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Abstract
This paper proposes a new task for artificial intelligence. The
image2speech task generates a spoken description of an im-
age. We present baseline experiments in which the neural net
used is a sequence-to-sequence model with attention, and the
speech synthesizer is clustergen. Speech is generated from four
different types of segmentations: two that require a language
with known orthography (words and first-language phones), and
two that do not (pseudo-phones and second-language phones).
BLEU scores and token error rates indicate that the task can be
performed with better than chance accuracy. Informal perusal of
the output (phone strings, word strings, and synthesized audio)
suggests that the audio contains complete, intelligible words or-
ganized into intelligible sentences, and that the most salient er-
rors are caused by mis-recognition of objects and actions in the
image.1

1. Introduction
This paper proposes a new task for artificial intelligence: the
generation of a spoken description of an image. The automatic
generation of text is the topic of natural language processing
(NLP), whereas the analysis of images is the topic of the field
of computer vision. In both fields, great advances have been
made on these separate topics, and recently they have been com-
bined into a new research field: img2txt [1]. However, many of
the world’s languages do not have a written form [2], therefore
many people do not have access to these and other speech and
NLP technologies. In this work, we propose a new research
task: image2speech, which is similar to img2txt, but can reach
people whose language does not have a natural or easily used
written form. An image2speech system should generate a spo-
ken description of an image directly, without first generating
text.

Experiments reported in this paper convert image feature
vectors into speech unit sequences. In order to implement this
pipeline, four types of standard open-source software toolkits
are used. First, the VGG16 [3, 4] visual object recognizer con-
verts each image into a sequence of feature vectors. Second,
the XNMT [5] machine translation toolkit accepts image fea-
ture vectors as inputs, and generates speech units as output.
Third, the ClusterGen [6] speech synthesis toolkit generates au-
dio from each speech unit sequence. Fourth, in order to train a
synthetic speech voice, Clustergen needs a corpus of audio files,
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each of which is transcribed using some type of discrete sym-
bolic units; automatic speech recognition (ASR) systems based
on Kaldi [7] and Eesen [8] perform this transcription.

The complete image2speech system is trained using a cor-
pus of (image,description) pairs, where each description is an
audio file. Four different types of speech units are tested, dis-
tinguished by the type of technology used to segment the au-
dio training data. Two types of unit sequences, Words and
L1-Phones (first-language phones), are generated using a same-
language ASR, and would therefore never be applicable to a
language without orthography, but they provide us with an up-
perbound performance on the image2speech task. Two other
unit sequences, L2-Phones and Pseudo-Phones, are generated
without transcribed same-language speech, and would there-
fore be applicable even in a language lacking orthography. L2-
phones (second-language phones) are generated by an ASR that
has been trained in some other language. Pseudo-phones are
generated by an unsupervised acoustic unit discovery system.

This paper describes preliminary experiments in the im-
age2speech task. Section 2 describes toolkits and baseline meth-
ods. Section 3.1 describes datasets. Section 3 describes meth-
ods. Section 4 presents numerical results for two img2txt base-
lines, and four image2speech experimental systems. Section 5
gives example image2speech outputs. Section 6 concludes.

2. Background
Imagenet [9] is an image database organized according to the
WordNet [10] noun hierarchy. ImageNet currently has 14m
images, provided as examples of 22k nouns. The ILSVRC
(Imagenet Large Scale Visual Recognition Challenge) has been
held annually since 2010. The best single-network solution in
ILSVRC 2014 Sub-task 2a, “Classification+localization with
provided training data,” was a 13-layer convolutional neural net-
work (CNN) [3]; Implementations in TensorFlow ([4], used in
this paper) and Keras [11] are now redistributed as the VGG16
network. VGG16 is a 13-layer CNN, followed by a two-layer
fully-connected network (FCN). The last convolutional layer is
composed of 512 channels, each of which is a 14×14 image; it
is useful to interpret this layer as a set of 14×14 = 196 feature
vectors of dimension 512. Each feature vector is the nonlinear
transformation of a 40 × 40-pixel sub-image, which is to say,
about 3% of the original 224× 224 input-image.

XNMT (the eXtensible Machine Translation Toolkit [5])
was used to implement/train the image2speech system. XNMT
is specialized in the training of sequence-to-sequence neural
networks, which means it reads in a sequence of inputs, and
then generates a different sequence of outputs.

XNMT is based on DyNet [12], a library for the training
of neural networks with variable-length inputs. Prior to DyNet,
most neural network modeling toolkits assumed that every train-



ing and test input is exactly the same size. DyNet introduced a
new type of graph compilation: dynamic compilation, in which
each layer of the neural net is represented as a compiled func-
tion, rather than a compiled data structure.

XNMT [5] is a DyNet-based library of standard compo-
nents frequently re-used in neural machine translation. The li-
brary is designed so that existing components can be easily re-
arranged to run new experiments, and new components can be
easily added. Available components are categorized as embed-
ders (e.g., one-hot, linear, and continuous vector embedders),
encoders (e.g., CNN, LSTM and pyramidal LSTM encoders),
attention models (e.g., dot product, bilinear, and MLP attention
models), decoders (e.g., an MLP decoder applied to the state
vector of the encoder), and error metrics (e.g., BLEU, cross-
entropy, word error rate). Among other applications, the flexi-
bility of XNMT has been demonstrated in the use of attention
models to select between neural and phrase-based translation
probability vectors, a method that has particular utility in the
translation of low-frequency content words [13].

Text-to-speech synthesis is typically a four-stage process.
First, the text is converted to a graph of symbolic phonetic de-
scriptors. Second, the duration of each unit in the phonetic
graph is predicted. Third, the mel-cepstrum [14], pitch, and
multi-band excitation [15] are predicted using a dynamic model
such as an HMM (hidden Markov model, [16]) or RNN (recur-
rent neural network, [17]), or by applying separate discrete-to-
continuous mapping algorithms to each frame of the synthetic
utterance [6]. Fourth, the speech signal is generated by inverting
the mel-cepstral transform [14], and exciting it with the speci-
fied excitation.

The Clustergen speech synthesis algorithm [6] differs from
most other speech synthesis algorithms in that there is no pre-
determined set of speech units, and there is no explicit dynamic
model. Instead, every frame in the training database is viewed
as an independent exemplar of a mapping from discrete inputs
to continuous outputs, and a machine learning algorithm (e.g.,
regression tree [6] or random forest [18]) is applied to learn the
mapping. Clustergen is particularly applicable to the problems
considered in this paper because it is able to generate intelligible
and pleasant synthetic voices from very small training corpora,
and using an arbitrary discrete labeling of the corpus that need
not include any traditional type of phoneme [19].

3. Experimental Methods
Fig. 1 gives an overview of experimental methods used in this
paper. image2speech models were trained using (image,audio)
pairs drawn from the Flickr8k, MSCOCO, Flicker-Audio, and
SPEECH-COCO corpora. Each image is represented as a se-
quence of 196 vectors, each of dimension 512, created from the
last convolutional layer of the VGG16 network. Audio files are
converted to units via Kaldi forced alignment (Words and L1-
phones) or via Eesen or AMDTK phone recognition (L2-phones
and Pseudo-phones). XNMT then learns to convert a sequence
of image feature vectors into a sequence of speech units, while
Clustergen learns to convert speech units into audio.

The image2speech model learned by XNMT is a sequence-
to-sequence model, composed of an encoder, an attender, and
a decoder. The encoder is a one-layer bidirectional LSTM (im-
plemented using XNMT’s PyramidalLSTM model), with a 128-
dimensional state vector. The attender is a three-layer percep-
tron, implemented using XNMT’s StandardAttender model. For
each combination of an input LSTM state vector and an output
LSTM state vector (128 dimensions each), the attender uses a
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Figure 1: Experimental methods. XNMT and Clustergen mod-
els are first trained using (image,audio) pairs. A test image is
then passed through VGG16, XNMT, and Clustergen to gener-
ate its audio description.

three-layer perceptron (two hidden layers of 128 nodes each)
to compute a similarity score. The decoder is another three-
layer perceptron (1024 nodes per hidden layer), which views
an input created as the attention-weighted summation of all in-
put LSTM state vectors, concatenated to the state vector of the
output LSTM. The output of the decoder is a softmax with a
number of output nodes equal to the size of the speech unit vo-
cabulary.

3.1. Data

Experiments in this paper used two databases: the Flickr8k im-
age captioning corpus with its associated Flicker-Audio speech
corpus, and the MSCOCO image captioning corpus with its as-
sociated SPEECH-COCO speech corpus.

The Flickr8k Corpus [20] includes five text captions for
each of 8000 images, as well as links to the images. Text cap-
tions were written by crowd workers, hired on Amazon Me-
chanical Turk. There is considerable variability among the cap-
tions provided for each image. For example, the five differ-
ent captions available for the first image in the corpus (image
1000268201 693b08cb0e) are:

A child in a pink dress is climbing up a set of stairs in an entry way.
A girl going into a wooden building.
A little girl climbing into a wooden playhouse.
A little girl climbing the stairs to her playhouse.
A little girl in a pink dress going into a wooden cabin.

In 2015, Harwath and Glass [21] proposed a data retrieval sys-
tem in which speech files are used to retrieve corresponding
images from a large image database, and vice versa. In order
to make their proposal possible, they hired crowd workers on
Mechanical Turk to read aloud the 40,000 captions from the
Flickr8k corpus. The resulting set of 40,000 spoken captions is
distributed as the Flicker-Audio corpus.

The Microsoft COCO (Common Objects in COntext) cor-
pus was initially developed as an object detection corpus [22].
After initial release of the corpus, text captions of 150,000 of
the images (four captions each) were distributed [23], making
MSCOCO the largest database available for training img2txt
systems. The SPEECH-COCO spoken transcriptions [24] were
created using eight different synthetic voices, reading the MSCOCO
text transcriptions. All eight synthetic voices were created from
low-noise recordings of professional broadcast announcers; most



listeners can’t tell that the speech is synthetic. Because the
speech is synthetic, exact time alignment of the phones and
words is available, and is distributed with the corpus.

Experiments in this paper did not use the entire SPEECH-
COCO corpus, because we did not have enough compute time
to train a neural network using the whole corpus. Instead, ex-
periments reported in this corpus used a subset of MSCOCO
with training, validation, and test corpora sized to match those
of Flickr8k: 6000 training images, 1000 validation images, and
1000 test images. When an image is part of the training or val-
idation corpus, all of its captions are used, thus experiments
using the MSCOCO corpus had a training corpus containing
24,000 image-audio pairs (6000 distinct images), while the Flickr8k
training corpus included 30,000 image-audio pairs (6000 dis-
tinct images).

3.2. Speech Units

Systems were trained and tested using four different types of
speech units: Words, L1-Phones, L2-Phones, and Pseudo-Phones.

Words and L1-Phones are aligned to the speech2image train-
ing audio files using ASR forced alignment trained in the tar-
get language, therefore speech segmentations of this kind can
only be performed in a language that has a writing system. The
two databases used in this paper were transcribed in two dif-
ferent ways. The larger corpus, SPEECH-COCO [24], is dis-
tributed with phone transcriptions (phones in this database are
transcribed using a phonetic alphabet based on X-SAMPA). The
Flicker-Audio corpus [21] is not distributed with phonetic tran-
scriptions, but text transcriptions are available [20]; from these,
aligned L1-Phone transcriptions were generated using the KIT
English transcription system [25].

L2-Phone transcription does not use any information about
the writing system of the target language, and could therefore
be used in a language that lacks any writing system. In this
method, an ASR is first trained in a different language (in our
case, Dutch). The L2 ASR is then used to generate a phone tran-
scription of the target audio. In the experiments reported in this
paper, an Eesen speech recognizer [8] was first used to train a
Dutch ASR. Dutch phones were then mapped to English phones
using linguistic knowledge only, without the use of any English
writing or transcriptions, and the English-adapted Dutch ASR
was used to transcribe English audio. Thus the ASR has some
prior exposure to English audio, but has no knowledge about
English text [26].

Pseudo-Phones were generated from the Acoustic Unit Dis-
covery (AUD) system of [27] with two major modifications.
First, the truncated Dirichlet process of [27] was replaced by
a symmetric Dirichlet distribution, since, as pointed out in [28],
the symmetric Dirichlet distribution provides a good and yet
simple approximation of the Dirichlet Process. Second, to cope
with the relatively large database, the Variational Bayes Infer-
ence algorithm originally used in [27] was replaced with the
faster Stochastic Variational Bayes Inference algorithm. It was
found experimentally that these modifications, while consider-
ably speeding up the training, yield negligible drop in accuracy.
The source code of the AUD model is available at
https://github.com/amdtkdev/amdtk.

4. Results
The baseline models, with Word-sequence outputs, are stan-
dard img2txt networks, e.g., comparable to the result reported
in [20]. In these networks, the output vocabulary of the network

Figure 2: Training loss (cross-entropy, bits/symbol) of
sequence-to-sequence networks trained to generate speech unit
sequences from image features.

Table 1: BLEU scores (%) and unit error rates (UER, %)
achieved in two baseline img2txt experiments (Word outputs)
and four experimental image2speech experiments (L1-Phone,
L2-Phone, and Pseudo-Phone), on both validation and test sets.
** means UER < chance (Student’s T, Chebyshev standard er-
ror, p < 0.001; chance=90.2% Flickr8k, 88.7% MSCOCO).

Validation Test
Dataset, Targets BLEU UER BLEU UER
Flickr8k, Words 4.7% 91.3% 3.7% 130%
Flickr8k, L1-Phones 13.7 87.9 13.7 84.9**
Flickr8k, L2-Phones 5.4 115 6.1 101
MSCOCO, Words 4.8 5.5 88.5
MSCOCO, L1-Phones 15.1 16.3 78.8**
MSCOCO, Pseudo-Ph. 2.2 1.4 123

is the set of all distinct words in the training corpus: 7993 words
in Flickr8k, 7476 in MSCOCO8k.

The experimental systems generate phone outputs: L1-Phone,
L2-Phone, and Pseudo-Phone. Flickr8k and MSCOCO L1-phone
systems both use English phone sets, but with slightly different
sizes: 54 for Flickr8k, 52 for MSCOCO. The L2-Phone sys-
tem (only tested for Flickr8k) contains 38 phones. The Pseudo-
Phone system (only tested for MSCOCO) was adjusted to pro-
duce 103 phones, as pseudo-phone sets of about this size have
been useful in previous experiments [27].

Fig. 2 shows the training loss (cross-entropy) of sequence-
to-sequence networks trained (using XNMT) to generate speech
unit sequences from image features. Training loss is measured
in bits per output symbol. Word-generating models start with
training loss much higher than that of any phone-generating
model, apparently because the number of distinct words is larger
than the number of distinct phones. Training loss of the Word
networks falls below those of the L2-phone and Pseudo-phone
networks after some training, apparently because Words are more
predictable than Pseudo-Phones or L2-Phones. The Word mod-
els never achieve training losses below those of the L1-Phone
models. In fact, the Word and L1-Phone models converge to
very similar endpoints, suggesting that the L1-Phone network
may be learning the same thing as the Word model: it might
be learning to generate a sequence of phones that always corre-
sponds to complete Words.



Flickr8k Example #1
Ref #1: The boy +um+ laying face down on a skateboard is
being pushed along the ground by +laugh+ another boy.
Ref# 2: Two girls +um+ play on a skateboard +breath+ in a
court +laugh+ yard.
Network: SIL +BREATH+ SIL T UW M EH N AA R R
AY D IX NG AX R EH D AE N W AY T SIL R EY S SIL.
Flickr8k Example #2
Ref #1: A boy +laugh+ in a blue top +laugh+ is jumping off
some rocks in the woods.
Ref #2: A boy +um+ jumps off a tan rock.
Network: SIL +BREATH+ SIL EY M AE N IH Z JH AH
M P IX NG IH N DH AX F AO R EH S T SIL.

Figure 3: Image examples from the flickr8k corpus. The table
lists, for each image, two of its reference transcriptions, and the
output of the L1-Phone image2speech system.

Table 1 shows BLEU scores (higher is better) and unit error
rates (UER; lower is better) of four experimental systems and
two baselines, measured on the validation and test sets of the
Flicker-Audio and MSCOCO8k corpora. For Word-generating
systems, UER=word error rate; for Phone-generating systems,
UER=phone error rate. Rank-ordering of the experimental sys-
tems is roughly the same in Table 1 as in Fig. 2, though the
Word-based system achieves a very poor unit error rate on the
Flickr8k test corpus. Both the L2-Phone and Pseudo-Phone sys-
tems suffer UER> 100%. The L1-Phone systems, however,
demonstrate unit error rates that are significantly better than
chance (where “chance” is the error rate of a system that always
generates the majority phone label).

Synthetic speech examples have been generated by the Clus-
tergen algorithm for some of the L1-phone network outputs.
Quality of the audio examples has not yet been quantified, but
informal listening confirms the impression given by Fig. 2: gen-
erated audio is not perfectly natural, but is composed of intelli-
gible words arranged into intelligible sentences.

5. Examples
Fig. 3 shows examples of two images from the validation sub-
set of the Flickr8k corpus. For each image, three transcriptions
are shown: two of the five available reference transcriptions (to
give the reader a feeling for the difference among reference tran-
scriptions), and one transcription generated by the L1-Phone
image2speech network. The L1-Phones for Flickr8k are the
ARPABET phones of [25]. As shown, the network is able to
generate a phone string that is composed entirely of intelligible
words, sequenced in an intelligible and semantically reasonable
sentence. In these two examples, the phone strings shown can
be read as English sentences that mislabel boys as men, but are
otherwise almost plausible descriptions of the images: “Two
men are riding a red and white race,” and “A man is jumping in
the forest.”

MSCOCO Example #1
Ref #1: A group of men enjoying the beach, standing in the
waves or surfing.
Ref# 2: A group of people standing on a beach next to the
ocean.
Network: # @ g r uu p @ v p ii p l= s t a n d i ng o n @ b ii
ch #

MSCOCO Example #2
Ref #1: A, a black and white photo of a fire hydrant near a
building.
Ref #2: Aa, a fire hydrant that is out next to a house.
Network: # @ p @@ s n= w oo k i ng @ t @ m e dl̂= d au
n @ n d @ r e d f ai r h ai d r @ n t #.

Figure 4: Image examples from the MSCOCO corpus. The ta-
ble lists, for each image, two of its reference transcriptions, and
the output of the L1-Phone image2speech system.

Fig. 4 shows similar examples from the SPEECH-COCO
corpus. In the first example, the network has generated the sen-
tence “A group of people standing on a beach,” which is per-
fectly correct. In the second example, the network generated
“A person working at a metal down, and a red fire hydrant.” It
is interesting that the neural net has noticed something about
the image (the person working in the background) that was not
noticed by either of the human transcribers.

6. Conclusions
This paper proposes a new task for artificial intelligence: im-
age2speech, the task of generating spoken descriptions of input
images, with no intermediate text. image2speech is trained us-
ing a database of paired images and audio descriptions. Ex-
perimental results are presented using the Flicker-Audio and
SPEECH-COCO corpora. Measured UER scores are better than
chance, but less than perfect. Informal perusal of results shows
that image2speech is able to generate intelligible words, and to
sequence them into intelligible sentences.
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A Waibel, “The 2014 KIT IWSLT speech-to-text systems
for english, german and italian,” in Internat. Worksh. Spo-
ken Language Translation (IWSLT), Lake Tahoe, 2014,
pp. 73–79.

[26] O Scharenborg, F Ciannella, S Palaskar, A Black,
F Metze, L Ondel, and M Hasegawa-Johnson, “Build-
ing an asr system for a low-research language through the
adaptation of a high-resource language asr system: Pre-
liminary results,” in review, 2017.

[27] L Ondel, L Burget, and J Černocký, “Variational inference
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