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ABSTRACT

This paper presents an ‘Accent Group’ based intonation model for
statistical parametric speech synthesis. We propose an approach
to automatically model phonetic realizations of fundamental fre-
quency(F0) contours as a sequence of intonational events anchored
to a group of syllables (an Accent Group). We train an accent group-
ing model specific to that of the speaker, using a stochastic context
free grammar and contextual decision trees on the syllables. This
model is used to ‘parse’ an unseen text into its constituent accent
groups over each of which appropriate intonation is predicted. The
performance of the model is shown objectively and subjectively on
a variety of prosodically diverse tasks- read speech, news broadcast
and audio books.

Index Terms— Intonation Modeling, Prosody, Phonology, Sta-
tistical Parametric Speech Synthesis, Foot, Accent Group

1. INTRODUCTION

Intonation (fundamental frequency, F0) is a key expressive compo-
nent of speech that a speaker employs to convey his intent in de-
livering a sentence. It encodes a lot more information in the form
of structure and type into an utterance than conveyed by the words.
The scope of this information may well be beyond words, as broad
phonetic phenomena like emphasis [1], or at the frame level, as mi-
croprosody, rendering some naturalness to speech [2]. In Text-to-
Speech synthesis, text is the only input information from which ap-
propriate intonation has to be predicted.

Initial approaches to intonation generation were primarily rule-
based [3][4][5], where phonetic and phonological findings were pro-
grammed on computers to generate speech with the desired proper-
ties. These methods were overtaken as data driven approaches (e.g.,
Unit Selection [6]) made it easier to copy-paste pieces of natural F0
contours from a speech database of the desired style [7]. However,
the need for small and flexible voices that can fit on mobile devices
led way to the next generation of statistical parametric speech syn-
thesizers (SPSS) [8, 9]. In these approaches, average statistics are
stored in contextual decision trees, from which predictions are made
about unseen text. Today, while spectral quality of synthetic speech
is quite acceptable, the prosodic quality is still very poor and is per-
haps the weakest component in state-of-the-art speech synthesizers.

Synthetic speech receives the criticism of sounding unnatural
and void of affect, because the relationship between the low level
intonation contour and the high level input i.e, words is still not well
modelled [10]. While in speech science (phonetics and phonology),
the F0 contour is discussed at broad levels of syllables, phrases and
beyond [11], in practice, all statistical TTS systems analyze and syn-

thesize contours at the frame or at best sub-phonetic levels, generat-
ing in the order of about one F0 value for every 5-10 millisecond in-
terval of speech. It has been shown in prior work that this segmental
approach to F0 generation is sub-optimal since linguistic features do
not have such low resolution to discriminate F0 values at the level
of a frame, thereby generating implausible F0 contours, assigning
same values to consecutive frames of speech. This artefact of sta-
tistical models leads to a perceived ‘processed’ quality of speech
that doesn’t retain the dynamic range or functional value of natural
speech. There are several broad directions from which these issues
are being addressed.

From a speech production perspective, essentially rooted in the
Fujisaki model [12] several attempts employ additive strategies for
intonation, modeling the F0 contour as a sum of component contours
at different (often phonological) levels like the phrase and syllable
[13] [14] [15]. These approches preserve the variance in F0 models
by essentially distributing it across different levels.

From a statistical modeling standpoint, to address the issue of
‘averaging out’ of synthetic speech, Tokuda et al., use maximum
likelihood parameter generation [16] to improve the local dynamics
of synthetic speech. Toda et. al., [17] suggest imposing the variance
of natural speech on synthetic speech to improve its perceptual qual-
ity. Yu et al., [18] propose splitting the feature set between stronger
and weaker context features and building separate models that are
optimized for different functions.

Despite all these efforts, synthesizing appropriate intonation has
eluded statistical speech synthesizers. This can perhaps be attributed
to the disconnect between the theory and practice of intonation. Sta-
tistical intonation models use only rudimentary knowledge of in-
tonation theories in them. Also, these theories remain qualitative
and descriptive, hardly providing any predictive knowledge about
prosody [19], that can be exploited for SPSS. This work attempts
to lessen this gap by employing a phonologically sound representa-
tional level for modeling F0.

One key aspect in the design of intonation models that effects the
quality of the linguistic→prosodic mapping is the representational
level at which the contour is modelled. Openmary [20] employs
word level pitch target estimation and interpolation strategy for F0.
HTS [21] predicts F0 at the HMM state level and does a maximum
likelihood based interpolation. Clustergen [8] models and predicts
F0 value at the frame level. There is not a general agreement on
the right level to model intonation contour for SPSS. We attempt to
address precisely this in this work — What is the right level to model
intonation for SPSS?

We propose the phonologically motivated “Accent Group” as
the modeling unit for intonation. Since accent placement is non-
trivial [22], we develop strategies to automatically derive and pre-
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dict accent groups from speech data. We use the TILT phonetic
scheme [23] to model the F0 contour itself, since any arbitrary excur-
sion on the contour can be efficiently modelled as a TILT vector and
the scheme also conforms with established phonological schemes
like ToBI [24].

2. SPEECH DATABASES AND BASELINES

In this work, we use three different speech databases, one in
each genre of read isolated speech (ARCTIC, SLT [25]), Radio
News (BURNC, F2B[26]) and Audiobook (The adventures of Tom
Sawyer, TATS [27]). These cover the range of variety in prosod-
ically interesting tasks for SPSS. The baseline systems we use are
the Clustergen frame-based SPSS System [8]. In all systems tested,
the same set of core features are used. These include the base fea-
ture set in Festival and additional features devised on the Stanford
dependency parser. There are a few model-specific features specific
to each modeling unit considered.

3. INTONATION MODELING IN SPSS

Most SPSS systems employ the Festival speech synthesis archi-
tecture [28], which realizes an utterance as a heterogeneous rela-
tion graph of phonological constituents [29]. Fig 1 illustrates the
prosodic structure used in Festival. An utterance is modelled as
sequences of phrases, words, syllables, phonemes, phoneme states
and frames.

Fig. 1. Illustration of Festival prosodic structure, highlighted is the
proposed Accent Group relation.

In Clustergen [8] SPSS system, during training, features regard-
ing each of these levels are extracted to predict the associated spec-
tral/F0 value for each frame. The base features used include those

of identity, position, category etc., of each phonological level that a
frame corresponds to. These include lexical, syntactic and prosodic
features. To capture the quasi-static nature of speech phenomena,
the features of respective neighbouring classes are also included.
The default feature set uses 61 features. Based on these features,
the F0 values are clustered as a CART decision tree. A trained into-
nation model has questions about these features at the intermediate
nodes and leaf nodes contains statistics like mean and variance of the
F0 values of frame instances falling under that path of the decision
tree. The quesitons selected in the decreasing order of entropy gain
against a held out set.

At test time, an appropriate utterance structure is built for an in-
put text sentence and all the associated features are initialized. These
features are then used to traverse the built CART models to estimate
the parameters to synthesize for each frame. It can be easily seen
from the prosodic structure that there is a one-to-many relation be-
tween the feature vectors and F0 value. This explains the the lost
variance in the finally trained models and consequent prediction of
implausible intonation contours at test time.

Our goal in this work is to model each intonational event as it-
self, without modelling parts and pieces of it, as currently done. To-
wards realizing this, we introduce a new level within the festival
prosodic structure called as the “Accent Group”. Each Accent Group
has one or more syllables as its child nodes and has the Phrase as its
parent node. The Accent Group level is explicitly not linked to the
word level since accents could span syllables across words or a word
itself can have multiple accents on it [30]. Given an Accent Group,
the associated F0 contour is modelled as a TILT vector, which quan-
titatively describes each event as a 4-valued tuple, comprising the
peak position, total length, duration and a shape parameter that can
continuously represent any arbitrary rise-fall shape on the contour.

A brief description of the definition of Accent Group, as we use
in this work, along with associated training and synthesis procedured
is given in the following section.

4. THE ACCENT GROUP IN SPSS

Intonational Phonology views the F0 contour as a sequence of in-
tonational events that can be related to associated syllables. It gives
qualitative descriptions about the nature of the event as a ‘rise’, ‘fall’,
‘dip’ etc. in relation to the underlying syllable(s). Each intonational
event, often referred to as an accent, could be spread across one or
more syllables. The syllables associated with one accent are referred
to as its accent group. Further, autosegmental metrical phonology
prescribes schemes to organize a syllable sequence in terms of weak
and strong syllables to hierchically form intonational phrases of met-
rical feet. However, when dealing with real speech, most of these
prescriptions do not hold. Hence, though we appeal to the idea of
grouping syllables, we do not use any definition of what an accent
group should be — except that it should have only one accent on it.
We use a data-driven approach to automatically determine the accent
grouping as appropriate to that particular speaker and speaking style
used in the training speech data.

4.1. AUTOMATIC ACCENT GROUP EXTRACTION FROM
F0

In order to ‘chunk’ the syllables of each sentence in the training data
as a sequence of accent groups, we employ a resynthesis error mini-
mization algorithm, linear in the number of its syllables. Using TILT
as the representation scheme, a decision is made for each syllable
whether or not to include it into an accent group. It is included, if
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and only if doing so reduces the error (or is within an accepted error
threshold ε) of the resynthesized F0 contour with respect to the orig-
inal F0 contour, as compared to modeling it out of the accent group.
The exact procedure followed is given as Algorithm 1

Algorithm 1: Algorithm for automatic Accent Group Extrac-
tion Method

1: for all phrases do
2: accent group initialized
3: for all syllables do
4: add syllable to accent group
5: syl accent = tilt analyze (log(f0)) over syllable
6: syl err = log(f0) - tilt resynth(syl accent)
7: accgrp accent = tilt analyze (f0) over accent group
8: accgrp err = log(f0) - tilt resynth(accgrp accent)
9: if ( accgrp err ≥ prev accgrp err + syl err + ε) then

10: accent group= accent group - { current syllable}
11: /* accent group ended on previous syllable */
12: output prev accgrp accent
13: accent group = current syllable
14: prev accgrp err = syl err
15: prev accgrp accent = syl accent
16: else
17: prev accgrp err = accgrp err
18: prev accgrp accent = accgrp accent
19: end if
20: end for
21: if accent group 6= φ then
22: /* accent group must end at phrase boundary */
23: output prev foot accent
24: accent group = φ
25: prev accgrp err = 0
26: end if
27: end for

ε is the acceptable error threshold within which a syllable will be
included within the accent group. For the databases experimented in
this work Table 1 presents the number of accent groups against num-
ber of syllables and words. ε was set at 0.01, which is very conser-
vative for log(f0) error. Note that the method retains most syllables
and ends up having more than one accent per word on average. The
threshold can however be raised so that increasingly more syllables
are grouped and resynthesized contours can get excessively smooth,
in the limit, modeling the entire phrase as a smooth contour as an
“accent”.

Table 1. Comparison of the derived accent groups for each task
Task #words #syllables #Accent groups
SLT 9603 12694 10833
F2B 8134 13209 9719

TATS 60444 79225 62762

4.2. SPEAKER-SPECIFIC ACCENT GROUP MODELLING

Given the acoustically derived accent groups for the training data, we
model the speaker’s grouping as a stochastic context free grammar
(SCFG) [31]. The problem of accent group prediction is analogous
to prosodic break prediction, where at each word boundary, a deci-
sion is made whether or not to have a phrase boundary. In the current

scenario, accent groups are analogous to the phrases and syllables
are equivalent to words. We employ an approach similar to the one
built for such a phrasing model [32]. In order to have a unique set of
terminals over which to train an SCFG, the syllables are tagged with
six broad boolean descriptors — if the syllable is phrase final, initial,
word final or initial, lexically stressed and has a predicted accent on
it. Such a scheme uses about 30 combinations of tags in the data
presented. Higher number of tags would lead to an increase in the
number of tags to process, for which there may not be sufficient data
to train an SCFG. To illustrate, a sentence having 4 syllables with 2
accent groups of 1 and 3 syllables each may be represented as —

(( syl 1 1 1 1 1 0 ) ( syl 1 1 1 1 0 0 syl 1 1 1 0 0 0
syl 1 0 0 1 0 0 ))

Such parses are created using the automatic accent group ex-
traction method and given as the input to the SCFG. Once trained,
the grammar can produce parse structures for unseen sequences of
syllables in test. While useful, these parses are not very accurate
since they encode limited information. However, we use the gram-
mar along with higher level linguistic features on the syllable level
to model the accent boundary decision after each syllable. In addi-
tion to the conventional syntactic and positional features, we have
used dependency parses since we’d like to evaluate the effect of de-
pendency roles and related features in prediction of F0. In all there
are about 83 questions from which decision trees are trained for Ac-
cent boundary detection in unseen text. In all the three databases,
we have about 70% accuracy in Break/Non-Break prediction at all
syllable boundaries, compared to the reference sequences.

4.3. F0 MODELING OVER THE ACCENT GROUP

Given the Accent Group boundaries, the F0 contour is analyzed as
a 4-valued TILT tuple over each accent group. These are clustered
against the feature set specific for the Accent group model, which in-
clude features related to the main syllable of the accent group, which
we consider as the first lexically stressed syllable of a content word,
the features related to the first syllable, last syllable and word level
features for these syllables. In all, 63 features were used for the
clustering at this stage. The TILT parameter for duration is currently
not included in this phase as it is derived from the early phase of
phoneme prediction (though we are aware a closer integration of
duration prediction could be advantageous). This leaves the TILT
amplitude, peak and tilt shape as the vector to be predicted. Mean
subtraction and variance normalization is done on these features so
as not to bias the models optimized towards one of these values.

5. EXPERIMENTAL RESULTS

The discussed intonation models are applied in TTS and predictions
are made about unseen text data. Figure 5 compares the proposed
accent group model against the baseline frame based model and the
reference F0 contour. It can be seen the variance and peak align-
ment with reference are much better in the ‘Accent Group’ intona-
tion model.

While perceptual judgments by human listeners are the main
evaluation technique for evaluating intonation [27], it is also impor-
tant to look at the objective performance of intonation models, at
least to highlight how bad usual optimization criteria are. The con-
ventional metrics are Mean error (err) and Correlation(corr) of
predicted F0 contours with respect to the reference contours from
the subject. The reference durations are maintained even in the syn-
thetic contour to enable a point-to-point comparison of the reference
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Fig. 2. An example of synthetic F0 contours using the Clustergen
default frame model and the proposed Accent group model. The
reference is also shown to compare against.

and test intonation contours. Table 2 presents the metrics on the three
tasks. The last row ‘Accent Group Oracle’, is the model where the
true accent grouping of the speaker is employed instead of predicted
grouping.

Table 2. Objective comparisons proposed vs. default models
SLT F2B TATS

Unit err corr err corr err corr

Frame 10.97 0.62 37.22 0.38 29.95 0.079
Syllable 12.15 0.47 37.05 0.23 25.28 0.066

Word 12.65 0.46 36.30 0.33 25.80 0.0810
Accent 13.13 0.43 35.79 0.33 25.96 0.064
Group
Accent 11.49 0.51 35.50 0.34 24.91 0.092
Group
Oracle

The primary conclusions from this table are (i) read speech
databases have predictable intonation values that statistical models
seem to model well. (ii) As the prosodic complexity increases, the
default statistical models fail to capture the prosodic variance (iii) As
increasingly more data is made available, models employing higher
order phonological units tend to converge to similar predictions and
(iv) Accent grouping is indeed a hidden part of intonation, when
the true accent grouping is provided, F0 estimates are more close to
natural in all tasks— better than any other phonological unit.

As RMSE and correlation are not ideal metrics for evaluating
perceptual goodness of synthetic intonation [33], we carried out sub-
jective ABX listening tests on pairs of the above models. We have
chosen the audio book task for this purpose. We have synthesized
a random 45 sentences from the test set. This set was synthesized
by each of the candidate intonation models, all other TTS com-
ponents remaining the same. The listening tests were carried out

via crowdsourcing on the Amazon Mechanical Turk, where listeners
were asked to select the stimulus they prefer to hear. They can also
choose a ‘both sound similar’ option. Each pair of stimuli was rated
by 10 different listeners, making the following preferences reliable.

Fig. 3. Subjective Result: Listener Preference for TTS with Word
Vs. Accent Groups as the F0 modeling unit
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Fig. 4. Subjective Result: Listener Preference for TTS with Syllable
Vs. Accent Groups as the F0 modeling unit

0 20 40 60 80

Similar

Syllable Model

Accent Group Model

5

33

60

% responses

Fig. 5. Subjective Result: Listener Preference for TTS with Frame
Vs. Accent Groups as the F0 modeling unit
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The user preferences clearly suggest the superiority of the pro-
posed Accent Group model against the reference baseline. They
also show that Accent Group intonation model is better than other
phonological levels, which is a very welcome observation, since it
may mean that the proposed model is language universal. (e.g., for
agglutinative languages like Turkish or German where word level
intonation models are grossly fallible.)

6. CONCLUSIONS

This work proposes an intonational model for SPSS based on ‘Ac-
cent Group’ as the modeling unit. We have presented algorithms
to train such a model from speech data and use it for prediction of
appropriate intonation contours from text. We have demonstrated
the superior perfomance of the proposed model both objectively and
subjectively against the frame-level models currently in use in F0
modeling. The evaluations are shown on three different speaking
styles.
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