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Abstract. Conventional metrics in evaluating task-oriented Spoken Di-
alogue Systems (SDSs) are objective metrics such as the mean number
of turns, or the estimated success rate. We provide further empirical ev-
idence that these metrics are unreliable to distinguish across SDS: they
fail to distinguish changes in the system, and detect differences where
there are none. For instance, we report that the mean estimated success
can have statistically significant differences (at the 5% significance level)
on exactly the same system, over different, contiguous periods of time.
We propose Dialogue System Difference Finder (DSDF), a novel model
which can explain that the differences found using conventional metrics
are due to seasonal and usage characteristics. DSDF is able to describe
differences between multiple SDS, and it is different from traditional per-
formance metrics used in the SDS community, in that it is more sensitive
to changes among systems, has lower variance, and can also explain what
the differences consist of. We used this model to find unexpected changes
in our data sets. We believe that this lays the groundwork toward build-
ing a fully-automatic metric.

1 Introduction

We present a novel distance metric that is able to find and describe the differences
across multiple Spoken Dialogue Systems (SDSs). When modifying a baseline
SDS, researchers face the problem that individual changes may not reflect a
given performance metric, and yet, a combination of these changes together
may have a significant impact on the performance metric [Bacchiani et al. 2008,
Pieraccini 2008]. This presents an enormous problem for experimentation, since
the SDS designer has no means of knowing whether an incremental change in
the system can lead to improvement. For experimentation, a finer grained metric
is needed.

Describing the differences among SDSs can be thought of as a fundamental
step forward toward a finer evaluation scheme, that can be useful for SDS re-
searchers. This is especially useful when comparing different “black box” SDS
that are meant to perform the same task.

We propose Dialogue System Difference Finder (DSDF), a model based on
maximum entropy that is able to describe differences between multiple SDS.
This model is different from traditional performance metrics used in the SDS
community, in that it is more sensitive to changes among systems, has lower



variance, and can also explain what the differences consist of. We believe that
this work lays the groundwork toward building a fully-automatic metric.

This paper is organized as follows: In Section 2 we provide a summary of
relevant work and describe the statistical preliminaries on which we base our
work. In Section 3 we discuss the model we are proposing to detect differences
among SDS. We discuss the methodology to empirically validate our approach,
and we provide the results of our observations in Section 4. Finally in Section 5,
we conclude and address how we will further extend this work.

2 Background

Conventional metrics in evaluating task-oriented SDSs are objective metrics such
as the mean number of turns, or the estimated success rate. [Bacchiani et al.
2008, Raux et al. 2006, Paek 2001]. Estimated success is a binary indicator that
signals whether the user received information in the case of an information-giving
SDS. The use of multiple individual objective metrics may provide contradictory
criteria in selecting the best dialogue system [Paek 2001, Kamm et al. 1999].
Furthermore in section 4.3, we show that objective metrics are not sensitive to
the differences in our dialogue corpus.

As an alternative to objective metrics, subjective evaluations measure user
satisfaction through user studies. This approach is very expensive and needs a
large number of users to interact with the system. Furthermore, there is evidence
suggesting that laboratory user experimentation may not generalize to real users,
and thus present low external validity [Ai et al. 2007].

Trying to offset some of these deficiencies, PARADISE [Hajdinjak and Mi-
helic 2006, Walker et al. 2001] was proposed as a general framework to measure
SDS performance as a linear combination of objective and subjective measures
using automatic and hand-labeled features. Hastie et al. [2002] proposed an ex-
tension to PARADISE, in which all features are extracted automatically, relying
on an automatic dialogue act tagger and calculating a performance score with
a regression tree. Both of these approaches require data to be collected via con-
trolled experiments where users complete a satisfaction survey. A comparison of
alternative satisfaction surveys and alternate ways on how to use machine learn-
ing techniques to regress those scores can be found in [Möller et al. 2008; 2007].
Eckert et al. [1998] propose simulated users to evaluate new SDS. However, their
performance metric is a weighted sum of cost functions, and to get the initial
weight of these parameters, they refer to the PARADISE methodology, and thus,
it might also be suceptible to the paid users vs. real user dilemma described in
Ai et al. [2007].

Paek [2001] gives a more detailed discussion of subjective performance met-
rics and objective metrics. He argues that instead of focusing on developing new
metrics, new methodologies that allow comparative judgment are needed. Our
work can be considered to address this comparative methodology paradigm.

To our knowledge, our distance function is a novel approach function that
can be used for describing the differences between systems. In the rest of this



section we review the preliminary statistical knowledge on which we base our
work, particularly we focus on maximum entropy classification (Section 2.1), and
variable selection (Section 2.2).

2.1 Maximum Entropy Classification

Nigam et al. [1999] presents maximum entropy classification models as the pos-
terior probability of a class label c, as:

p(c|x; θ) =
1

Z(x)

n∑

i

exp(θifi(x)) (1)

Where f are feature functions f1, ..., fn such that fi : X → R, x is the input
data, and Z is a normalization factor, that ensures the probability function is
well-defined:

Z(x) =
∑

c

exp(
∑

i

θifi(x)) (2)

Nigam et al. [1999] provide a review of successful usage of maximum entropy
in language technologies. However, since we are interested in being able to in-
terpret the features that are most relevant in our model, we need to perform
variable selection.

2.2 Variable Selection

In the context of statistical machine learning, variable selection is equivalent to
distinguishing between predictive and non-predictive features [Zhang and Huang
2008]. In most (unregularized) models, the number of training examples needed
to learn the parameters grows as a function of the number of features [Ng 2004].
A larger number of parameters allows better fitting to the training data, and
increases the chances of over-fitting. Variable selection helps to avoid over-fitting,
and it has the collateral effect that it helps the “data miner” to have a better
understanding of the process that generated the data [Guyon and Elisseeff 2003].

In maximum entropy models, variable selection can be achieved by penalizing
the parameter vector with a regularization term, R. As described in Ng [2004],
if we have m examples drawned i.i.d., we train θ to maximize the posterior
log-probability:

argmax
θ

m∑

i

log p(c(i)|x(i); θ) − λR(θ) (3)

We can set R to penalize on the number of features, by defining it as the Lp

norm of θ:

R(θ) = ||θ||p := (
n∑

i=0

|θi|
p)1/p (4)

In equation (3), λ is the hyper-parameter that controls the trade-off between
bias and variance introduced by the regularization term R: the higher the value



of λ, the more bias we introduce to the model, and we get a smaller feature
space. Conversely, the smaller the value of λ, the better we fit the training data.
The particular case of λ = 0, is a model without variable selection.

In an ideal scenario, we are interested in using the L0 norm, which would
effectively penalize the number of parameters of the model. Unfortunately, ob-
taining the optimal subset of features for a model is known to be an NP-hard
problem. At this point we have two options for variable selection: (i) we can
approximate the optimal value of the L0 norm by performing search in the (com-
binatorial space) of features subspace, or (ii) use a different regularization term
to shrink the parameters toward zero [Bishop 1995, Xing et al. 2001]. Although
technically both approaches perform feature selection, some authors distinguish
among them by exclusively referring to the subset selection (search methods) as
feature selection, and designating the regularization technique as model selection
or parameter shrinking. For a more in-depth description of the subset selection
methods see [Guyon and Elisseeff 2003].

Although Xing et al. [2001] provide empirical evidence that subset selec-
tion methods may give better results than model selection in genomic micro-
array data, Zhang and Huang [2008] claim that model selection methods are
more stable and that these methods are more computationally efficient for high-
dimensional data. For instance, maximum entropy with L1 or L2 regularization
only requires the solution of a convex optimization problem [Ng 2004].

It is worth noting that L1 regularization is equivalent to imposing a Laplace
prior to the parameter weights, and L2 regularization is equivalent to imposing
a Gaussian prior. Because of this, L1 regularization is not differentiable for every
point; this difficulty is offset by the theoretical results of Ng [2004], proving that
L1 regularization is less prone to over-fitting than the L2 on the same amount
of data. The problem of variable selection is very related to learning a structure
in a graphical model [Lee et al. 2007].

3 Dialogue System Difference Finder (DSDF)

We use a maximum entropy model with L1 regularization, as a distance function.
Our interpretation is that classification accuracy between the output of two SDS
defines the distance between them: The stronger the differences between the
systems, the closer the classification accuracy should be to 100%. Conversely,
the more similar the systems are, the lower the accuracy, as the systems become
indistinguishable. We found that this interpretation of likelihood as distance
function was also used in the context of face recognition in [Colmenarez and
Huang 1996].

In addition to classification accuracy to provide the magnitude of distance,
we also considered the Kullback-Leibler (KL) divergence (sometimes called cross-
entropy), and the area of the probability mass assignment (using dot product).
For improved clarity, since KL divergence is not symmetric, and the dot product
is not a standard metric in the literature to evaluate classifiers, we report our
results in the more commonly used metric of classification accuracy. However,



it is very important to note that in our context higher classification accuracy
is not always desirable, since some of the data sets actually do not present any
differences, as they are used as controls.

For our maximum entropy classification model, we standardize the value of
the features to have mean zero by calculating their z-score. Hence, the value
of each of the parameter θ from Equation 1 is proportional to the contribution
of each feature. We use McCallum [2002]’s open-source implementation of L1-
regularized maximum entropy, version 2.0, which we modified to allow real-
valued features.

3.1 Features

We are interested in automatically extracted features. This contrasts with pre-
vious work such as [Möller et al. 2008], that uses features that rely on manual
annotation, like word error rate statistics. Table 1 summarizes the feature tem-
plates implemented.

The actual implementation of the feature templates takes four instantiations:
global, beginning (window) of dialogue, and dialogue state. These instantiations
represent from what part of the dialogue the feature is being extracted. For
instance, the feature template “words recognized” expands into all the words
that the recognizer is able to comprehend, and hence, it instantiates into features
such as “how many times the word ‘help’ is recognized at the beginning of the
dialogue”. The number of turns that are considered in the window is specified
as a parameter, currently set as 4, since it gave adequate results in preliminary
experiments. Dialogue state features are extracted in the window, but further
restrict the feature to being active only in certain dialogue states: “For dialogue
state X, what is the mean utterance length?”.

Table 1. Feature Templates

General Lexical / Recoginition Acoustic

# of re-prompted turns # of times word W is recognized Pause machine-user
% of re-prompted turns # of words Gap user-machine
Mean Dialogue length # of repeated words
# of turns # of unique words
# of failed prompts Mean Utterance Length
# of parse errors Barge-in
Dialogue state visited
Outcome of the dialogue

The “outcome of the dialogue” template expands to features that trigger
whether the user’s query was an uncovered route, uncovered neighborhood, un-
covered place, or if results were informed. If any of these feature triggers, so



does the success feature. We avoid expanding the feature template of individual
words globally. All of the others features are averaged globally, in the window,
and by dialogue state. Dialogue states are “Arrival Place”, “Greeting”, “Bus
Number or Departure Place”, “Confirm”, “Next Bus”, “Query error”, “Depar-
ture Neighborhood”, “Departure Stop in Neighborhood”, “Exact Travel Time”
and “Other”.

Maximum entropy classifiers are able to distinguish among classes by de-
tecting differences in the mean value of the features. To detect changes in the
standard deviation, a common technique is to include the value of the squared
value of the features. We follow this standard practice.

4 Experiments

4.1 Data set

We have chosen nine sets of data collected from the Let’s Go Public platform
[Raux et al. 2006]. Let’s Go is an SDS that provides bus planning information
to the Pittsburgh East End community. It has collected over 80,000 dialogues
since 2005, and its data is freely available for research purposes upon request.
We selected a total of 11,736 dialogues of over five turn turns in length, evenly
distributed among nine different data sets. Table 2 shows an explanation of the
time line and the description of each data set.

We wanted to find sets of data that occurred just before and after what we
considered major changes to the system. For this we went over the full log of
changes to Let’s Go. To have some control conditions, we also chose a data set
that contained no major change to the system or to other conditions (sets 5-6
and sets 7-8 of Table 2). Interestingly, we had to revise Table 2 after running our
model, since it found differences between changes that we initially considered to
be minor.

Table 3 provides statistics on the number of turns and estimated success
on our dialogue corpus. The high standard deviation in the number of turns
is due to the fact that this metric is not normally distributed – it has a long
tail resulting from people who stay on the line longer. In Section 4.3 we review
how these conventional objective performance metrics are not reliable to detect
changes across the data sets.

4.2 Experimental Design

We first provide further evidence on the deficiencies of conventional performance
metrics to detect changes in SDS. We do this by reviewing the statistically
significant difference between the number of turns and the estimated success
across the data sets presented in Table 3.

We validate our model with two different experiments, both trained on the
same training data sets, using 10-fold cross validation with a validation set (10%
of the data) and a testing data set (10% of the data). We inspected λ = [1.0, 10.0]
in 1.0 increments and λ = [10.0, 100.0] in 10.0 increments.



Table 2. Description of the data set

Name Start Date End Date Description of Major Events

Set 1 2005-03-04 2005-04-28 System went live to the Pittsburgh commu-
nity.

Set 2 2005-08-01 2005-09-30 Prompt changed to generic: “What can I do
for you?”

Set 3 2005-12-01 2006-01-31 Acoustic model retrained.
Set 4 2006-08-01 2006-09-30 Language model retrained.
Set 5 2007-06-01 2007-06-30 End pointing experiment. First public version

of Let’s Go based on Olympus II.
Set 6 2007-07-01 2007-07-31 No system change from data set 5. Crashes

reported.
Set 7 2007-10-20 2007-11-22 Tuned modem’s acoustic settings, set random

end pointing thresholds.
Set 8 2007-11-23 2007-12-31 Switch back to fixed endpointing thresholds.

No major difference from data set 7.
Set 9 2008-12-01 2009-01-23 New end pointing strategy changed. SUNY

Stony Brook experiment on user. strategies
when confronted by system errors

Table 3. Description of the data set

Dataset Turns
Avg.

Turns
Std. dev.

Success
Avg.

Success
Std. dev.

Set 1 17.1035 13.1994 58.28% 0.49
Set 2 16.9648 12.4947 61.69% 0.49
Set 3 18.3257 13.3877 54.79% 0.50
Set 4 16.7807 12.8700 74.08% 0.44
Set 5 16.9088 13.1077 76.32% 0.43
Set 6 17.5295 20.0300 71.65% 0.45
Set 7 15.7571 12.6864 78.62% 0.41
Set 8 16.4176 13.0109 78.54% 0.41
Set 9 14.6552 11.4973 74.33% 0.43



For the first experiment we attempt to find the best model that explains the
differences across the data sets, and we chose the regularization hyper parameter
that optimizes the classification using the validation set, and report the values of
the testing set. In the second experiment we focus on explaining what the actual
differences between the systems are, and thus we aim to obtain a sparse model
that is “human readable”. Since in Experiment 1, we inspected the data using
different regularization hyper-parameters, we report the sparse model using the
validation data set, maintaining the ‘purity’ of the testing set. We look for models
that resulted in less than 15 features.

For both experiments we run binary maximum entropy classifiers, using con-
secutive datasets. Although we initially considered using multi-class maximum
entropy classification, some of the classes parameters would become sparse (turn
to zero) while others remain dense.

We hypothesize that the magnitude of the difference between the sets that
do not present changes at all (sets 5-6 and 7-8) should be lower than the other
ones (see Table 2).

4.3 Experimental Results

Table 4 summarizes the results our experiments. The column ‘Set’ describes the
data sets compared, with the ones in which no major change was made to the
system are marked with a star. For the best model and sparse models, we report
the mean distance across folds between the sets (which is the classification accu-
racy), standard deviation, standard error and mean number of features selected.
As a baseline, we use the number of turns and estimated success from Table 3.
For the baseline we report Student’s t-tests in which we formulate the null hy-
pothesis to be that the distributions are equal. A value of 1 indicates a rejection
of the null hypothesis at the 5% significance level. A value of 0 indicates a failure
to reject the null hypothesis at the 5% significance level.

Table 4. Experimental Results

Sets Best model Sparse model1 Baseline
dist. std.dev. std.err. feats. dist. std.dev. std.err. feats. turns est. suc.

set 1-2 0.714 0.024 0.008 439.8 0.611 0.025 0.007 11.9 0 0
set 2-3 0.751 0.021 0.007 221.1 0.707 0.032 0.010 14.0 1 1
set 3-4 0.847 0.026 0.008 297.3 0.764 0.032 0.010 13.4 1 1
set 4-5 0.868 0.024 0.008 442.3 0.854 0.017 0.005 12.0 0 0
set 5-6* 0.551 0.021 0.007 16.2 0.565 0.034 0.011 7.5 0 1
set 6-7 0.563 0.031 0.010 175.0 0.570 0.028 0.008 8.9 1 1
set 7-8* 0.523 0.016 0.005 158.9 0.523 0.030 0.009 10.1 0 0
set 8-9 0.952 0.016 0.005 99.2 0.946 0.019 0.006 11.3 1 1



Tables 5-6 report the contribution of each feature in the classification tasks.
We report the θ value of equation 1, instead of using a more complicated ap-
proach like bootstrapping across different folds as Bach [2008] suggests. Negative
values are written in italics for emphasis. Note that for a set of experiments, we
only report one of the parameter vectors, since the other one has the same magni-
tude, but in the opposite direction (sign reversed). In our notation token features
start with “T=”, and dialogue state features start with “S=”. Features that are
in the quadratic space appear with a superscript 2. The subscripts represent
from what part of the dialogue the feature was extracted, possible values are
“win”, for features extracted from the beginning window or one of the dialogue
states (“greet” for greeting, “conf” for confirmation, etc.). No subscript means
that the feature was extracted from the entire dialogue. The “default” feature
is the intercept.

Table 5. Weights of features for experiments including sets 1-4

Set 1 - Set 2 θ1 Set 2 - Set 3 θ2 Set 3 - Set 4 θ3 Set 4 - Set 5 θ4

# of typesGreet -0.09 Reprompts%2
Win -0.17 S=NgbhoodWin -0.20 Gap user-sysConf -1.30

NonUnd%Other -0.08 # of typesWin -0.14 NonUnd% 0.19 NonUnd%2
Conf 0.13

NonUnd%2
Other -0.08 S=NgbhoodWin 0.10 S=Other 0.18 S=Other -0.12

T=NextWin -0.07 S=Ngbhood 0.04 T=AtWin 0.12 Uncovered-Place -0.09

S=GreetWin -0.06 Barge2
Other -0.03 S=Traveltime -0.05 S=Traveltime 0.03

Table 6. Weights of features for experiments including sets 5-8

Set 5 - Set 6 θ5 Set 6 - Set 7 θ6 Set 7 - Set 8 θ7 Set 8 - Set 9 θ8

T=HelloWin -0.06 NonUnd% 0.11 DTMF0Win -0.01 Gap user-sys 2.02
NonUnd% -0.02 T=D-ZeroWin 0.04 BargeConf -0.01 Gap user-sysConf 0.43
Gap sys-userConf -0.01 T=64AWin -0.04 Barge2

Win -0.01 <Default> 0.22
T=54CWin 0.01 T=61CWin -0.01 Barge2

Conf -0.01 T=YesWin 0.10

Barge2
Win -0.01 Gap sys-userConf 0.01 DTMF0Greet -0.01 S=Ngbhood -0.05

4.4 Discussion

Traditionally, the SDS community evaluates performance in conventional objec-
tive metrics, such as mean number of turns and estimated success. Table 3 shows

1 We report the sparse model using the validation data set, in order to only query
once the testing set.



that the standard deviation of the number of turns can be higher than its mean.
We notice that these metrics fail to trigger statistically significant differences
across the data sets 1-2 and 4-5 (See Table 4). We give evidence that DSDF is
more sensitive, since it is able to detect the differences between these sets, and
more importantly it is able to describe what the differences are. Between sets
1 and 2, the greeting prompt was replaced from a specific prompt to a general
“What can I do for you prompt”. DSDF is able to detect this change and explain
it showing that in the newer system, users’ utterances have a richer vocabulary
in the greeting dialogue state (see Table 5). We are concerned about the failure of
standard metrics to detect changes between sets 4 and 5, since the differences of
the back-end infrastructure to Olympus II were a major landmark in the history
of the development of Let’s Go. DSDF is able to recognize differences in these
sets, and explains them as different end pointing strategy and non-understanding
percentages. DSDF also provides evidence suggesting that the number of routes
supported was incremented, as seen with the different activation of the feature
Uncovered-PlaceGlobal. Again, DSDF is able to accurately describe that the dif-
ferences between sets 8 and9 are because of different end pointing strategies,
agreeing with the development log. As an interesting side note, Table 4 shows
that selecting a classifier for its sparsity sometimes has little impact on its per-
formance. The classifier that distinguishes among sets 8 and 9 only gains less
than 1% of accuracy by increasing its feature space from 11 to 100.

Estimated success shows a statistically significant difference between sets
5 and 6, even though there was no change to the system in these dates. Using
DSDF, we explain that differences between these control sets are due to different
usage, as the most predictive features are related to differences in the tokens
transcribed by the recognizer (see Table 6). More accurately, DSDF considers
these control sets as almost indistinguishable, following our initial hypothesis
that similar sets should be unrecognizable from each other (55% of distance, out
of a minimum of 50%).

DSDF is able to accurately recognize the difference between sets where esti-
mated success and number of turns were unable to detect changes. However it is
worth noting how minor the changes between data sets 6 and 7 are considered
by DSDF.

5 Conclusions and Future Work

We provided further evidence on the inappropriateness of using conventional
metrics to distinguish SDS. We have presented a novel dialogue distance func-
tion, based on maximum entropy, that is more fine-grained than conventional
metrics and has a lower variance. Furthermore, this model was also used to find
unexpected changes in the data sets, and describe them.

In future work we will address the issue of drawing a relationship between
dialogue differences and an assessment metric. For these we will consider using
variable selection to investigate what feature correlate with shorter, more suc-
cessful dialogues. We will investigate the relationship of the features that help



to distinguish among SDS, and the features that give some information about
dialogue quality.
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