ utterances. The quality of
the recognized information is positively correlated
to number of correctly recognized slots (CS) and in-
versely correlated to the number of incorrectly rec-
ognized slots (ICS). In the next section, we describe
how we transform CS and ICS into a real-value re-
ward.

5 A Cost Model for System Barge-in

We first design a cost model that defines a reward
function. This model is based on the assumption
that the system will use explicit confirmation for ev-
ery slot. We choose this because it is the most basic
dialog strategy. A sample dialog for this strategy is
as follows:

Sys: Where do you want to leave from?
User: Leaving from X.
Sys: Do you mean leaving from Y?
User: No.
Sys: Where do you want to leave from?
User: <No Parse>
Sys: Where do you want to leave from?
User: I am leaving from X.
Sys: Do you mean X?
User: Yes.

Given this dialog strategy the system spends one
turn asking the question, and k turns confirming k
slots in the user response. Also, for no-parse (0
slot) input, the system asks the same question again.
Therefore, the minimum number of turns required

44



to acquire n slots is 2n. However, because user re-
sponses contain ICS and no-parses, the system takes
more than 2n turns to obtain all the slot information
(assume confirmation are never misrecognized).

We denote csi and icsi as the number of cor-
rectly/incorrectly recognized slots in the user re-
sponse. So the quality of the user response is cap-
tured by a tuple, (csi, icsi). The goal is to obtain
a reward function that maps from a given user re-
sponse (csi, icsi) to a reward value ri ∈ <. This
reward value should correlate with the overall ef-
ficiency of a dialog, which is inversely correlated
with the number of turns needed for task comple-
tion.

Then for a dialog task that has n slots to fill, we
can denote hi as the number of turns already spent,
fi as the estimated number of future turns needed
for task completion and E[S] as the expected num-
ber of turns needed to fill 1 slot. Then for each new
user response (csi, icsi), we update the following
recursive formulas:

Initialization: h0 = 0, f0 = nE[s]
Update Rules:

hi = hi−1 + 1︸︷︷︸
question

+ csi + icsi︸ ︷︷ ︸
confirm

(1)

fi = fi−1 − csiE[S]︸ ︷︷ ︸
acquired slots

(2)

Based on the above setup, it is clear that hi + fi
equals the estimated total number of turns needed
to fill n slots. Then the reward, ri, associated with
each user response can be expressed as the differ-
ence between the previous and current estimates:

ri = (hi−1 + fi−1)− (hi + fi) (3)

= −1 + (E[S]− 1)︸ ︷︷ ︸
weight to CS

csi − icsi (4)

Therefore, a positive reward means the new user
response reduces the estimated number of turns
for task completion while a negative reward means
the opposite. Another interpretation of this reward
function is that for no-parse user response (csi =
0, icsi = 0), the cost is to waste 1 turn asking the
same question again. When there is a parse, each
correct slot can save E[S] turns in the future, while
each slot, regardless of its correctness, needs a 1-
turn confirmation. As a result, this rewards function
is correlated with the global efficiency of a dialog
because it assigns a corpus-dependent weight to csi,
based on E[S] estimated from historical dialogs.

6 Learning Active Turn-taking Policy

After modeling the cost of a user turn, we learn a
turn-taking policy that can maximize the expected
reward in user turns, namely the Φ(dialog state)
that controls the switching between passive and ac-
tive agent of our FSM in Section 3.1. Before going
into detail, we first introduce the optimal stopping
problem and reinforcement learning.

6.1 Optimal Stopping Problem and
Reinforcement Learning

The theory of optimal stopping is an area of mathe-
matics that addresses the decision of when to take a
given action based on a set of sequentially observed
random variables, in order to maximize an expected
payoff (Ferguson, 2012).
A formal description is as follows:

1. A sequence of random variables X1, X2...
2. A sequence of real-valued reward functions,
y0, y1(x1), y2(x1, x2)...

The decider may observe the sequence x1, x2...
and after observing X1 = x1, ...Xn = xn, the de-
cider may stop and receive the reward yn(x1, ...xn),
or continue and observe Xn+1. The optimal stop-
ping problem searches for an optimal stopping rule
that maximizes the expected reward.

Reinforcement learning models are based on the
Markov decision process (MDP). A (finite) MDP is
a tuple (S,A, {Psa}, γ, R), where:
• S is a finite set of N states
• A = a1, ...ak is a set of k actions
• Psa(·) are the state transition probabilities on

taking action a in state s.
• γ ∈ [0, 1) is the discount factor
• R : S → < is the rewards function.
Then a policy, π , is a mapping from each state,

s ∈ S and action a ∈ A, to the probability π(s, a)
of taking action awhen in state s (Sutton and Barto,
1998). Then, for MDPs, the Q-function, is the ex-
pected return starting from s taking action a and
thereafter following policy π and has the Bellman
equation:
Qπ(s, a) = R(s) + γ

∑
s′
P (s′|s, a)V π(s′). (5)

The goal of reinforcement learning is to find the
optimal policy π∗, such that Qπ(s, a) can be max-
imized. Thus the optimal stopping problem can be
formulated as an MDP, where the action space con-
tains two actions {wait, stop}. Also, solving the
optimal stopping rule is equivalent to finding the
optimal policy, π∗.

45



6.2 Solving Active Turn-taking

Equipped with the above two frameworks, we first
show that SB can be formulated as an optimal stop-
ping problem. Then we propose a novel, non-
iterative, model-free method for solving for the op-
timal policy.

An SDS dialog contains N user utterances. Each
user utterance contains K partial hypotheses and
each partial hypothesis, pi, is associated with a tuple
(csi, icsi) and a feature vector, xi ∈ <f×1, where
f is the dimension of the feature vector. We also
assume that every user utterance is independent of
every other utterance. We will call one user utter-
ance an episode.

In an episode, the turn-taking decider will see
each partial hypothesis sequentially over time,
At each hypothesis it takes an action from
{wait, stop}. Wait means it continues to listen.
Stop means it takes the floor. The turn-taking de-
cider receives 0 reward for taking the action wait
and receives the reward ri from (csi, icsi) accord-
ing to our cost model for taking the action stop.
This is an optimal stopping problem that can be for-
mulated as an MDP:

• S = {x1, ...{x1...xK}}
• A = {wait, stop}
• R = −1 + (E[S]− 1)csi − icsi
Then the Bellman equations are:
Qπ(s, stop) = R(s) = r(s) (6)

Qπ(s, wait) = γ
∑

s′
P (s′|s, a)V π(s′) (7)

The first equation shows that the Q-value for
any state, s, with action, stop, is simply the im-
mediate reward for s. The second equation shows
that the Q-value for any state s, with action, wait,
only depends on the future return by following pol-
icy π. This result is crucial because it means that
Qπ(s, stop) for any state, s, can be directly calcu-
lated based on the cost model, independent of the
policy π. Also, given a policy π, Qπ(s, wait)can
also be directly calculated as the discounted reward
the first time that the policy chooses to stop.

Meanwhile, for a given episode with known re-
ward ri for each partial hypothesis pi, optimal stop-
ping means always to stop at the largest reward,
meaning that we can obtain the oracle action for
the training corpus. Given a sequence of reward
(ri, ...rK) , the optimal policy, π, chooses to stop
at partial pm if m = arg maxj∈(i,K] rj .

The Bellman equations become:
Qπ(si, stop) = ri (8)

Qπ(si, wait) = γm−irm (9)
and the oracle action at any s can be obtained by :
a∗i = wait if Q∗(si, stop) < Q∗(si, wait)
a∗i = stop if Q∗(si, stop) ≥ Q∗(si, wait)

This special property of optimal stopping prob-
lem allows us to use supervised learning meth-
ods directly modeling the optimal Q function, by
finding a mapping from the input state space, si,
into the Q-value for both actions: Q(si, stop)∗ and
Q(si, wait)∗. Further, inspired by the work of re-
inforcement learning as classification (Lagoudakis
and Parr, 2003), we decide to map directly from the
input state space into the action space: S → A∗,
using a Support Vector Machine (SVM).

Figure 3: An example showing the oracle actions
for one episode. 1 = stop and 0 = wait.

Advantages of solving this problem as a classi-
fication rather than a regression include: 1) it ex-
plicitly models sign(Q(si, stop)∗−Q(si, wait)∗),
which sufficiently determines the behavior of the
agent. 2) SVM is known as a state-of-the-art mod-
eler for the binary classification task, due to its abil-
ity to find the separating hyperplane in nonlinear
space.

6.3 Feature Construction

Since SVM requires a fixed input dimension size,
while the available features will continue to in-
crease as the turn-taking decider observes more par-
tial hypotheses, we adopt the functional idea used
by the openSMILE toolkit (Eyben et al., 2010).
There are three categories of features: immediate
feature, delta feature and long-term feature. Imme-
diate features come from the ASR and the NLU in
the latest partial hypothesis. Delta features are the
first-order derivate of immediate features with re-
spect to the previous observed feature. Long-term
features are global statistics associated with all the
observed features.

46



Immediate Features
Final pause duration Number of slots
Hypothesis stability Transitions of (no)parse
Frame number Number of words
Utterance duration Number of unparsed gap
Language model score Unparsed percentage
Word confidence Max of pause duration
Number of noun Mean of pause duration
Boundary LM score Var of pause duration
First level matched Hypothesis confidence

Long-term Functional Features
Mean Standard Deviation
Maximum Position of maximum
Minimum Position of miniumu

Table 2: List of immediate/long-term features

Table 2 shows that we have 18 immediate fea-
tures, 18 delta features and 18× 7 = 126 long-term
features. Then we apply F-score feature selection as
described in (Chen and Lin, 2006). The final feature
set contains 138 features.

7 Experiments and Results

We conducted a live study and a simulation study.
The live study evaluates the model’s end-of-turn de-
tection. The simulated study evaluates the active SB
behavior.

7.1 Live Study

The finite state machine was implemented in the
Interaction Manager of the CMU Lets Go system
that provides bus information in Pittsburgh (Raux
et al., 2005). We compared base system data from
November 1-30, 2014 (773 dialogs), to data from
our system from December 1-31, 2014 (565 di-
alogs).

The base system used the decision tree end-
of-turn detector described in (Raux and Eske-
nazi, 2008) and the active SB algorithm described
in (Ghigi et al., 2014). The action threshold (AT)
in the new system was set at 60% of the decision
tree output in the former system and the listening
threshold (LT) was empirically set at 1200ms.

7.2 Live Study Metrics

We observed that FCs result in several users’ utter-
ances having overlapping timestamps due to a built-
in 500ms padding before an utterances in Pocket-
Sphinx. This means that we consider two consecu-
tive utterances with a pause less than 500ms as one
utterance. Figure 4 shows that when the end-of-turn
detector produces an FC, the continued flow of user

speech instantiates a new user utterance which over-
laps with the previous one. In this example, utter-
ances 0 and 1 have overlaps while utterance 2 does
not. So users actually produce two utterances, while
the system thinks there are three due to FC.

Figure 4: Utterance fragments caused by FCs. This
example has UFR = 2

3 .

Thus, we can automatically calculate the FC rate
of every dialog, by counting the number of user ut-
terances with overlaps. We define an utterance frag-
ment ratio (UFR) that measures the FC rate in a di-
alog.

UFR = Number of user utterances with overlaps
Total number of user utterances

We also manually label task success (TS) of all
the dialogs. We define TS as: a dialog is success-
ful if and only if the system conducted a back-end
search for bus information with all required slots
correctly recognized. In summary, we use the fol-
lowing metrics to evaluate the new system:

1. Task success rate
2. Utterance fragment ratio (UFR)
3. Average number of system barge-in (ANSB)
4. Proportion of long user utterances interrupted

by system barge-in (PLUISB)
5. Average response delay (ARD)
6. Average user utterance duration over time

7.3 Live Study Results

Table 3 shows that the TS rate of the new system
is 7.5% higher than the previous system (p-value <
0.01). Table 4 shows that overall UFR decreased by
37.1%. UFR for successful and for failed dialogs
indicates that the UFR decreases more in failed di-
alogs than in successful ones. One explanation is
that failed dialogs usually have a noisier environ-
ment. The UFR reduction explains the increase in
success rate since UFRs are positively correlated
with TS rate, as reported in (Zhao and Eskenazi,
2015)

Table 5 shows that the SB algorithm was acti-
vated more often in the new system. This is because
the SB algorithm described in (Ghigi et al., 2014)
only activates for user utterances longer than 3 sec-
onds. FCs will therefore hinder the ability of this
algorithm to reliably measure user utterance dura-

47



Success Failed TS Rate P-value
New
System

271 294 48.0%

0.0096Old
System

321 452 41.5%

Table 3: Success rate between old and new systems.
P-value is obtained via Wald Test

UFR Overall Successful
dialog

Failed dia-
log

New
System

12.2% 9.2% 15.0%

Old
System

19.4% 12.5% 24.3%

Table 4: Breakdown into successful/failed dialogs

tion. This is an example of how reliable end-of-turn
detection can benefit other SDS modules. Table 5
also shows that the new system is 32.5% more re-
sponsive than the old system. We purposely set the
action threshold to 60% of the threshold in the old
system, which demonstrates that the new model can
have an response speed equals to action threshold
that is independent of the FC rate.

Metric Old System New System
ANSB 1.04 1.50
PLUISB 53.9% 77.8%
ARD (ms) 853.49 576.09

Table 5: Comparison of barge-in activation rate and
response delay

Figure 5 shows how average user utterance dura-
tion evolves in a dialog. Utterance duration is more
stable in the new system than in the old one. Two
possible explanations are: 1) since UFR is much
higher in the old system, the system is more likely
to cut in at the wrong time, possibly making users
abandon their normal turn-taking behavior and talk
over the system. 2) more frequent activation of the
SB algorithm entrains the users to produce more
concise utterances.
7.4 Simulation Study
This part of the experiment uses the DSTC corpus
training2 (643 dialogs) (Black et al., 2013). The
data was manually transcribed. The reported 1-best
word error rate (WER) is 58.2% (Williams et al.,
2013). This study focuses on all user responses
to:“Where are you leaving from?” and “Where are
you going?” which have 688 and 773 utterances re-
spectively.

An automatic script, based on the manual tran-
scription, labels the number of correct and incorrect

Figure 5: Average user utterance duration over the
index of user turns in a dialog.

slots (csi, icsi) for each partial hypothesis, pi. Also
from the training data, the expected number of turns
needed to obtain 1 slot, E[S], is 3.82. For simplic-
ity, E[S] is set to be 4. So the reward function dis-
cussed in Section 5 is: ri = −1 + 3csi − icsi.

After obtaining the reward value for each hypoth-
esis, the oracle action at each partial hypothesis is
calculated based on the procedure discussed in Sec-
tion 6.3 with γ = 1.

We set the SVM kernel as RBF kernel and use a
grid search to choose the best parameters for cost
and kernel width using 5-fold cross validation on
the training data (Hsu et al., 2003). The optimiza-
tion criterion is the F-measure.

7.5 Simulation Study Metrics

The evaluation metrics have two parts:
classification-related (precision and recall) and
dialog-related. Dialog related metrics are:

1. Accuracy of system barge-in
2. Average decrease in utterance duration com-

pared to no system barge-in
3. Percentage of no-parse utterance
4. Average CS per utterance
5. Average ICS per utterance
6. Average reward = 1/T

∑
i ri , where T is the

number of utterances in the test set.
The learned policy is compared to two reference

systems: the oracle and the baseline system. The or-
acle directly follows optimal policy obtained from
the ground-truth label. The baseline system always
waits for the last partial (no SB).

Furthermore, a simple smoothing algorithm is
applied to the SVM output for comparison. This
algorithm confirms the stop action after two consec-
utive stop outputs from the classifier. This increases
the classifier’s precision.

48



7.6 Simulation Study Results
10-fold cross validation was conducted on the two
datasets. Instead of using the SVM binary output,
we apply a global threshold of 0.4 on the SVM de-
cision function for output to achieve the best aver-
age reward. The threshold is determined based on
cross-validation on training data.

Table 6 shows that the SVM classifier can
achieve very high precision and high recall in pre-
dicting the correct action. The F-measure (after
smoothing) is 84.46% for departure question re-
sponses and 85.99% for arrival questions.

Precision Recall Precision
(smooth)

Recall
(smooth)

D 92.64%±
2.88

78.04%±
2.39

93.86%±
2.80

76.79%±
2.35

A 93.59%±
2.42

79.64%±
3.41

93.63%±
2.30

79.51%±
3.04

Table 6: Cross-validation precision and recall with
standard error for SVM. D = responses to departure
question, A = responses to arrival question.

Table 7 shows that learned policy increases the
average reward by 27.7% and 14.9% compared to
the baseline system for the departure and arrival re-
sponses respectively. We notice that the average
reward of the baseline arrival responses is signifi-
cantly higher. A possible reason is that by this sec-
ond question the users are adapting to the system.

The decrease in average utterance duration shows
some interesting results. For responses to both
questions, the oracle system utterance duration is
about 55% shorter than the baseline one. The
learned policy is also 45% shorter, which means
that at about the middle of a user utterance, the sys-
tem can already predict that the user either has ex-
pressed enough information or that the ASR is so
wrong that there is no point of continuing to listen.

Depature Arrival
Policy Average

reward
Average
duration
decrease

Average
reward

Average
duration
decrease

Baseline 0.795 0% 0.959 0%
Oracle 1.396 58.1% 1.430 55.7%
Learned 0.998 42.8% 1.089 47.6%
Learned
(smooth)

1.016 45.6% 1.102 46.2%

Table 7: Average reward and duration decrease for
baseline, oracle, SVM and smooth SVM system.

Table 8 expands our understanding of the oracle

and learned policy behaviors. We see that the ora-
cle produces a much higher percentage of no-parse
utterances in order to maximize the average reward,
which, at first, seems counter-intuitive. The reason
is that some utterances contain a large number of
incorrect slots at the end and the oracle chooses to
barge in at the beginning of the utterance to avoid
the large negative reward for waiting until the end.
This is the expected behavior discussed in Section
4. The learned policy is more conservative in pro-
ducing no-parse utterances because it cannot cheat
like the oracle to access future information and
know that all future hypotheses will contain only in-
correct information. However, although the learned
policy only has access to historical information, it
manages to predict future return by increasing CS
and reducing ICS compared to the baseline.

Policy No-parse
percent

Average
CS

Average
ICS

Baseline 6.86% 0.765 0.499
Oracle 14.71% 0.865 0.196
Learned 8.14% 0.796 0.389
Learned
(smooth)

8.71% 0.789 0.360

Table 8: No parse percentages and average CS and
ICS for responses to the departure question.

8 Conclusions and Future Directions

This paper describes a novel turn-taking model that
unifies the traditional rigid turn-taking model with
incremental dialog processing. It also illustrates a
systematic procedure of constructing a cost model
and teaching a dialog system to actively grab the
conversation floor in order to improve system ro-
bustness. The turn-taking model was tested for
end-of-turn detection and active SB. The proposed
model has shown superior performance in reducing
FC rate and response delay. Also, the proposed SB
algorithm has shown promise in increasing the av-
erage reward in user responses.

Future studies will include constructing a more
comprehensive cost model that not only takes into
account of CS/ICS, but also includes other fac-
tors such as conversational behavior. Further, since
E[S] will decrease after applying the learned policy,
it invalidates the previous reward function. Future
work should investigate how the change inE[S] im-
pacts the optimality of the policy. Also, we will add
more complex actions to the system such as back
channeling, clarifications etc.

49



References
Michaela Atterer, Timo Baumann, and David Schlangen.

2008. Towards incremental end-of-utterance detec-
tion in dialogue systems. Proceedings of the 22nd
International Conference on Computational Linguis-
tics.

Alan Black, Maxine Eskenazi, Milica Gasic, Helen
Hastie, KAIST Kee-Eung Kim, Korea Ian Lane,
Sungjin Lee, NICT Teruhisa Misu, Japan Olivier
Pietquin, France SUPELEC, et al. 2013. Dialog state
tracking challenge. http://research.microsoft.com/en-
us/events/dstc/.

Dan Bohus and Alexander I Rudnicky. 2009. The
ravenclaw dialog management framework: Architec-
ture and systems. Computer Speech & Language,
23(3):332–361.

Catherine Breslin, Milica Gasic, Matthew Henderson,
Dongho Kim, Martin Szummer, Blaise Thomson, Pir-
ros Tsiakoulis, and Steve Young. 2013. Continu-
ous asr for flexible incremental dialogue. In Acous-
tics, Speech and Signal Processing (ICASSP), 2013
IEEE International Conference on, pages 8362–8366.
IEEE.

Yi-Wei Chen and Chih-Jen Lin. 2006. Combining svms
with various feature selection strategies. In Feature
extraction, pages 315–324. Springer, Berlin Heidel-
berg.

David DeVault, Kenji Sagae, and David Traum. 2009.
Can i finish?: learning when to respond to incremental
interpretation results in interactive dialogue. In Pro-
ceedings of the SIGDIAL 2009 Conference: The 10th
Annual Meeting of the Special Interest Group on Dis-
course and Dialogue, pages 11–20. Association for
Computational Linguistics.

Florian Eyben, Martin Wöllmer, and Björn Schuller.
2010. Opensmile: the munich versatile and fast open-
source audio feature extractor. In Proceedings of the
international conference on Multimedia, pages 1459–
1462. ACM.

Thomas S Ferguson. 2012. Optimal stopping and appli-
cations. University of California, Los Angeles.

Fabrizio Ghigi, Maxine Eskenazi, M Ines Torres, and
Sungjin Lee. 2014. Incremental dialog processing
in a task-oriented dialog. In Fifteenth Annual Con-
ference of the International Speech Communication
Association.

Agustin Gravano. 2009. Turn-taking and affirmative
cue words in task-oriented dialogue. Ph.D. thesis.

Chih-Wei Hsu, Chih-Chung Chang, Chih-Jen Lin, et al.
2003. A practical guide to support vector classifica-
tion. Technical report, Department of Computer Sci-
ence and Information Engineering, National Taiwan
University.

Dongho Kim, Catherine Breslin, Pirros Tsiakoulis, Mil-
ica Gašic, Matthew Henderson, and Steve Young.
2014. Inverse reinforcement learning for micro-turn
management. In Proceedings of the Annual Confer-
ence of the International Speech Communication As-
sociation, INTERSPEECH, pages 328–332. Interna-
tional Speech and Communication Association.

Michail Lagoudakis and Ronald Parr. 2003. Reinforce-
ment learning as classification: Leveraging modern
classifiers. In ICML, volume 3, pages 424–431.

Antoine Raux and Maxine Eskenazi. 2008. Optimiz-
ing endpointing thresholds using dialogue features in
a spoken dialogue system. In Proceedings of the 9th
SIGdial Workshop on Discourse and Dialogue, pages
1–10. Association for Computational Linguistics.

Antoine Raux and Maxine Eskenazi. 2009. A finite-
state turn-taking model for spoken dialog systems.
In Proceedings of Human Language Technologies:
The 2009 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 629–637. Association for Computa-
tional Linguistics.

Antoine Raux, Brian Langner, Dan Bohus, Alan W
Black, and Maxine Eskenazi. 2005. Lets go public!
taking a spoken dialog system to the real world. In in
Proc. of Interspeech 2005.

Ethan Selfridge, Iker Arizmendi, Peter Heeman, and Ja-
son Williams. 2013. Continuously predicting and
processing barge-in during a live spoken dialogue
task. In Proceedings of the SIGDIAL 2013 Confer-
ence.

Richard S Sutton and Andrew G Barto. 1998. Introduc-
tion to reinforcement learning. MIT Press.

Jason Williams, Antoine Raux, Deepak Ramachandran,
and Alan Black. 2013. The dialog state tracking chal-
lenge. In Proceedings of the SIGDIAL 2013 Confer-
ence, pages 404–413.

Tiancheng Zhao and Maxine Eskenazi. 2015. Human-
system turn taking analysis for the let’s go bus infor-
mation system. Pittsburgh, May. The Meeting of the
Acoustical Society of America.

50


