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Abstract

Named Entity Recognition plays a ma-
jor role in several downstream applications
in NLP. Though this task has been heav-
ily studied in formal monolingual texts
and also noisy texts like Twitter data, it
is still an emerging task in code-switched
(CS) content on social media. This paper
describes our participation in the shared
task of NER on code-switched data for
Spanglish (Spanish + English) and Ara-
bish (Arabic + English). In this pa-
per we describe models that intuitively
developed from the data for the shared
task Named Entity Recognition on Code-
switched Data. Owing to the sparse and
non-linear relationships between words in
Twitter data, we explored neural architec-
tures that are capable of non-linearities
fairly well. In specific, we trained char-
acter level models and word level mod-
els based on Bidirectional LSTMs (Bi-
LSTMs) to perform sequential tagging.
We trained multiple models to identify
nominal mentions and subsequently used
this information to predict the labels of
named entity in a sequence. Our best
model is a character level model along
with word level pre-trained multilingual
embeddings that gave an F-score of 56.72
in Spanglish and a word level model that
gave an F-score of 65.02 in Arabish on the
test data.

1 Introduction

Named Entity Recognition (NER) is a challeng-
ing and one of the most fundamental tasks in
NLP. NER not only has stand alone applications
including search and retrieval but also aids as a
prior step for downstream NLP applications like
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question answering and dialog state tracking. It
has been fairly researched in the community us-
ing both supervised (Azpeitia et al., 2014) and
semi-supervised (Nadeau, 2007), (Nadeau, 2007)
techniques. Moreover, this has also been studied
on multiple languages including English (Lample
et al., 2016), Spanish (Zea et al., 2016) and Arabic
(Shaalan, 2014). The task is projected into an even
complex space when there are words from multi-
ple languages interleaved within and between sen-
tences. This phenomenon is commonly known as
code switching (CS).

CS is typically used in informal or semi-formal
communication and social media stages an acces-
sible platform to interact in this manner. This also
comes with additional nuances observed in social
media text that can be broadly characterized as
noisy text with spelling errors and ungrammati-
cal constructions. Often, the shorthand represen-
tations observed in this data are non-standardized
and are one to many functions of standard spelling
to a non-standard spelling. This makes this task
significantly different from NER on formal mono-
lingual texts and the techniques are not directly
transferable to the domain of CS text. Super-
vised techniques to address the task in the do-
main of noisy texts such as Twitter have been ex-
plored (Ritter et al., 2011), (Tran et al., 2017). We
leverage these techniques in order to deal with the
sparse distribution of entities.

In this paper, we discuss the techniques used
from the participation of our team in the shared
task of Named Entity Recognition of Code-
switched Data (Aguilar et al., 2018). We model
the problem at both word and character levels
along with attempting attention mechanism. We
discuss the intuitions from the data that motivate
the models. We have also explored ensembling
multiple models that cater to identification of the
named entity and labeling it with a tag. Our best
performing system is the combination of character
and word level representations (using pre-trained
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Spanglish Arabish
Criteria Train Dev Test Train Dev Test
# Tweets 41,024 832 15,634 10,091 1,121 1,110
# Unique Words 57,892 2,559 27,756 44,024 9,800 9,316
# Unique NEs 4,788 156 - 4,435 1,107 -
OOV with Train (%) 0 18.67 52.16 0 30.76 40.79
OOV of NEs with Train (%) 0 62.82 - 0 25.92 -
OOV with MUSE (%) 64.43 20.94 57.23 99.74 99.82 97.44
OOV of NEs with MUSE (%) 17.41 5.76 - 97.74 99.90 -

Table 1: Data Analysis

multilingual embeddings) in a Bi-LSTM that re-
sulted in an F1 score of 56.72 in Spanglish and a
word level Bi-LSTM that gave an F1 of 65.02 in
Arabish.

2 Related Work

NER is a fairly well researched topic and a lot
of literature (Nadeau and Sekine, 2007) is avail-
able with regard to this. In this section we focus
and present a comprehensive overview of the tech-
niques that lay motivations to our models and ex-
periments.

While traditionally hand crafted features are re-
liably used (Carreras et al., 2002), neural mod-
els have recently been emerging as effective tech-
niques to perform the task. This is owed to the sub-
stantial reduction of manual expense in building
hand-crafted features for each language. Qi et al.
(2009) leverages unannotated sentences to im-
prove supervised classification tasks using Word-
Class Distribution Learning. Passos et al. (2014)
were among the first to use a neural network
to learn word embeddings that leverage informa-
tion from related lexicon to perform NER. Col-
lobert et al. (2011) used convolution for embed-
dings with a CRF layer to attain alongside bench-
marking several NLP tasks including NER. Lam-
ple et al. (2016) achieves the state-of-the-art per-
formance on 4 languages by training models based
on BiLSTM and CRF by using word represen-
tations from unannotated text and character rep-
resentations from annotated text. This work has
been extended to transfer settings by Bharadwaj
et al. (2016) to multiple languages by representing
word sequences in IPA. Huang et al. (2015) use a
BiLSTM with a CRF layer in addition to making
use of explicit spelling and context features along
with word embeddings.

Aguilar et al. (2017) use a character level CNN
followed by a word level Bi-LSTM in a multi-task
learning setting and also emphasize the impor-
tance of gazetteer lists for the task. Multilingual
NER on informal text in Twitter was also stud-
ied by Etter et al. (2013). Zirikly and Diab (2015)

explore the impact of embeddings and representa-
tions of words without gazetteer features on NER
for social media text in Arabic. Luo et al. (2017)
have also shown that attention based Bi-LSTM
with additional architecture achieves higher per-
formance than other state-of-the-art techniques to
recognize chemical named entities which lean to
low resource settings. We hypothesize that CS
also belongs to low resource settings and explore
the impact of attention. The task of NER becomes
harder especially in low resource settings (Tsai
et al., 2017), which is similar to CS setting.

3 Data Analysis

Code-switching is more prominently observed in
informal communication which is observed in so-
cial media platforms. Hence the organizers of the
shared task (Aguilar et al., 2018) have provided
us with English-Spanish (ENG-SPA) and Arabic-
English (MSA-EGY) tweets. In this section, we
present an overlap analysis of the tweets from the
train and the development set that lead to intuitions
of model performance.

An important characteristic of the nature of so-
cial media data is that the named entities are very
sparse. While table 1 shows that the training
data is comprised of 8.27% of unique named en-
tities, we observe that 2.93% of overall surface
form distribution belong to named entities. This
number is significantly smaller than the number
of named entities found in formal texts tradition-
ally used for training this task. For instance, a
widely standardized and accepted dataset that is
proposed by Tjong Kim Sang and De Meulder
(2003) for monolingual English contains 15.04%
tagged named entities. This makes the task harder
in social media settings.

In order to analyze the distribution of named en-
tities across the different splits in the data, we look
at the out of vocabulary (OOV) percentages with
respect to different sources. This is performed to
estimate the significance of that particular source
with respect to the task at hand. There is quite a
high OOV percentage of named entities from the
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training data.
In Section 4 we elaborate on leveraging pre-

trained multilingual embeddings MUSE (Multi-
lingual Unsupervised or Supervised word Em-
beddings) (Conneau et al., 2017) which contain
multilingual embeddings based on Fast Text (Bo-
janowski et al., 2016). Table 1 presents these
statistics which helps provide intuitions on the ap-
proach that needs to be taken for this data. For
Spanglish data, there are 62.82% of named enti-
ties that are not present in training data and 5.76%
that are not present in the development data.

4 Models and Intuitions

Based on the three main observations in Section
3, we frame the following intuitions to build our
model architectures.

• Sparsity of named entities: Training a model
that classifies nominal entities from their coun-
terparts and using this information to tag them.
• High OOV with training data:

– Character level models that are capable of
capturing sequential sub-word level informa-
tion

– External knowledge sources like gazetteer
lists and/or pre-trained word embeddings
such as MUSE.

4.1 Model Architecture
The first architecture is a simple bidirectional
LSTM (Bi-LSTM) at word level that captures se-
quential context information. In addition to this,
the second model also needs to learn sub-word
level information that is based on characters of
words. Soft combinations of character sequences
act as a proxy to the valid sequences of phonemes
allowed by a sentence. We have not used phonetic
features directly as performed by Bharadwaj et al.
(2016) due to the noisy nature of the text with mul-
tiple instances of shorthand notations. However,
we believe that this is an interesting direction and
plan to explore this beyond the scope of this paper.

Recurrent Neural Networks (RNNs) model se-
quential data and are capable of transforming the
current sequence into latent space. In our case, the
former is a sequence of words and the latter is a
sequence of Named Entity tags. While in theory,
RNNs are capable of learning dependencies rang-
ing over long distances, in practice this is hindered
due to vanishing or exploding gradients. Alterna-
tively, a variant of this model, LSTM (Gers et al.,
1999) is used to model the influence of the longer
range dependencies since it maintains a memory

cell. At this point, we have a couple of options
to feed into this network. The first is to directly
feed the words into a Bi-LSTM and the second is
to include character level information as well.

In each word, each of the characters has a 50
dimensional embedding (let it be e). We pass it
through an LSTM to get the latent representation
z of the word, over which a tanh non-linearity is
applied. This character level modeling of the word
is concatenated with the 200 dimensional word
lookup embeddings to form the final word level
representation. These final modified word embed-
dings are fed into a Bi-LSTM which computes a
hidden left context representation

−→
ht and hidden

right context representation
←−
ht which are concate-

nated. Finally, this is fed into a fully connected
layer with a cross entropy loss function to predict
the sequence of tags. All the weights in the model
are initialized with Xavier distribution. The model
is trained with an Adam optimizer for minimum
validation loss for 10 epochs.

We then extended the model to explore the ef-
fect of attention over the Bi-LSTM model but it
did not show any improvements over the base
model.
Classifying Nominalization:

To deal with the problem of sparse distribu-
tion of named entities, we model the problem in 2
phases. The first phase is a binary classification of
named entities in a sequence of words. The sec-
ond phase is to add additional features based on
the prediction of the first network to the embed-
dings in the second network to label the tags. We
intentionally used the same network architecture
excepting for the final transformation layer to pre-
dict the tags. This is because we intend to pose this
as a Multi Task Learning (MTL) problem (Col-
lobert and Weston, 2008), where we can share the
bottom layers so the network can generalize bet-
ter with sparse distribution of tags. This idea is
similar to the work by Aguilar et al. (2017) but we
restrict to predicting the named entities since we
do not have POS information of the words. We
present the results of hierarchical phase formula-
tion of this method in Table 2 and leave the end
to end MTL training (where the first task is pre-
dicting whether it is an NE and the second task is
predicting the tag of NE which are jointly trained)
for future work.
Pre-trained multilingual Embeddings: Since
the data is too sparse, we leveraged pre-trained
multilingual word embeddings that are trained
based on fastText embeddings (Conneau et al.,
2017) and are aligned across multiple languages.
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Spanglish Arabish
Models/Metrics Entity Surface Form Entity Surface Form
Word Bi-LSTM 52.34 51.34 73.05 60.80
Char Bi-LSTM + Word Bi-LSTM 50.22 50.95 73.95 61.38
Pre-trained MUSE + Char Bi-LSTM + Word Bi-LSTM 54.47 53.27 64.38 47.23
Attention + Word Bi-LSTM 36.50 35.19 68.11 53.86
NE v non-NE + Char Bi-LSTM + Word Bi-LSTM 49.48 49.61 70.70 10.87

Table 2: F scores of different models motivated by intuitions from the data

This boosted the F score by 2 points which is com-
paratively better performing model in our space of
models.

5 Results and Discussion

We have tried different models based on the intu-
itions from this domain of data that are explained
in Section 4. The F1 scores of these different ar-
chitectures are presented in table 2 for both Span-
glish and Arabish. As it is observed from the data,
the model that performed best is the character level
model with pre-trained MUSE embeddings (Con-
neau et al., 2017) and a word level Bi-LSTM for
Spanglish data. However, this is not the case with
Arabish data where a simple word level Bi-LSTM
performed better. This can be explained from Ta-
ble 1 as there are 99.82% of vocabulary that is not
present in the MUSE embeddings.

Based on automatic as well as a brief manual
analysis of the entity wise scores on the develop-
ment set, we identify that our models do not per-
form very well on TITLE entities. One interesting
challenge for this category is that the word level
composition of the entities comprise of several
common terms. Examples of this include ‘High
School Musical’, ‘Oh My God’ etc., which are
very hard to be identified as named entities. This
category can co-occur in similar contexts of other
named entities. For example ‘Keep calm and en-
joy your GYPSY SUMMER’, where ‘GYPSY SUM-
MER’ is a named entity (which could have easily
been ‘drink’).

We annotated the development data to under-
stand and motivate the need to build an NER
for CS contexts as opposed to using monolingual
NERs. The annotation is done in the perspective of
whether the words belong to one of the following 4
categories: English, Spanish, Mixed and Ambigu-
ous, which are 156, 54, 4 and 5 respectively. This
might give a naive impression that an NER trained
on English is sufficient to perform reasonably well
for this data as well. This in in contrary to the re-
sults that Stanford NER (Finkel et al., 2005) per-
formed on this data by giving an Entity F1 of 10.89
and Surface F1 of 11.96. Hence we need to train
the models explicitly for the switched language by

treating it as a new language or by transferring
learning from both the individual languages.

As described in Section 4, we experimented
with combining multiple neural models perform-
ing different tasks (predicting a binary named en-
tity or not, and labeling the sequence). This model
did not improve the performance on development
set. The binary model predicts 42 named entities
correctly that the best model is unable to capture
in comparison to 16 by the character model. How-
ever, the binary model gets a lot of false positives
in the sense that 39 tokens are predicted as named
entities incorrectly while this number for the em-
bedding model is 7. The possible solution to lever-
age this model more accurately is either thresh-
olding the softmax scores of the binary model to
only get the predictions of named entities with
high confidence or perform MTL where weights
are updated by the loss from both the tasks.

The huge gap between entity and surface form
for the Arabish data that is observed by the char-
acter model along with the binary features (based
on the predictions of whether it is an NE or not),
is due to a large number of invalid sequences.

Among the true named entities that are wrongly
predicted in Spanglish data, 154 of them are occur-
ring in training data. This implies that the context
information can be leveraged better to improve the
models since the contexts in which these entities
are embedded are very broad.

6 Conclusion and Future Work

Developing intuitions from the data to build mod-
els is necessary for domains that do not have
other NLP tools such POS taggers, parsers etc,.
Based on these intuitions, a character level model
along with pre-trained multilingual word embed-
dings from MUSE with a Bi-LSTM has given an
F score of 56.72 on Spanglish and word level Bi-
LSTM that gave an F score of 65.02 on Arabish.
We believe that there is a lot of potential in explor-
ing the attention model in synergy with predicting
whether a term is named entity or not as a Multi
Task Learning problem.
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Language/Metrics Event Group Location Org Other Person Product Time Title
Entity 0.00 33.33 57.14 30.77 0.00 69.57 60.00 28.57 0.00

Spanglish Surface Form 0.00 33.33 57.14 36.36 0.00 68.29 55.56 33.33 0.00
Entity 51.85 71.73 74.97 57.61 68.75 81.89 64.22 66.67 56.74

Arabish Surface Form 42.11 58.43 57.71 48.73 42.86 71.55 53.57 59.70 52.76

Table 3: F scores of best models for Spanglish and Arabish
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7 Supplementary Information

The Table 3 shows category wise F scores for
the experiments that gave the best results for
Spanglish (the model is trained using pre-trained
MUSE embeddings with a character level Bi-
LSTM and a word level Bi-LSTM) and Arabish (a
simple word level Bi-LSTM), which are discussed
in detail in the paper.


