
CHATR: a generic speech synthesis system

Alan W Black and Paul Taylor

ATR Interpreting Telecommunications Laboratories

2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02, JAPAN

awb@itl.atr.co.jp or pault@cogsci.ed.ac.uk

Abstract

This paper describes a generic speech synthesis sys-

tem called CHATR which is being developed at

ATR. CHATR is designed in a modular way, mod-

ule parameters and even which modules are actu-

ally used may be set and selected at run-time. Al-

though some interdependencies exist between mod-

ules, CHATR o�ers a useful research tool in which

functionally equivalent modules may be easily com-

pared. It also acts as a simple system for those less

interested in the internals of speech synthesis but

just wish their computer to talk.

Topic: speech synthesis, generic systems.

Introduction

There are many requirements for a speech syn-

thesis system, in addition to high quality natural

sounding speech output, the system should be ex-

ible and not simply be hard-wired. For example it

should at least be the case that new words can be

added to the lexicon. Other more general changes

should also be possible e.g. speci�cation of new in-

tonational tunes, varying of output voices, choice of

phoneme set to be used (e.g. if a di�erent lexicon is

to be used), and even the choice of language being

spoken. A researcher requires access to internal

structures, ability to mix and match techniques,

graphical display of utterances and compatibility

with other systems. But, those who are uninter-

ested in the internals of speech synthesis, just want

their computer to talk. To them the requirements

of a synthesis system are di�erent, although they

still want a degree of control over synthesis, real-

time production of speech, machine independence,

and ease of use are the factors that are most impor-

tant. As a well-engineered system CHATR meets

these requirements.

Because ATR's main speech project is in

the area of speech translation systems, input to

CHATR can be much richer than simple plain text.

During translation, utterances are represented in

a rich structure including syntactic, semantic and

speech act information. Unlike a conventional text-

to-speech system which needs to reconstruct this

information from raw text, CHATR can use this ex-

plicit information directly and hence produce more

accurate synthesis. Although CHATR does also

support text-to-speech, current development has

concentrated on the use of labelled input rather

than raw text.

CHATR is designed in a modular way so that

functionally equivalent modules may exist within

the system. Flow of control may be selected at

run time, without recompilation. Within a speech

synthesis research environment this is useful as it

allows close comparison of components to identify

di�erences. Thus equivalentmodules may be tested

within exactly the same environment interactively.

For example, CHATR currently supports a number

of di�erent low-level (waveform) synthesizers. This

process is quite independent of intonation or du-

ration modules. CHATR's modularity allows syn-

thesis of exactly same utterance through di�erent

waveform synthesizers.

The next section discusses the internal repre-

sentation of utterances within CHATR. Then the

overall structure of the system is discussed with

some typical modules described. Finally the cur-

rent con�guration of CHATR is described detailing

its actual modules. Also some discussion is given

about the shortcomings of the system and how we

would like to see it improved.

Utterance representation

In conventional speech synthesis systems (such as

MITalk [2]) a \pipeline" architecture is often used.

Information is passed through a pipeline of mod-

ules. Each module de�nes what information is

passed on to succeeding modules. But, if an earlier

component does not pass on information which is

later found to be needed down stream, all interme-

diate modules will need to be re-written to pass on

that information. In contrast, CHATR uses a sin-

gle \blackboard" representation for all aspects of

an utterance. All modules have access to all parts.

Although global, more than one utterance object

may exist in the system at anytime.

There are e�ectively two types of module which

act on utterance objects. Synthesis modules will

typically modify the contents of an utterance based

on its current content (and other parameters).

Other modules also exist which are more general

in nature, such as graphically displaying an utter-

ance, saving its contents or playing the synthesized

waveform.

1

An utterance object consists of a number of

streams. Each stream consists of an ordered list

of cells. The number of streams can easily be

changed in CHATR and not all streams need exist

in all utterances. Typical streams are: words, sylla-

bles, and phonemes. Relations may be set between

stream cells and so, for example, it is possible to

�nd which word a syllable is in. The following di-

agram shows a typical stream structure for part of

an utterance object.

Word

Syllable

Phoneme

�

�

	

chatter

�

�

	

stressed

�

�

	

unstressed

�

�

	

ch

�

�

	

a

�

�

	

t

�

�

	

@

�

�

	

#

-�

-� -� -� -�

�

	

I

R

�

	

I

R

�

	

I

R

�

�

@

@

�

�

@

@

�

�

@

@

Each stream cell is linked to its preceding and suc-

ceeding cells. Cells contain all the appropriate in-

formation for that type of stream. For example our

phoneme cell ultimately contains a name, phonetic

features, a duration etc.

Note that although there will be hierarchical

structure between streams this is not mandatory

(e.g. the silence `#' phoneme above is not part of

any syllable or word). For example in a treatment

of intonation implemented within CHATR (based

on [6]) the cells in the intonation stream are linked

to syllables but no direct hierarchical relationship

exists between intonation cells and phonemes.

The existing streams could even be ignored and

others introduced if the current ones are inappro-

priate to some synthesis task. For example a dif-

ferent intonation model may require quite di�er-

ent streams from the Taylor model currently im-

plemented. Streams must be de�ned at compile

time but may be selected per utterance at synthe-

sis time|that is, de�ning many di�erent streams

does not impinge on the size or e�ciency of the

utterance structures built.

Levels of input

CHATR o�ers input an many levels. At the most

abstract it can accept linguistic descriptions of ut-

terances fromwhich it can generate prosodic phras-

ing and intonational tune through a rule driven pro-

cess (described in [3]). Alternatively, input may ex-

plicitly include prosodic phrasing and intonational

features specifying tune. This second level allows

much more explicit control over phrasing and in-

tonation. A third level allows even more degree of

control specifying individual phonemes, durations

and F

0

target values (or a slightly higher symbolic

description of F

0

). At the lowest level, waveforms

themselves can be speci�ed allowing CHATR to

generate any arbitrary sound. These di�ering lev-

els of input allow a user of CHATR to specify the

form of an utterance in as much detail as is desired.

Multiple levels of input are useful in synthesis

research. For example, naturally occurring dura-

tions and/or pitch may be explicitly speci�ed in

the input, allowing exact control over parts of the

synthesis, thus emphasizing the other parts under

investigation.

There is currently a �xed number of input

types. Although new levels can easily be added,

it would be better if an utterance may be speci�ed

at any level of precision in any stream and synthe-

sis modules could be used to �ll in missing parts.

This has not yet been added to the system but some

discussion of this is given below.

Overall structure

A command language based on Lisp is provided so

the user can execute commands such as synthesis,

play, set intonation statistics, de�ne a phoneme set

etc. The Lisp, although a full language, is designed

merely for control rather than encoding speech syn-

thesis algorithms. Lisp list structures are used to

represent most of the ASCII data in the system

(e.g. duration statistics, lexicons, phoneme set def-

initions etc.). This means that data can easily be

changed and (re)loaded into the system. As all

these �les are s-expressions no new �le i/o routines

are required.

Flow of control, i.e. which modules are called,

can also be speci�ed in Lisp, thus, functionally

equivalent modules may be selected between inter-

actively at run time.

The system consists of one large executable

which includes a number of di�erent modules.

Modules may be written in C or C++ (or in

fact any other language if an interface to the

stream and utterance structures is provided for

that language). It may have been possible to

write the whole CHATR system in Lisp (or Pro-

log or some other language designed for symbolic

manipulation). This however was speci�cally de-

cided against as in addition to the symbolic aspect

of CHATR we also wish the signal processing as-

pects of speech synthesis to be e�cient (and many

such algorithms already exist in C). Although most

Lisp systems support C interfaces they are typically

non-standard and portability of the whole system

was an important criterion.

Modules

A number of modules exist in the system but not

all are used for the synthesis of all utterances. Ut-

terance modules are those functions that are given

2

a single utterance object as an argument. Typically

they will access a number of streams and create (or

modify) another stream. Selection of which mod-

ules get called is based on, the input type of the

utterance, global options and the speci�ed path.

Let us look at one typical module: the lexi-

con module. Our current lexicon module allows the

construction and use of lexicons whose entries spec-

ify syllables, stress and phonemes for a given word

(which is identi�ed by a character string plus op-

tional features). When the lexicon module is called

the desired words are already set up in the word

stream. The lexicon module looks up each word in

the lexicon and creates the syllable and phoneme

streams with the information found in the lexical

entry (words not found can optionally be treated

by letter-to-sound rules, ignored or cause synthesis

to abort).

Some modules o�er choices between function-

ally equivalent modules by simply setting global pa-

rameters. For example we have two modules which

predict durations for phonemes. One is based on

the Klatt duration rules in [2, Ch. 9], while the

second is based on Campbell's work [4]. Selection

between them is simply by a command of the form

chatr> (Parameter Duration Method KLATT)

Another section where selection of equivalent mod-

ules is common is the low-level synthesis meth-

ods. We wish to allow comparison of di�erent

forms of waveform synthesis based on the same

utterance. Currently, CHATR o�ers a number of

synthesis methods: Klatt formant synthesis, LPC

based diphone synthesis, and a number of concate-

native synthesis methods (each with its own in-

ternal options to choose between di�erent unit se-

lection strategies). The same utterance (with the

same segments, durations and intonation) can be

resynthesized with a di�erent waveform generation

module allowing direct comparison between meth-

ods. New low-level synthesis methods can be easily

added taking an utterance structure as a parameter

and generating a waveform on return.

Certain other modules in CHATR are not di-

rectly part of the synthesis process. Audio out-

put is provided for through a general module that

plays the waveform stream of an utterance. We

provide a number of mechanisms to do this. We

wish CHATR to be independent of hardware so

we o�er support for audio servers. These are net-

work transparent systems that allow access to au-

dio hardware. In the same paradigm as X windows

for graphics, audio servers o�er a uniform access

method for various audio devices such that wave-

forms (which internally described their encoding,

byte order and sampling frequency) can be easily

be played. We also o�er command driven play rou-

tines to ensure CHATR will work on any machine

with audio output.

Similarly a display module is o�ered that

can graphically display an utterance's waveform,

phonemes, words, syllables, intonation etc. Rather

than incorporate a full graphical display mecha-

nism in CHATR itself we o�er interfaces to other

systems with graphics capability. Currently we

support two systems: Entropic's waves+ system

and a free-software speech graphics package.

Example synthesis

As stated above CHATR o�ers many levels of syn-

thesis but here we will discuss one particular con-

�guration. One of the uses CHATR is put to is in a

speech translation system. The translation part of

the system generates syntactic and semantic trees

(represented as feature structures) of the utterance

to be spoken. This is used as the input to one

of CHATR's input modes. The following diagram

sketches the information ow

STREAMS

SPhrase (f-structure)

PhonoWord

(others)

Segment

Waveform

MODULES

HLP

Lexicon Duration Intonation

etc.

Synthesis

Methods

X

X

Xz

�

�

�9

H

Hj

�

��

H

Hj

�

��

Speci�cally the input speci�es speech act informa-

tion and topic/focus information. A rule driven

system translates this input to a lower level form.

Prosodic phrasing is generated from syntactic

structure and special features in the input. Into-

nation tune is generated based on speech act and

topic markers. The result, held in the PhonoWord

stream is then passed to lower levels. Words are

looked up �nding their syllable structure and de-

fault pronunciation. An intonation module gener-

ates F

0

target points based on the generated into-

nation features (and speaker speci�c intonation pa-

rameters). A duration module generates phoneme

durations based on phoneme context and intona-

tional features. All this low-level information is

brought together in the segment stream. Depend-

ing on selection, one low-level synthesis module is

then called to generate a waveform based on the

information in the segment stream.

Using parameter setting to select the form of

synthesis required means that CHATR can easily

be used for multi-speaker synthesis, and also we

hope for multi-language synthesis.

3

Implementation

CHATR is written in a mixture of ANSI C and

C++. The core architecture is written in C, but

perhaps C++ would be more suitable as the core

objects (utterances and streams) �t well into the

object-oriented paradigm. Other modules are writ-

ten in C or C++ for reasons related to history as

well as appropriateness. The Lisp command sys-

tem is in fact a small Scheme interpreter written

specially for CHATR. An interactive command line

interface o�ers command line editing, history and

completion for commands, their arguments, vari-

ables and �le names. This interface makes the sys-

tem signi�cantly easier to use, though CHATRmay

also be used in batch mode.

The system runs on a number of di�erent ar-

chitectures (including those with di�erent byte or-

der) including Sun SPARCs, HPs, DECstations

and 386BSD. It should port to any Unix system

with an ANSI C and C++ compiler.

Discussion

One enhancement to the system currently being

discussed is a much more formal de�nition of mod-

ules. A module has prerequisites and provides some

result. It should be possible to explicitly declare

these so that a module will only be invoked when

the necessary prerequisites are met.

A much clearer way of dumping an utterance

in a form which can be easily reloaded is also re-

quired. As we wish to allow CHATR to interface

with other existing speech synthesis systems this

may involve communication with a completely sep-

arate program. Being able to dump the full utter-

ance structure and convert it to some alternative

form for another program to operate on and then

convert it back, reload and continue is something

that would make CHATR much more useful in co-

operating with other synthesis programs.

Complete freedom of development can some-

times be too general. Although as a system,

CHATR does not restrict how modules interact, if

we are to be able to compare similar sub-systems

it is necessary that those sub-systems act on the

same data. Hence most of our low-level synthe-

sis methods actually work from the information in

the segment stream. That is they take exactly the

same input. Even when existing synthesizers are in-

tegrated into CHATR we encourage use of the seg-

ment stream as a common intermediate stage be-

tween high-level synthesis and low-level waveform

generation.

Other laboratories are also aware of the prob-

lems of multiple synthesizers and require a common

environment for their development. COMPOST [1]

is one such system. Unlike CHATR it introduces a

new language for high-level synthesis speci�cation

but like CHATR it o�ers a choice of low-level syn-

thesizers that can be selected for each utterance.

CHATR's currently implemented features in-

clude: a well de�ned architecture, multiple types

of input, choice of waveform synthesis methods, pa-

rameterized intonation features, two duration mod-

ules, abstract phoneme sets, a text-to-speech mod-

ule, graphical displays and an utterance object

inspector. Current expansion includes improving

unit selection for concatenative synthesis and inte-

grating �-TALK ([5]) a Japanese non-uniform unit

concatenative synthesis system, making CHATR

into a multi-language synthesis system.

Thus CHATR may be used at many levels.

First, simply as a black box speech synthesizer.

Simple control of voice is possible and the text-

to-speech component is adequate for many pur-

poses. At a deeper level, CHATR can be used in-

teractively, allowing experimentation with intona-

tional features and rules, resynthsizing existing ut-

terances with modi�ed durations and pitch, build-

ing new unit databases, all without modi�cation of

C sources. At the deepest level CHATR may be

used to develop new synthesis algorithms: unit se-

lection strategies, new intonation modules etc, may

easily be added, building cleanly on the existing ar-

chitecture. In summary CHATR goes a fair way to

meet our original criteria.

Acknowledgements: The authors wish to acknowl-

edge the help and comments by Nick Campbell and

Norio Higuchi and the members of Department 2.

References

[1] M. Alissali and G. Bailly. COMPOST: a

client-server model for applications using text-

to-speech systems. In Proceedings of EU-

ROSPEECH '93, volume 3, pp 2095{2098,

1993.

[2] J. Allen, M. Hunnicut, and K. Klatt. Text-to-

speech: The MITalk system. Cambridge Uni-

versity Press, Cambridge, UK., 1987.

[3] A. W. Black and P. Taylor. A framework for

generating prosody from high level linguistic

descriptions. In Proceedings of the Acoustics

Society of Japan, pp 239{240, 3{8{5, Spring,

1994.

[4] N. Campbell. Syllable-based segmental dura-

tion. In G. Bailly and C. Benoit, eds, Talking

Machines, pp 211{225. North-Holland, 1992.

[5] Y. Sagisaka, N. Kaiki, N. Iwahashi, and

K. Mimura. ATR { �-TALK speech synthesis

4

system. In ICSLP 92, volume 1, pp 483{486,

1992.

[6] P. Taylor. A Phonetic Model of English Intona-

tion. PhD thesis, Edinburgh University, 1992.

5

