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Abstract

The document gives a description of the work carried out at the 2011 Summer Workshop at
CSLP at Johns Hopkins University. This work focuses on �nding alternative parameterizations of
speech, moving away from more convention spectral representations such as Mel-Frequency Cep-
stral Coe�cients to more speech production related techniques. Speci�cally we investigated two
speci�c areas. Articulatory Features, where the speech signal is represented by multistreams of
features that represent phonological features based on IPA-type features, such as place of articu-
lation and/or vowel height, frontness etc. The second area was investigating the Lilljenkranz-Fant
model where we automatically derive glottal excitation features and formants from databases of
natural speech.

As existing statistical parametric speech synthesis techniques already produce fully under-
standable speech from well-recorded databases, we speci�cally wished to investigate these two
models in an environment that was more demanding than simple read speech. Thus we applied
our modeling techniques to databases of varying emotion and personality.

Evaluation of speech synthesis is a research �eld in itself, in that human judgements of quality
of synthetic speech are expensive to run and give somewhat subtle results. In this project we
have utilized two evaluation techniques, one quite novel, and the other still in very much at an
experimental stage. The �rst novel technique for objectively evaluating emotional and personality
speech synthesis is to utilized the work on emotion-ID, using such classi�ers to score synthetic
output. The second subjectivemeasure is to use Amazon Mechanical Turk to score the synthesized
utterances.

This work has successfully developed novel parameterizations of speech that can produce
synthesis of a quality at least equal to existing statistical speech synthesis techniques and shown
the e�ectiveness of using automatic evaluation techniques for wider styles of speech (emotion
and personality) than has been done before.
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1 Motivation and Background

Over the last 20 year speech synthesis techniques have moved from being an expert-based rule-
driven approach to a more data-driven approach. This trend is common in many aspects of
speech and language technologies and is due in part to better computing, larger datasets, more
demand for faster results, and improvements in modeling and machine learning.

While MITalk [1] best typi�es the early work in fully automatic conversion of text-to-speech.
Its development required the design and speci�cation of the many stages involved in making
natural and understandable speech from text alone. Later work utilized concatenation of human
recordings from �xed well-de�ned databases. At �rst, databases of all diphones (phone-phone
transitions) in a language were carefully recorded and labeled and used to build more natural
sounding speech [2]. As inventories became more complex, more elaborate selection techniques
were developed to choose the right unit. This led to automatic acoustically based measures to
�nd the right units in a large speech databases [3]. This was later codi�ed into what is now
called unit selection were selection techniques jointly optimize a target cost and a join cost to
�nd the best units from large databases of natural speech [4].

Unit selection focuses on selection of instances of sub-word (and often sub-phonetic) segments
from a databases. Thus the selection techniques can be brittle at the edges of the model, thus
badly labeled units can erroneously be selected causing discontinuities in the resulting synthesis
that distract the listener.

A further direction in data-driven processing is statistical parametric speech synthesis [5].
Where generative models are used based on averages of speech units. The results are typically
much smoother than unit selection techniques, but at a cost of loosing some naturalness or
�brightness� to the resulting speech. The annual Blizzard Challenge [6] tests synthesis techniques
on the same databases and results show that typical unit selection techniques produce speech
that listeners label as more natural, while statistical techniques produce more understandable
speech [7].

Much of the current speech synthesis research is focused on the statistical speech synthesis
area. Statistical techniques can work well with smaller amounts of data than unit selection,
and allow for adaptation techniques that do not �t well into the more traditional unit selection
techniques. However like all trends in statistically process there can be over-reliance on abstract
subjective measures (e.g. WER in ASR and Bleu in SMT) which can focus research in incremental
monotonic improvements. Although this has not yet happened in statistical parametric speech
synthesis, the area is mature enough that we understand how well statistical methods work with
standard spectral modeling techniques (e.g. MFCCs). But the underlying modeling techniques
actually have no need to be restricted to such conventional parameterizations and there is an
opportunity to �nd more relevant representations of speech that better capture how speech is
produced, not just how the resulting spectrum is. Many of the parameterizations investigated
(often by hand) 20-30 years ago are good representations for speech synthesis but were not
practical with that technology.

Thus with a goal of broadening the �eld of statistical parametric speech synthesis into a
richer set of representations we proposed this workshop project to look beyond standard spectral
modeling.

During the six-week workshop We investigated two di�erent parameterizations in parallel: ar-
ticulatory features [8] and the Lilljenkranz-Fant model [9]. As SPSS techniques for read speech are
quite mature, we also wanted to test these techniques on more varied data thus used databases of
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emotional speech and varying personalities to see if these new techniques o�er a better represen-
tation. For evaluation we utilise a novel technique of emotion-ID technology to give an objective
measure of our synthesis, and followed this up with a subjective measure using crowdsourcing
through Amazon Mechanical Turk.

2 Articulatory Features

2.1 Types of Articulatory Representations

This term has been used to cover a range of related speech representations, thus it is important for
us de�ne how we use this term. Traditional phonology as typi�ed by the International Phonetic
Alphabet (IPA) identi�es phonological segments in speech with speci�ed phonemes that in turn
are identi�ed by a collection of features. Vowels in human speech can be viewed in a chart
indexed by the frequency of the �rst two formants.

We can identify vowels as being in two dimension, high to low (F1), and front to back (F2).
Di�erent languages and dialects may make distinctions between di�erent boundaries within this
chart, but we can still identify vowels by the amount of heightness and frontness. These are
not the only features that identify vowels, roundness, nasality, length, stress and tone may also
contribute to phonological variation in articulation.

Consonants too can be broken down in a set of features, distinguishing stops, fricatives, nasals
etc. Place of articulation from the lips to the top of the throat.
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At this stage we also want to distinguish our use of articulatory features from more explicit
representations. In this project we are representing our data as idealized features that we derive
from phonological knowledge and directly from acoustics. Other similarly named work uses
actual articulatory measurements of human articulators. In such work articulatory position
data of tongue, teeth lips, vellum etc of a speaker is measured through techniques such as
Electromagnetic Articulatographs (EMA), microbeam or ultrasound. The MOCHA database is
one of the common datasets used in such work [10]. Although such work is related to the current
project we did not use such data, and have focused on the feature based method described above.

To be even more speci�c this articulatory feature (AF) techniques follow on directly from
the work of Metze [11]. His use of AFs has before concentrated on cross-style speech recognition
and in-style recognition but had not yet investigated their use in a synthesis framework.

3 Expressive Speech Databases

In an analogous way that speech recognition has progressed from simple speech styles to more
complex ones, (e.g. read speech to conversational speech). Speech Synthesis work has historically
concentrated on the synthesis of clearly read speech, typically collected within isolated phoneti-
cally rich utterances. Although high quality understandable speech is the result, it is hard to get
di�erent styles of speech without also recording data in the target style. Although emotion and
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style recognition has become a standard �eld with annual challenges, speech synthesis has only
just started looking at expressive databases, and looking for reasonable evaluation paradigms for
such generated speech.

As we wished to make our target speech more interesting that just standard read speech we
choose to target more expressive databases in order to stretch our techniques and hopefully have
a larger space to show o� their advantages. We did not wish to record new databases for this
work (though in hind-sight that may have helped us).

Due to the availability of databases we choose three di�erent databases of emotional and
personality databases. The databases cover both English and German. It seemed useful not to
just use one language for our work, but it also should be noted that English and German (at
least prosodically and expressively) are relatively similar languages.

LDC Emotional Database

• English, dates and numbers from 7 actors

• 2418 utterances, average length 3s, total about 2 hours

• 4 class problem: happy, hot-anger, sadness, neutral

• 6 class problem: ..., interest, panic

• 15 class problem: ..., anxiety, boredom, cold-anger, contempt despair, disgust, elation,
pride and shame

Berlin Emotional Database

• German semantically neutral utterances, 10 actors

• 535 utterances, average length 2.8s, total about 25 minutes

• 6 emotions: anger, boredom, disgust, anxiety/fear, happiness and sadness

In addition to these emotional databases we also made use of a the Berlin Personality
database. This data was performed by one actor in ten conditions varying the �Big-5� person-
ality constraints. Speci�cally there were recordings of plus and minus each of the �ve emotions:
openness, conscientiousness, extraversion, agreeableness and neuroticism.

For each condition there were three types of recording.

Part I The same phonetic recording (around 20s), more than 15 times. Total 960 utterances.

Part II Excepts of 20s from open descriptions of pictures (to provide comparable sized to data
to Part I, but more spontaneous speech). Total 210 utterances.

Part III Recording of up to 1.5 minutes of description of pictures. Total 360 utterances (around
5 hours).

All three databases were automatically phonetically labeled using our FestVox tools and
complete utterance structure were constructed to allow well de�ned methods to extract detailed
contextual features from them. These databases (and subsets thereof) were used for building
synthesizers, voice conversion models, emotion-ID models and for text
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Figure 1: Automatic �objective� classi�cation of emotions on Human and synthetic speech: the
�human� bars in the background show UAR (Unweighted Average Recall) on Human speech from
emoDB, the horizontal line marks the chance level. The �tts� bars show how these classi�ers label
non-emotional, fully synthesized speech, which is almost at chance level, as expected. The �cgpE�
(re-synthesized) speech gets recognized similar to Human speech.

4 Evaluating Expressive Synthesis

Evaluation of speech synthesis is hard, it fundamentally depends on a listeners personal prefer-
ence. In order to be able to properly evaluate di�erent models of expressive synthesis it would
be necessary to have su�cient listeners in appropriate environments to answer suitable questions
about their views. All of conditions are not in themselves well-de�ned, but we do have some
experience on how many listeners are needed, what questions to ask, and how to control for lis-
tening conditions. Recently an annual Blizzard Challenge has [6] o�ered the opportunity to not
just allow the testing of di�erent synthesis techniques, but also allow the testing of the stability
of evaluation techniques. From its results we can see the types of questions, and the number of
listeners we probably require to be con�dent about signi�cant di�erences in out models.

Ultimately we want to �nd an objective measure that is closely correlated with human per-
ception of expressing speech. Such an objective measure could then be used in machine learning
optimization o�-line. In this project we investigated both objective measures and subject mea-
sures.

4.1 Using Emotion-ID systems to evaluate expressive speech

[12] contains much of the description contained here.
First, we veri�ed that established approaches to automatic detection of emotions in human

speech can also be used to detect emotions in synthesized speech of various qualities. Figure 1
shows the unweighted average recalls (UARs) of emoDB emotion classes achieved by various
types of features extracted using openSMILE [13] and using WEKA [14] for classi�cation. For
the purposes of this chapter, we present the following conditions:
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tts Text to speech without any emotion context. Predicts durations, F0, and spectrum (through
AFs)

cgpE text-to-speech with emotion �ag, (with natural durations). Predicts F0 and spectrum
(through AFs)

We see that automatic emotion classi�cation can be used for synthesis evaluation, and that
spectral features are most reliable over all databases (not shown here). We achieve comparable
results for English and German, so that the proposed method passed a sanity check for assessing
synthesized speech.1

Further experiments con�rm this impression, and in ongoing work we are investigating the
conditions under which certain features (spectral, duration, etc.) can in�uence the automatic
assessment of not the linguistic content of a message, but the perception of the speaking style,
in which it is delivered.

4.2 Subjective Evaluation

Given the short timeframe available during the workshop, we decided to use crowd-sourcing
using Amazon Mechanical Turk (AMT) as our �subjective� veri�cation instrument. We ran a
number of veri�cation experiments, to make sure that AMT evaluation produces meaningful
results, even if workers may not be using good audio equipment, may be in noisy environments,
or may actively try to cheat.

Almost all workers on AMT speak English, so we �rst evaluated performance on the English
LDC emotion database, using standard and ad-hoc measures to exclude unreliable workers and
tasks. Using 74 unique workers, which had completed 169 Human Intelligence Tasks (HITs),
we achieved an average classi�cation accuracy of 60% on the four-class problem (anger, sadness,
neutral, happiness), which most confusions appearing between happiness, neutral, and sadness.
On the �fteen-class problem, we achieved an average of 12% (neutral=29%, hot anger=26%, sad-
ness=25%, ..., anxiety=5%, disgust=5%, shame=4%), with most confusions occurring between
sadness, neutral, and contempt (68 workers, 218 HITs).

Using the same setup, the German Berlin Emotion Database's seven-class problem was classi-
�ed with 41% accuracy, using 37 workers and 245 HITS, which seems reasonable (given that AMT
workers are probably not German speakers) and is between the two accuracies achieved for the
two conditions of the LDC database. We conclude that AMT can also be used for cross-lingual
experiments on emotion recognition, and possibly other voice characteristics.

Taken together, these experiments establish that humans are signi�cantly more accurate
than chance for smaller numbers of emotions even in cross-lingual experiments, and with less-
controlled settings such as AMT. In our experiments, emotions such as sadness, neutral, and
hot-anger could be identi�ed best.

In this chapter, we propose to evaluate the quality of emotional speech synthesis by means of
an automatic emotion identi�cation system. We test this approach using �ve di�erent parametric
speech synthesis systems, ranging from plain non-emotional synthesis to full re-synthesis of pre-
recorded speech. non-emotional synthesis to resynthesis with all parameters copied from human
voices are evaluated. We compare the results achieved with the automatic system to those

1On the LDC Emotion database, this method can predict emotions from the linguistic content (dates &
numbers) even if NO emotion parameters are used in synthesis, because certain �non-emotional� words, i.e. years,
are not distributed randomly across all emotions.
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of human perception tests. While preliminary, our results indicate that automatic emotion
identi�cation can be used to assess the quality of emotional speech synthesis, potentially replacing
time consuming and expensive human perception tests.

4.3 Introduction

In order to improve synthesis of emotional speech, it is necessary to be able to compare di�erent
systems and to evaluate their quality. So far, the quality is generally assessed through human
perception tests. In order to be able to detect even small di�erences in the quality of two systems,
the number of samples as well as the number of human judges has to be su�ciently high. Finding
quali�ed human participants however is di�cult and the number of samples that can be presented
to one listener should be limited, to avoid fatigue. Hence, human perception tests are time
consuming and expensive. These disadvantages are avoided, if automatic emotion identi�cation
could be used as an objective measure to evaluate the quality of emotional speech synthesis. work
we explore the usage of automatic emotion identi�cation systems... The underlying assumption
is that an emotion synthesis system is of high quality, if the intended emotion can be predicted
correctly by an emotion identi�cation system that is trained on human voices. Of course, such
measures of emotional quality are meant to complement, not replace, existing evaluation metrics
such as Mel-Cepstral Distortion (MCD), Mean Opinion Scores (MOS), or others, focusing on
naturalness, intelligibility, or accuracy of the synthesized speech.

4.4 Databases

We used the German �Berlin Database of Emotional Speech� (emoDB) [15] of prototypical emo-
tion portrayals to train and evaluate various emotional speech synthesis systems. 10 actors (5
female and 5 male) produced 10 (emotionally neutral, grammatical, but often non-sensical) sen-
tences each in 7 di�erent emotions: of 7 classes. joy (J), neutral (N), boredom (B), sadness (S),
disgust (D), fear (F), and anger (A). For our synthesis experiments, we only retained samples
which could be identi�ed with an accuracy of at least 80% in tests with human listeners. rec-
ognized correctly by the human listeners with an accuracy of at least 80%. Furthermore, the
selected samples had to be judged as natural by at least 60% of the listeners, which leaves 535
samples.

For future experiments, we de�ned a held-out test set of 69 samples. The classi�cation
experiments in this chapter are based on the training set of the remaining 466 samples, using the
leave-one-speaker-out evaluation method. same time that samples used for training are disjoint
from the ones used for testing. The distribution of the seven emotion categories for both sets is
given in Table 1.

4.5 Emotion identi�cation system

Our emotion identi�cation system is based on standard state-of-the-art components: we use the
openSMILE toolkit 2 [13] for feature extraction and the WEKA data mining toolkit 3 [14] for
classi�cation. We focus on easy to extract acoustic features, and use the 1582 acoustic features
of the INTERSPEECH 2010 Paralinguistic Challenge baseline [16]. This feature set is obtained
by applying a brute-force approach, in which �rst of all 38 low-level descriptors and their �rst

2http://opensmile.sourceforge.net/
3http://www.cs.waikato.ac.nz/ml/weka/
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Table 1: Distribution of the seven emotion categories on training and held-out test set (number
of samples). Total amount of speech is ca. 25 minutes, which is acceptable for our purposes.

training test
∑

joy 63 8 71
neutral 72 7 79
boredom 73 8 81
sadness 52 10 62
disgust 38 8 46
fear 57 12 69
anger 111 16 127∑

466 69 535

Table 2: Description of the acoustic features based on 38 low-level descriptors and their �rst
derivative and 21 functionals.

Descriptors Functionals

PCM loudness position max./min.
MFCC [0-14] arithm. mean, std. deviation
log Mel freq. band [0-7] skewness, kurtosis
LSP frequency [0-7] lin. regression coe�. 1/2
F0 by sub-harmonic sum. lin. regression error Q/A
F0 envelope quartile 1/2/3
voicing probability quartile range 2−1/3−1/3−2
jitter local percentile 1/99
jitter DDP percentile range 99−1
shimmer local up-level time 75/90

derivative are computed on the frame level. In a second step, 21 functionals are applied in
order to obtain a feature vector of constant length for the whole utterance. Table 2 gives an
overview of the low-level descriptors and associated functionals. 16 zero-information features
(e. g. the minimum of the fundamental frequency is always zero) are removed from the set of
1596 possible features, and two additional features (F0 number of onsets and turn duration) are
added, resulting in a set of 1582 features. As the data consists of emotionally neutral, prede�ned
sentences, no linguistic features are used.

For classi�cation, we used Support Vector Machines (SVMs) with a linear kernel and Se-
quential Minimal Optimization (SMO) for learning. The complexity parameter was determined
in advance and set to 0.1 for the classi�cation experiments reported in Section 4.7.2. As the
classes are slightly unbalanced, we applied WEKA's implementation of the Synthetic Minor-
ity Oversampling Technique (SMOTE). A 10-fold leave-one-speaker-out evaluation was used to
determine the performance of the classi�er on the whole data set.

For evaluating a synthesized voice sample, the synthesized voice was treated as additional
data of the same speaker as some systems are based on the natural parameters (e. g. natural
durations) of this speaker. Thus, neither the synthesized voice nor the data of the corresponding
human speaker was seen in the training process. Prior to the classi�cation process, a z-score
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Table 3: Di�erent types of acoustic features and number (count) of low-level features derived.

Type Number

Prosodic Features

F0 72
energy 38
durations 154

Voice Quality Features

jitter 68
shimmer 34
voicing probability 38

Spectral Features

MFCC 570
MEL 304
LSP 304

1582

speaker normalization of the features was applied.
Since the number of features (1582) is rather high, we also applied principal component

analysis (PCA) and feature ranking based on the information gain ratio (IGR) to reduce the
number of features. The results show that the SVM classi�er can handle the large number of
features and that reducing the number of features does not signi�cantly improve the results.

In order to further analyze the di�erences between synthesized and human emotional speech,
we performed separate classi�cation experiments for di�erent sub-sets of features: F0, energy
(EN) , duration (DUR) , jitter (JT) , shimmer (SH), voicing probability of the �nal F0 candidate
(VC), line spectral pair frequencies (LSP), logarithmic MEL frequency bands (MEL), and Mel
frequency cepstral coe�cients (MFCC). di�erent types using the available low-level descriptors as
shown in Table 3. Even though our feature set does not explicitly model word or pause durations,
the position of the extreme values of all low-level descriptors are durations, and therefore make
up a separate group.

4.6 Parametric emotional speech synthesis

For comparison of human and machine evaluation, we created �ve parametric speech synthesis
systems with varying degrees of prediction and hence of di�erent quality. We use �ClusterGen�
Parametric Synthesis (CGP) [5], as this will use the data more e�ciently than any concatenative
technique given the amount of type of training data we have. All systems are based on articula-
tory features as an intermediate representation [17]. Importantly, we have two dimensions on the
systems. The �E� systems (ttsE and cgpE ) include explicit emotion information in the training
and testing, i. e. the model uses speech labeled as angry to model angry speech. The non-E sys-
tems (tts and cgp) do not use explicit emotion information, thus acting as controls. The second
dimension is changing the amount of information that is predicted, to show the importance of
di�erent parts of the signal. The resynth system does not predict, but simply decomposes the
signal into its components and reconstructs it. cgpE and cgp use natural durations, and predict
spectrum and F0. ttsE and tts predict F0, spectrum, and durations.

tts Full text-to-speech (TTS) ignoring emotional information in both training and testing. This
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is a control experiment; the accuracy in the perception and identi�cation experiments
should be at chance level (14.3% for 7 classes).

ttsE As with the tts system, this system predicts durations, F0, and spectrum, but also has an
�emotion �ag� identifying the desired emotion. Training also has this �ag, thus the models
can generate di�erent emotions. Classi�cation should be better than chance.

cgp As the tts system, this system ignores emotions in synthesis and training. It predicts F0
and spectrum, but uses the durations extracted from an original, matching human speech
sample. The actual duration patterns are actually dependent on the emotion and � although
not modeled explicitly � thus this system actually contains information about the intended
emotion of the speaker, and shows the importance of durations.

cgpE As the cgp system, this system predicts F0 and spectrum and uses the actual durations
from an original speech sample. This system uses emotional labeling in both training and
testing, and will generate di�erent predictions for each emotion. We expect the recognition
results to be better than the ones for cgp.

resynth This system is a pure re-synthesis approach, using natural durations, F0, and spectrum,
processed with a speech synthesis framework. It represents an upper limit for the quality
of our emotional speech synthesis.

4.7 Evaluation

In order to evaluate the quality of the automatic assessment, the results of the automatic emotion
identi�cation system are compared to the ones obtained in a human perception test.

4.7.1 Human perception tests

As human perception tests are time consuming and expensive, we selected an emoDB subset
that contains 5 randomly selected samples for each emotion. For each of the 6 experiments,
each of the 35 audio samples was presented to 15 native German listeners in random order
using a web interface. For each sample the human judges had to select one of the 7 given
emotions, resulting in 525 judgments for each experiment. The judges were mostly students
(36% male / 64% female, mean age 26 years, age range 22-39) and wore high-quality headphones,
in a quiet o�ce environment. Listening and judging took 9.5 seconds on average per sample.

As expected, the results of the tts control experiment (15.6%) are close to chance level
(14.3%). According to the human judges, there is no signi�cant di�erence between the ttsE
and tts systems, even though ttsE includes emotion information. However, if natural durations
are used instead of predicted ones, without an emotion �ag (system cgp), human listeners are
clearly able to distinguish the seven emotions. The accuracy for cgp is 61.5%. Again, adding an
emotion �ag does not lead to better results in the human perception test, in fact leading to an
insigni�cant degradation for cgpE (61.0% vs. cgp's 61.5%). In our upper limit experiment � the
re-synthesis based on natural durations, F0, and spectrum � the human judges can predict the
seven emotions with an accuracy of 79.8%. This is certainly a good result, but it is still worse
than the performance of the human listeners for the original recordings of the actors, which is
87.7%. The accuracies are summarized in Table 4. The confusion matrices are shown in Table 5.
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Table 4: Results of the human perception tests compared to the results of the emotion identi�-
cation system for di�erent synthesized voices and the original human voices.

Human Perception Emotion ID

emoDB subset subset full

tts 15.6% 14.2% 14.1%
ttsE 17.5% 17.1% 29.0%
cgp 61.5% 62.8% 64.5%
cgpE 61.0% 74.2% 71.5%
resynth 79.8% 85.7% 81.8%
original 87.7% 82.8% 83.7%

hypothesis
J N B S D F A

∑

re
fe
re
n
ce

J 4 33 1 8 4 16 9 75
N 4 46 5 6 3 7 4 75
B 0 48 1 2 3 18 3 75
S 5 46 4 2 2 12 4 75
D 1 34 5 9 4 17 5 75
F 11 36 0 2 4 19 3 75
A 0 41 2 3 7 16 6 75

525

(a) tts: 15.6% accuracy

hypothesis
J N B S D F A

J 4 19 2 6 1 42 1
N 15 28 3 16 2 9 2
B 1 39 3 15 3 12 2
S 4 24 1 21 4 19 2
D 1 31 2 16 5 18 2
F 8 29 2 13 3 20 0
A 3 19 0 6 5 31 11

(b) ttsE: 17.5% accuracy

hypothesis
J N B S D F A

J 40 18 4 0 1 4 8
N 0 54 9 3 0 4 5
B 3 6 63 1 1 1 0
S 0 8 16 47 1 3 0
D 1 6 3 18 34 13 0
F 6 11 0 1 4 37 16
A 17 7 1 0 0 2 48

(c) cgp: 61.5% accuracy

hypothesis
J N B S D F A

∑

re
fe
re
n
ce

J 41 19 0 1 2 4 8 75
N 1 45 8 7 3 1 10 75
B 0 6 67 2 0 0 0 75
S 0 6 25 40 1 3 0 75
D 0 5 1 17 35 17 0 75
F 4 15 4 1 0 44 7 75
A 21 6 0 0 0 0 48 75

525

(d) cgpE: 61.0% accuracy

hypothesis
J N B S D F A

J 63 6 0 0 1 1 4
N 0 53 12 7 0 0 3
B 0 0 68 5 2 0 0
S 0 1 8 63 0 3 0
D 0 2 0 12 61 0 0
F 15 0 0 0 0 46 14
A 8 2 0 0 0 0 65

(e) resynth: 79.8% accuracy

hypothesis
J N B S D F A

J 69 1 0 2 1 0 2
N 0 64 5 2 1 0 3
B 0 1 74 0 0 0 0
S 0 0 5 69 0 1 0
D 0 1 2 9 62 1 0
F 16 1 0 0 0 54 4
A 5 1 0 0 0 0 69

(f) original: 87.8% accuracy

Table 5: Results of the human perception tests for di�erent synthesized voices and the original
intended emotions. Using natural durations seems to be important for classi�cation (5 audio �les
for each of 7 classes, annotated by 15 labelers each = 522 comparisons).

There appears to be no generalizable systematic e�ect of the E emotion �ag. Anger and
sadness recognition clearly bene�ts in the tts systems. While fear recognition su�ers, all other
emotions remain near the baseline. When applied to cgp systems, the �ag inclusion boosts
the recognition of all emotions except sadness. Also, accuracy of neutral speech recognition
decreases. Consequently, learning durations, F0 and spectral parameters from emotion-speci�c
data partitions generally improves recognition of synthesized anger.

4.7.2 Automatic evaluation based on emotion identi�cation

The emoDB-trained emotion identi�cation system described in Section 4.5 is now used to evaluate
the �ve systems for synthesis of emotional speech described in Section 4.6.

For the three systems tts, ttsE, and cgp, the results of the automatic system on the subset are
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hypothesis
J N B S D F A

∑
re
fe
re
n
ce

J 15 8 12 0 6 16 6 63
N 20 9 15 0 3 17 8 72
B 19 9 13 0 7 20 5 73
S 13 10 13 0 2 14 0 52
D 14 4 5 0 4 7 4 38
F 15 8 9 0 5 15 5 57
A 31 16 23 0 7 25 9 111

466

(a) tts: 14.1% UAR, 13.9% WAR

hypothesis
J N B S D F A

J 33 5 3 0 0 15 7
N 3 33 11 0 19 5 1
B 2 36 9 0 18 7 1
S 1 20 12 0 16 3 0
D 1 13 4 0 9 11 0
F 6 18 3 0 15 11 4
A 40 0 0 0 0 16 55

(b) ttsE: 29.0% UAR, 32.1% WAR

hypothesis
J N B S D F A

J 43 4 0 0 0 10 6
N 0 57 4 0 1 10 0
B 0 18 43 2 9 1 0
S 0 3 10 33 6 0 0
D 2 4 3 2 25 1 1
F 3 7 3 0 1 41 2
A 51 1 0 0 4 6 49

(c) cgp: 64.5% UAR, 62.4% WAR

hypothesis
J N B S D F A

∑

re
fe
re
n
ce

J 47 3 0 0 0 7 6 63
N 0 61 7 0 1 3 0 72
B 0 16 48 1 5 3 0 73
S 0 0 10 39 2 1 0 52
D 4 3 2 2 25 2 0 38
F 2 6 2 0 2 43 2 57
A 31 0 0 0 5 9 66 111

466

(d) cgpE: 71.5% UAR, 70.6% WAR

hypothesis
J N B S D F A

J 44 1 0 0 1 8 9
N 0 62 5 0 1 4 0
B 0 3 65 3 2 0 0
S 0 1 5 46 0 0 0
D 0 0 2 0 32 2 2
F 6 3 0 1 0 45 2
A 23 0 0 0 0 3 85

(e) resynth: 81.8% UAR, 81.3% WAR

hypothesis
J N B S D F A

J 40 0 0 0 1 7 15
N 0 64 6 0 2 0 0
B 0 4 66 2 1 0 0
S 0 0 1 51 0 0 0
D 1 4 1 1 29 1 1
F 4 2 0 1 1 47 2
A 13 1 0 0 0 1 96

(f) original: 83.7% UAR, 84.3% WAR

Table 6: Confusion matrices and performance of the automatic emotion identi�cation sys-

tem for di�erent synthesized voices and the original human voices in terms of the (unweighted)
average recall (UAR) and the weighted average recall (WAR) / accuracy.

very close to the results of the human perception test. For cgpE and resynth, better results are
obtained with the objective measure, whereas the results are worse for the original human voices.
However, this subset of 35 samples is very small and hence the signi�cance of these di�erences is
low. For the performance of the emotion identi�cation system on the whole training set, similar
trends can be observed. On the whole training set (which, again, we use for leave-one-speaker-out
testing), the system ttsE is judged clearly better than tts, and cgpE is clearly better than cgp.
Resynth represents the best of the �ve speech synthesis systems, still performing slightly lower
than the original human voices, though. Table 6 shows the confusion matrices.

Figure 2 shows the performance of emotion identi�cation systems trained on di�erent sub-
sets (or types) of acoustic features. In general, the classi�ers based on spectral features (MEL,
MFCC 0-14, MFCC 1-14) as well as LSP perform very well. They also contain the highest
numbers of individual features, which can bias the evaluation. Inclusion of the emotion �ag
improves synthesis and objective evaluation on basis of these features, as expected. The same
can be observed for F0 features. All other features change inconsistently with respect to the
switch. The lowest performance is obtained with the small group of jitter and shimmer features.
Evaluation based on VC or F0 features only leads to inconclusive results, as our classi�ers seem
to detect synthesis predictions of pitch and voicing better than actual resynthesized pitch and
voicing.

Table 2) is clearly lower than the number of spectral features. The performance of the resynth
MEL and MFCC features is almost identical to the performance on human voices. However, a
clear drop in performance is observed for F0 features and the voicing probability features of
the �nal F0 candidate. Obviously, there are clear di�erences between the energy patterns and
smaller di�erences between the durations patterns, too.
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Figure 2: Automatic emotion identi�cation results for di�erent feature types, see Table 2 and
Table 3.

4.8 Conclusions

The results of the emotion identi�cation experiments are very consistent and mostly con�rm
our intuition. The results of the objective measure highly correlate with the ones of the human
perception tests � however at a much lower price, much faster, and with much lower e�ort involved
in the evaluation. It is interesting to note that for both human evaluation and evaluation by
automatic classi�cation using natural durations seems to be the most important factor to achieve
high accuracy.

Thus, automatic emotion identi�cation can be used successfully to judge the quality of emo-
tional speech synthesis systems, at least for in-development assessment of improvements, if not
for �nal judgments. In addition, the analysis of di�erent feature types can give valuable insights
into why synthesis systems perform di�erently, and worse than human voices.
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5 LF-Model and Formant Synthesis

Unit selection synthesis [18, 19], based on waveform concatenation, is capable of producing
synthetic speech that is almost indistinguishable from natural speech in some circumstances.
However, it has a number of widely recognized drawbacks as well. Foremost among these is the
di�culty of rendering natural expressiveness in the output. Because the unit selection approach
requires every possible variation of speech quality to be represented in the database, a database
containing all expressive variations�happy, sad, excited, angry, sarcastic, doubtful, etc.�would
be prohibitively large.

Parametric speech synthesis [20, 21] has the potential to avoid this problem since the acoustic
speech signal is not stored, but rather generated de novo based on models of the time course
of a relatively small number of acoustic phonetic parameters. Thus, any acoustic variation that
can be modeled can be generated. However, the problem for parametric synthesis is to develop
models of su�cient depth and complexity to capture all the qualities of natural speech.

Recent advances in speech synthesis (e.g., [5]) have led to the development of statistical
parametric speech synthesis (SPSS) techniques that learn the time course of parameters and
thus do an excellent job of �tting a parametric model to the speech of an individual, capturing
both the segmental and prosodic patterns common to that individual. The NPESS project
was intended to extend this approach to also learning the underlying patterns associated with
di�erent expressive features in speech.

One area in which SPSS has been somewhat weak has been in the area of voice quality.
Many of the present SPSS systems have a buzzy quality that has been attributed to the overly
simple pulse excitation model that underlies the waveform generation process. Voice quality has
also be identi�ed as one of the most important contributors to expressiveness in natural speech
(e.g., [22]). For both these reasons, we chose to concentrate on applying a better voicing source
model�the Liljencrants-Fant (LF) model [9]�within the context of an SPSS model.

More speci�cally, this portion of the NPESS project examined the possibility of conjointly
�tting formant synthesis parameters (pole and zero frequencies and bandwidths) and source
characteristics to speech corpora. We sought to achieve several goals:

1. Update and adapt existing speech analysis software to provide highly accurate paramater-
izations of an individual's speech using an analysis-by-synthesis technique.

2. Show that features derived in this way, notably the phonatory source features, were able to
represent expressive variation in a way that could be used to both classify and manipulate
the expressive quality of the speech.

3. Show that the parameterizations was amenable to current statistical learning techniques
and thus, that it could be used to create a parametric speech synthesizer.

We describe progress toward each of these objectives in the following.

5.1 Software

Software adapted for the workshop was based on an analysis-by-synthesis approach described by
[23]. The synthesis component of this software was a cascade formant synthesizer based loosely
on the design �rst described by [21], but without a parallel resonator branch. The cascaded
formant resonators and zeros were driven by the the Liljencrants-Fant source model for voiced
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Figure 3: Illustration of the Time-related parameters of the LF model

segments, and a uniform distribution noise generator for voiceless segments. These components
are described more fully below. All software developed for the workshop as well as a number of
previously developed support libraries and applications will be made freely available under an
MIT-like open source license.

5.1.1 Liljencrants-Fant (LF) source model

The LF model [9] describes the glottal source characteristics for voiced speech segments. With
relatively few parameters, it is intended to capture the important features of variation in voice
quality that have been shown to be important in modeling the expressive aspects of speech (e.g.,
[24, 25, 22]). The most important shaping parameters of the model are illustrated in Figure 1.
The parameters and their de�nitions are:

T0 The fundamental period

Te The duration from the start of a glottal cycle to the point of maximum rate of closure (a
minima in the �rst derivative)

Tp The time from the start of a glottal cycle to the point of maximum air �ow (a zero in the
�rst derivative)

Ta The time from Te to the projection onto the 0 �ow derivative of the steepest slope in the
return from Te.

The implementation of the LF model used for the present project is a translation to C from the
Fortran code initially published in Q. Lin's dissertation. The standard LF model was modi�ed

16



slightly to allow a noise source to be introduced during the open phase of each glottal cycle,
mimicking the e�ects of aspiration noise generated in the glottis.

To aid in developing �gures and for testing purposes, the LF model was also implemented in
R.

5.1.2 Cascade formant synthesizer

The cascade resonator formant synthesis system used for this study is designed to operate as a
pitch synchronous system rather than a frame-based system as is more typical. Although written
in C, the resonator equations are those used by Klatt (1980). The vocal tract response of the
present synthesizer is characterized by the frequencies and bandwidths of up to 10 resonators
and 3 anti-resonators. Source models for the synthesizer consist of, for voiced epochs, the LF
model augmented by and aspiration noise source that can be introduced during the open phase
of the the glottal cycle, and a frication source for voiceless periods.

Table I lists the input parameters to this synthesis program. In Table I, parameters shown
in red are alternative higher-order parameters that can be used to generate the basic parameters
(shown in black print) for some synthesizer con�gurations. Brie�y, the higher-order source
parameters were open quotient (OQ), which was de�ned operationally as the ratio of Te to
T0, and something similar to a speed quotient termed PE, which was the ratio of Tp to Te.
Both of these parameters were censored to a reasonable range of values. The Ta parameter was
directly �tted in all con�gurations, but when �tting the higher order parameters OQ and PE,
Ta was expressed as a percentage of T0 and constrained to a maximum value < 1.0 - OQ.

The vocal tract-related higher order parameters were based on a quasi-articulatory model and
include an overall vocal tract length scaling factor (SCL), which scales neutral formant frequencies
by a constant multiplier to model changes in vocal tract length. For this parameter, a neutral
value (SCL == 0.0) corresponded to a vocal tract length of about 17 cm and gave rise to formant
frequencies starting at 500 Hz and separated by 1000 Hz. Values of SCL < 0.0 correspond to
longer vocal tracts (with formants more closely spaced), and values > 0.0 correspond to shorter
vocal tracts (with formants more widely spaced). A resonance factor (RES) determines formant
bandwidths relative to average typical values for each formant. Values of RES > 0.0 lead to
narrower formant bandwidths, while values < 0.0 lead to wider formant bandwidths. A formant
frequency shift factor (SFT) raises or lowers all formant frequencies by the same absolute amount,
mimicking closure versus �are at the lips. A high-front to low back constriction factor (FBF)
mimics the e�ects of constriction within the entire front half versus back half of the vocal tract.
Values of FBF > 0.0 mimic a constriction within the front half of the vocal tract that lowers
the frequency of all odd-numbered formants while raising the frequency of all even numbered
formants (producing an /i/-like acoustic pattern), and values < 0.0 mimic the opposite pattern
in which odd-numbered formants increase in frequency while even-numbered formants decrease
in frequency. Finally, a retro�exion/palatalization factor (RPF) was introduced for which values
> 0.0 cause F2 and F3 to drop toward F1 (and /r/-like pattern) while values < 0.0 cause F2 and
F3 to rise toward F4 (an /y/-like pattern).

As one element of the studies conducted during the workshop, we examined whether it would
be better to adapt these higher-order parameters or the raw synthesizer parameters.
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Table 7: Cascade formant synthesis parameter sets.

Parameter Description

AV Amplitude of Voicing

AH Amplitude of Hiss

AF Amplitude of Frication

TA LF Ta parameter (0.0 < Ta < (1.0 - OQ))

TE LF Te parameter

TP LF Tp parameter

OQ Open Quotient (0.2 < OQ=Te/T0 < 0.8)

PE Tp to Te Ratio (0.5 < PE=Tp/Te < 0.99)

F1 - FA Frequencies for 10 formants

B1 - BA Bandwidths for 10 formants

Z1 - Z3 Frequencies for 3 zeros

ZB1 - ZB3 Bandwidths for 3 zeros

SCL VT Length Scale Factor (1.0 = 17 cm)

RES VT Resonance

SFT Formant Frequency Shift factor

FBF High Front to Low Back scale factor

RPF Retro�extion to Palatalization factor

5.1.3 Analysis by Synthesis (AbS) approach

The AbS approach operates pitch synchronously to �t synthesis parameters to successive voiced
or voiceless epochs. Voiced epochs constitute single cosine-windowed pitch periods centered on
the point corresponding to Te in the LF model. Voiceless epochs were generally pitch period
sized regions of signal excised at arbitrary successive points in voiceless regions and also windowed
with a raised cosine window. All parameter �tting takes place in the spectral domain. Because
each epoch is at most a single windowed pitch period, harmonic structure is not represented
in the spectral domain and the speech spectrum resembles the spectrum of the vocal tract
impulse response convolved with the source function. Thus, it is possible to directly compare
the magnitude spectrum of the output of the cascade formant synthesizer as excited by an
appropriate source function with the magnitude spectrum of the natural speech epoch.

A Levenberg-Marquardt minimization technique is used to adjust the initial guess for all
synthesis parameters to minimize the di�erence between the model and target natural speech
spectrum of each frame in terms of a Chi-squared statistic. For details of the L-M minimization
approach, see, for example, Press, et al. (1988). One of the issues examined during the workshop
was the nature of the initial guess given to the L-M minimization algorithm. It is possible to
start the analysis of each epoch independently by setting all parameters to �neutral� values and
then allow the algorithm to proceed to a stopping point (where the Chi-square statistic is not
being signi�cantly improved), or, to start each new epoch with parameter values set to the best
�t from the previous frame. The former approach should minimize the chance of propagating
errors due to an ill-�t frame, while the latter should reduce computation time and improve the
frame-to-frame consistency of the parameter values obtained.
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5.1.4 Waveform display with model �tting module

An MSWindows-based waveform display and editing program (Wedw) was initially used to allow
interactive testing of the �tting process. With Wedw, it was possible to select individual epochs
to �t, or regions of a �le, or an entire �le. While the �tting process was running, a spectral cross
section display shows the relationship between the model and target spectra so that one can
quickly and directly observe how well the L-M algorithm is �tting parameter values. Wedw also
allows the user to selectively enable/disable parameters from the �tting process, and to select
initial values for each parameter to test e�ects of changes in the initial values.

This program made it possible to try many di�erent variations of the AbS procedure and
monitor the results of the changes. However, Wedw did not provide any method of batch process-
ing multiple waveform �les as needed to process entire speech corpora. For that, a non-interactive
command line program was developed that used the same underlying �tting procedure as Wedw,
but applied in a batch-oriented manner.

5.1.5 Standalone analysis program

The standalone analysis by synthesis program (called abs) went through several development
stages during the workshop to allow testing various con�gurations for model �tting. Results of
these tests are described below.

5.2 Stimuli

5.2.1 Normal Speech Database

The normal speech database used for testing the LF & Formant parameter extraction was the
'A' set of sentences from the CMU Arctic SLT corpus [26].

5.2.2 Emotional Speech

Analyses of parameter extraction for emotional speech used the CL talker from the LDC emo-
tional speech database. Additionally, we restricted our analyses to just �les representing the four
emotional states: normal, hot-anger, happy, and sad.

5.3 Procedure

5.3.1 Software development and testing

Throughout the workshop, modi�cations were made to the underlying library of functions used
by both Wedw and the command line program abs to improve the robustness and accuracy of
both the formant and LF parameter estimates. As we were attempting to very rapidly make
changes to the software, much of the work involved subjective listening to copy synthesis output.
However, several formal evaluations were conducted as well to track improvements quantitatively
and explore alternative approaches. For this, we looked at both the copy synthesis performance of
the algorithms, and also the usefulness of the derived parameters for SPS within the ClusterGen
framework [27]. For both types of analyses, the criterion measure was the Mel Cepstral Distance
(MCD) between an analysis of an original (natural) utterance and a synthesized version of the
same utterance. For copy synthesis, the natural comparison was, of course, the utterance from
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which parameters were extracted. For SPS evaluations, the comparison utterances were always
from a set of utterances that were not used as part of the training corpus.

For discussion, we refer to di�erent versions of the AbS software as:

• Wedw � Wedw-based software that was used initially as the algorithm was re�ned.

• ABS v1.0 � The �rst of the batch-processing versions that ran as a command line tool. It
was a fairly direct implementation of the Wedw-based process, with a few bug �xes.

• ABS v2.0 � A version in which many of the functions used by Wedw were rewritten to work
more e�ciently in a stand-alone environment. The process as implemented within Wedw
required much of that program's infrastructure to operate and replicating the infrastructure
was cumbersome for a program that was not intended to be used interactively. ABS v2.0
was our �rst attempt to replicate the same functionality in a way that was better suited
for a command line tool.

• ABS v2.1 � This was the version of the ABS program used to examine the issue of inde-
pendent versus dependent parameter initialization, and also was used to compare �tting
the quasi-articulatory parameters versus raw feature values. Most of the changes from
v2.0 were either bug �xes or feature additions that did not greatly change the underlying
approach of v2.0.

• ABS v2.2 � With this version an attempt was made to employ a more global �tting process
that, rather than �tting each frame until parameters had converged on a �nal solution, made
several passes over the entire collection of frames for an utterance to �nd regions where
parameters seemed to be independently converging on a similar solution, then constraining
the parameter �tting within those regions. It was thought that this might lead to a �best
of both worlds� solution that both encouraged consistent frame-to-frame �ts, but did not
tend to propagate �tting errors due to a single poorly �t frame processed in sequence.

5.3.2 LF model parameters and emotional speech

In addition to the e�ort to improve parameter �tting (our major e�ort during the workshop), we
were also concerned that the parameter we obtained for the LF model did in fact re�ect changes
in expressive speech states. To establish this, we analyzed the speech of one talker (CL) from
the LDC emotional speech corpus with four types of emotional speech: neutral, sad, happy, and
hot-anger (hereafter, angry). For each utterance, we averaged the values of AV, T0, Tp, Te, and
Ta over the entire utterance to obtain an average value of each example utterance. There were
multiple utterances by this talker representative of each of the four emotions. We then treated
each utterance as a sampling unit for purposes of analysis of variance to determine if there were
signi�cant di�erences in the parameter values associated with sentences uttered with di�erent
acted emotions. Separate analyses of variance were run for each of the parameters of interest.

As an additional check on whether the parameter values were predictive of the underlying
utterance emotion, we trained linear discriminant functions to predict/classify emotion based on
the parameters and then tested the accuracy of the prediction/classi�cation via a leave-one-out
cross validation study.
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Table 8: Mel Cepstral Distances for copy synthesis and statistical parametric synthesis.

Analysis Method Copy Synthesis MCD SPSS MCD

Wedw 7.6 8.07

ABS v1.0 6.87 7.97

ABS v2.0 _ 7.28

ABS v2.1 5.66 6.68

ABS v2.2 6.17 6.72

Table 9: Mel Cepstral Distances for copy synthesis based on two parameter sets (Articulatory
versus Raw) and two methods of initializing the parameter search for each frame (Dependent
upon the previous frame results versus Independent of the previous frame and starting from a
neutral VT con�guration.)

Condition MCD

Artic/Dep 6.95

Artic/Ind 6.84

Raw/Dep 6.60

Raw/Ind 6.41

5.4 Software development and testing

Results of our several formal tests of software versions are shown in Table 2 in terms of the
MCD for copy synthesis tokens, and for the results of training a ClusterGen system with the
obtained parameters. As this table suggests, performance generally improved over the course
of the workshop; Starting from the original Wedw version, MCD decreased for most subsequent
versions except the �nal version which tended to yield somewhat larger MCDs. Data from the
copy synthesis for the v2.0 program are not reported because there were a large number of
instances where the algorithm apparently failed to converge on valid parameter settings. This
led to a signi�cantly bimodal distribution of tokens with some sounding good and having lower
MCD scores while others were virtually unintelligible and yielded high MCD scores; the mean of
such a bimodal distribution is essentially meaningless. The ClusterGen analysis of those stimuli
do not re�ect this problem, presumably because the ClusterGen results are based on parameter
distributions derived from a much larger number of analyzed tokens. That is, copy synthesis
results are based on analysis of 9 individual �les, while ClusterGen results are derived from
mean and standard deviations of about 500 analyzed �les.

Using the 2.1 version of ABS, we also examined alternative ways of �tting parameters and
the possible use of an alternative (quasi-articulatory) parameter set. Results of this are shown
in Table 2, which shows that MCDs were greater for the quasi-articulatory parameters than for
the raw parameters, and greater for analyses in which the frames were �t dependent upon the
previous frame versus independently starting from neutral values on each frame.
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Table 10: Average LF parameters associated with each of four emotions from analysis of talker
CL in the LDC emotions data base. (Note: LF parameters expressed as percentage of T0).

Happy angry sad neutral

Te 46.74 46.43 52.49 53.72

Tp 33.94 33.87 36.71 37.37

Ta 3.61 3.60 3.11 3.21

F0 163.68 176.88 91.04 98.40

AV 56.76 51.97 54.14 54.77

Table 11: Confusion matrix for Linear Discriminant classi�er using just the three LF parameters
Te, Tp, and Ta to predict emotion.

happy angry neutral sad

happy 12 9 0 0

angry 7 17 0 2

neutral 0 0 5 12

sad 0 2 6 19

5.5 LF parameters and emotion

In the data obtained from analyses of emotional speech, analysis of variance showed signi�cant
main e�ects for all the LF parameters. Tukey HSD post hoc analysis indicates that for F0, all
contrasts except the di�erence between neutral and sad are signi�cant at p<0.01. For Te, there
are signi�cant di�erences between neutral and both happy and anger, and between sad and both
happy and anger, but happy and anger are not di�erent, nor are neutral and sad. For Tp, the
only signi�cant di�erences are between sad and happy and between sad and angry. For Ta, the
only signi�cant di�erence is between neutral and angry, although the di�erence between sad and
happy is marginal (p=.056). AV is signi�cantly di�erent for happy versus angry and for sad
versus angry. BTW, for the HSD contrasts, I am using p=0.05 as the cuto� for "signi�cant."
The average values as well as the values of F0 are shown in Table 4.

To see what these values mean in terms of the source waveform, Figure 2 shows the glottal
�ow derivatives generated using parameters associated with each emotion.

Linear discriminant analyses (LDA) was used to see if we could classify emotions based only
the source features. Using only the Tp, Te, and Ta parameters, we get about 58% correct
classi�cation using leave-one-out cross validation (Table 5). The classi�cation accuracy improves
to 75% correct if AV and F0 are also included in the LDA �t (Table 6).

5.6 Discussion

A parameterization of speech based on formants and explicit phonation source features would
seem to provide an ideal basis for obtaining features for statistical parametric synthesis, par-
ticularly when control of expressive speech properties is an objective. A signi�cant body of
research developed over many decades has established formant frequencies as the primary acous-
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Figure 4: Glottal Flow Derivatives generated by LF model associated with each of four emotions.

Table 12: Confusion matrix for Linear Discriminant classi�er using the three LF parameters Te,
Tp, and Ta plus F0 and AV to predict emotion.

happy angry neutral sad

happy 15 4 1 1

angry 4 22 0 2

neutral 0 0 8 9

sad 0 0 4 23
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tic features for voiced phonetic segments. Similarly, a substantial body of more recent work has
demonstrated clearly that source features like those captured by the LF source model are crucial
in representing expressiveness and emotion in speech.

To realize the potential of a formant plus LF parameter representation of speech for statistical
parametric synthesis, two things are necessary. First it must be possible to extract the formant
and LF parameters from natural speech samples accurately and automatically. It should go
without saying that accuracy is essential for any parameterization of speech. For a statistical
approach to be practical, it is necessary to derive parameters from a large number of speech
samples, which implies that the process must run automatically, or at least with minimal manual
input.

The second broad need is for parameters that are amenable to statistical model building.
The most successful parameterizations of speech for building statistical models (for synthesis
or recognition) such as Mel Cepstral coe�cients have the property that they are orthogonal.
Orthogonality is not an essential property of parameters, but does allow use of diagonal covari-
ance matrices, which in turn allows stable statistical models to be trained from relatively small
numbers of samples. For non-orthogonal parameters, a full covariance matrix is theoretically
necessary, requiring estimation of N2 rather than just N parameters in the model. The formant
and LF parameters derived from natural speech are not orthogonal and this suggests that it may
be necessary to have a much larger number of training cases to achieve models of similar stability
to those obtained from, say Mel Cepstral coe�cients.

For the current development e�ort, ClusterGen models did not produce speech from for-
mant+LF parameters that was comparable to the speech generated from MCP and impulse
source excitation. We must assume that this is due to failings in both of the areas identi�ed
above. The accuracy of the parameter extraction process was generally improved over the course
of the workshop, but still needs improvement. Close observation of the �tting procedure suggests
a number of avenues to pursue in future work to improve the �tting procedure. First, the L-M
method used in the current algorithm requires calculation of the derivatives of the spectrum with
respect to all parameters being estimated. Because it was not possible to analytically estimate
derivatives for all parameters, some were estimated using a �nite di�erence approach. The choice
of how large a delta to use for the �nite di�erences may have been suboptimal. Use of a di�erent
minimization approach (e.g., [28]) could lead to improved �ts.

A second area where improvement may be possible with the analysis is how parameter values
are constrained to stay within realistic bounds. One problem that was observed in some cases
was that the minimization process would drive one or more parameters to physically unrealistic
values. Our attempt to use quasi-articulatory (QA) parameters instead of raw formants was one
attempt to avoid this problem. The QA parameters were designed to keep parameters within
reasonable limits. However, that approach generally led to somewhat poorer copy synthesis than
observed for �tting raw parameters. This could be because the parameter constraints were too
severe, or possible the unusual parameter set we devised for this trail was suboptimal. These are
questions that should be examined further.

Finally, regarding how the formant-LF parameters performed in the context of statistical
parametric synthesis, as noted, these parameters are not orthogonal and thus theoretically require
use of a full covariance matrix for training the HMM models. However, given the amount of data
available, that was not attempted. In future analyses, this problem could be avoided by recoding
the parametric data into an orthogonal set of parameters, e.g., by using principal components
analysis of the data and training on parameters derived by projecting the raw formant and LF
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parameters into the PCA space.
Perhaps such changes to the HMM construction process along with additional improvements

in the acoustic analysis process we will be able to report improved performance in the future.

6 Modelling Articulatory Features

In this work, we are not attempting synthesis by inversion. Rather, we view articulatory features
as a representation of the intended perception of the speech signal by a listener, similar to own
earlier work [29]. Modeling speech using multiple parallel feature streams allows going beyond
the �beads-on-a-string� model [30] of speech, and earlier work shows that AFs are well suited for
modeling changes in hyper-articulated speech [31], which we regard as a prototype of a strong
emotion. Lisping was also found to clearly a�ect isolated AFs in speaker adaptation [8].

We are therefore not trying to manipulate a physical model of the exact position of the
tongue, lips, etc., but we seek to work on a description of the perception of a sound, and hope
to be able to show that the observed variations are systematic and meaningful. Generally, we
expect that a set of features will generally map 1:1 to speech sounds, even though this is not
strictly enforced.

Also, AFs are generally regarded as being dialect and language independent, so that our
proposed scheme might be suitable for language-independent or cross-lingual speech synthesis as
well.

6.1 Generating AFs from Audio

In this work, we will compare three di�erent approaches to including AFs into speech synthesis:

• Purely binary: good for disambiguation, inspired by phonology � containing 40 to 80 binary
classi�ers [29]

• Multi-stream classi�cation: used for recognition � ca. 8 multi-valued individual classi�ers
[32]

• Continuous representation � one network, trained to give a continuously-valued vector
output, which however is not necessarily a posterior probability

In our experiments, we decided to focus on the third, continuous, representation, for a number
of reasons: when trying to predict AFs using Arti�cial Neural Networks (ANNs), this approach
is similar to ASR �bottle-neck� front-end feature representations, which have been shown to
be robust against gender and other traits, which we want to normalize. Also, in multi-stream
classi�cation, vowels and consonants are treated separately, which opens the question of what to
do about semi-vowels, diphthongs, a�ricates, plosives, voicing? These do not map very well. Our
�rst task will therefore be to compare di�erent AF representations with respect to observe changes
between emotions, styles, etc., and investigate their suitability for training, categorization, etc.

As an example of this continuous representation, Figure 5 shows the continuous output of
the �place of articulation� node of a neural network trained using QuickNet's4 �continuous� mode
using a 0.4 sec. window of stacked MFCC features as input.

4http://www.icsi.berkeley.edu/Speech/qn.html
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Figure 5: Output distribution (quasi-histogram) of the �front-back� node of an ANN for sounds
belonging to di�erent AF categories, trained with the target values shown in the legend. The
learned distributions for the 8 classes exhibit inversions of articulatory targets and bi-modal
distributions, which, according to manual analysis, mostly stem from improperly labeled, or
insu�ciently prepared data.

We are currently trying to optimize the prediction of AFs w.r.t. various training error metrics,
and learning a topology-preserving mapping as in Figure 5, for comparisons across databases,
languages, speaking styles, etc. Similar results have been achieved for other speakers and input
representations.

information.

6.2 Generating AFs from Text

The AF parameterization is only useful in a text-to-speech environment if it can be predicted
from text. We used our standard ClusterGen [27] statistical parametric synthesis system to
predict AFs from text. We take the AF predictions from the previous sections at 5msec intervals
and combine these AFs and MCEPs into a supervector. The vectors are then labeled with a large
number of contextual features including sub-state position, phone context, syllable context, etc.
We build CART trees for each HMM-state labeled set (three per phone). The tree asks context
questions and predicts a vector of Gaussians at its leaf. The optimization function for the
questions during the building of the CART is minimizing the variance in the AF part of the
supervector. This is exactly the same technique we use in building an MCEPs predictor, just in
this case we are clustering on the AFs rather than the MCEPs.

To test the e�ectiveness of such a model, we used the CARTs to predict feature vectors for
each frame in a set of held out sentences. We then calculate the Mel Cepstral Distortion (MCD)
between the predicted MCEPs and held out set. MCD is a standard measure used in SPSS and
Voice Conversion.

We tested on three standard databases: �RMS� (ca. one hour of English male speech), �SLT�
(ca. one hour of English female speech) and �FEM� (ca. 30minutes of German male speech).

In the following, the prediction of MCEPs was done by using the Gaussians of the MCEPs
of the features in the leaves of the trees (even though in the AF case the MCEPs were not used
directly in the CART question selection). The MCEP example is our baseline using no AFs
at all. All examples use Maximum Likelihood Parameter Generation (MLPG, for smoothing
MCEP) and the Mel Log Spectrum Analysis (MLSA) �lter for re-synthesis. �13c� represents 13
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continuous AFs, and �26b� represents 26 binary AFs, as motivated in the previous section.

13c 26b MCEP

RMS 5.360 5.320 5.197

SLT 5.284 5.278 5.140

FEM 5.822 5.761 5.600

MCD is a distortion measure, so lower is better. A di�erence of 0.12 is about equivalent to
doubling the data, and you probably cannot hear di�erences less than 0.07 [33]. Thus the above
AF-base synthesis is measurably worse than not using AFs but it is close, and without careful
listening tests sounds the same.

As the AFs are predicted without knowledge of their own AF context we added smoothing
(�S�) to them, and we added AF deltas (�D�) to the supervectors. We used a simple 5-point
smoother (�ve times) and added delta features.

Smooth/ Delta 13cSD 26bSD MCEP

RMS 5.310 5.274 5.197

SLT 5.218 5.203 5.140

This improved the quality, but the AF cases are still not as good as the MCEP alone. The
secondary stage we use in ClusterGen is to move the HMM-state labels to optimize the prediction
quality of the models. Move-label (�ml�) is an iterative algorithm [34] that typically improves
the MCD score by 0.15 to 0.20. We �nd:

Move-Label 13cSDml 26bSDml MCEP

RMS 5.141 5.047 5.018

SLT 4.998 4.961 4.974

Interestingly the move label algorithm gives better gains for the AF based models than the
MCEP models. This may be due to the fact that the original boundaries were derived from
MFCCs. Now the AF system marginally beats MCEP models for SLT and reaches close in the
RMS case. We would not wish to claim the AF models produce better raw synthesis in the
case, but do wish to claim the di�erence between an AF-base system and an MCEP system is
negligible.

6.3 Mapping AFs to Cepstral Coe�cients

The above �gures are all based on using the joint MCEPs from the AFs cluster trees. We
also investigated building direct models. Using neural nets we trained models for prediction of
MCEPs direct from the context of 5 AFs.

For the SLT voice the neural network gave an MCD of 4.97 on the held our test set and
4.91 on the training set, but these AFs were not from our TTS system, but from the original
labeling. When put into our TTS system we got 5.45 (as opposed to 5.28 for the joint MCEP
prediction). Feeling that there was still something worthwhile in a separate prediction system
for MCEPs we investigated an adaptation technique. The AFs we predict with the initial MCEP
source are almost certainly noisy. As we are looking for an optimal parameterization that can be
predicted by text, and can best produced the desired MCEP we implemented a simple iterative
adaptive algorithm. For each set of AF Gaussians in the cluster tree we calculated the error in
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with respect to the training data. We then adapted AFs to a small percent of that error and
retrained the AF to MCEP neural net. We iterated (6 times) until the error ceased to decrease.
This system gave an MCD of 5.24.

This technique looks promising though is computationally expensive to train, but the we do
not yet know if the move label algorithm is addressing a similar part of the error space. The
AF values may not be optimal, so changing them slightly could give a better result, as both this
technique, and the above smoothing have done.

7 Voice Conversion

As a further investigation of using new parameterizations of speech we also applied what we
learned during the workshop to the related �eld of voice conversion.

Voice conversion is the process of modifying speech so that some of the characteristics of the
speaker such as age, gender and other aspects of the speaker's identity are changed. Historically,
this process has always involved training a model using a small parallel corpus i.e. a small set
of utterances (about 30) that are spoken by both the source speaker and the target speaker. A
model such as a Gaussian Mixture Model (GMM) [35] is used to learn the characteristics of this
source and target speech. This model can then be used to transform the characteristics of the
source speaker so that the speech sounds closer to the speech of the target speaker.

However, it is unreasonable to expect that a parallel corpus will always be available especially
if the target speaker's speech is hard to collect or if the target speaker is deceased. Therefore a
model that can be trained with non-parallel data is be very useful. Another major goal in voice
conversion research is to �nd a representation of speech that perfectly separates the speaker
speci�c characteristics from the linguistic content present. As part of our exploration of new
parameters for speech synthesis, we also investigated the possibility that these features might
possess some of these properties.

It is well known that speech can be modelled su�ciently by using a Source-Filter model where
the �lter is derived from a spectral model and the source from an excitation model or pulse &
noise. The parameters that we had experimented with at the Johns Hopkins Workshop were the
use of Articulatory Features to represent the �lter and the Liljencrants-Fant model to represent
the excitation. Since the relationship between excitation and speaker identity is unclear, we
focused our e�orts only on experimenting with the Articulatory Features.

Synthesizing speech directly from articulatory features is non trivial. Therefore it is necessary
that we transform the articulatory features into a form more conducive to synthesis. We chose
to train a mapping between these articulatory features and Mel Frequency Cepstral Coe�cients
because the space of MFCCs in synthesis is quite well understood and there are reasonable
objective tests that can be used to test quality. We used the Quicknet toolkit to train neural
networks for each speaker that would learn a mapping between the AFs and MFCCs for that
particular speaker. This mapping is the key to doing voice transformation without parallel data
as will be explained in more detail later.

For our preliminary experiments in voice transformation, we wanted to investigate the trans-
form domain i.e. the space in which we perform the modelling of source and target speakers'
characteristics. Traditionally, this process uses MFCCs and works by extracting those features
for source and target speakers from parallel data; a Gaussian Mixture Model is then built for the
joint probability density function of the source and target speakers' MFCCs. This joint model is
then used to predict the target speaker's MFCCs. Using the Articulatory Features, We did ex-
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periments where we built joint models for the source and target speaker's Articulatory Features
and compared it to similar experiments on MFCC joint models.

We used Mel Cepstral Distortion (MCD) as an evaluation metric to measure the quality of
voice conversion. We did this by extracting MFCCs from the converted speech of the source
speaker and the speech of the target speaker and computing the Euclidean distance between the
two after using Dynamic Time Warping to align the two sets of MFCCs in time. The results of
these experiments are shown below.

RMS is a male US English speaker, while SLT is a female US English speaker (both databases
are part of the CMU Arctic datasets [26]).

GMM on rms MCEP to slt MCEP: 6.35
GMM on rms AF to slt AF: 9.25

In order to be able to do voice transformation with non-parallel data, we made use of the fact
that the mapping between articulatory features and MFCCs for a given speaker can be learned
without the need for data from any other speaker. Therefore, by training a mapping between
the MFCCs and AFs for the source speaker and the reverse mapping (AFs to MFCCs) for the
target speaker, it becomes possible for us to do voice transformation with no parallel data. All
we need to do for a test utterance is extract the AFs from the source speaker's speech using the
source mapper and then put it through the AF-MFCC mapper of the target. We can then use
these MFCCs to synthesize speech that sounds like the target speaker. The MCD results for this
process is shown below:

MCD using slt AFs on the rms AF-MCEP mapper: 8.68

Although these results are poorer that MCEP to MCEP transformation, we are producing this
without parallel data. There we see this technique having great potential, but still clearl deserves
further work.

8 Results and Conclusions

The initial goal of the workshop was to investigate alternative parameterizations of speech for
statistical parameter speech synthesis. That principal goal has been achieved and the results of
using articulatory features and the LF-model show that SPSS modeling techniques can deal with
parameterizations beyond classical simple spectral models.

The secondary goal was to move beyond modeling of simple clean read speech. Using ex-
pressive speech, both emotion and personality, as the target speech requires both more complex
models, and new development of evaluation techniques. The work on using emotion-ID technolo-
gies for evaluating synthetic expressive speech is certainly promising, but further work will still
need to be done to better understand it correlation with human perception of expressive speech.
Though the problem of evaluation of expressive speech is a much larger problem than can be
solved in a 6 week workshop.

There were three basic thrusts and the summary of results can be summed up as

AF for speech synthesis extraction, modeling and synthesis

LF-Model extraction, modeling and synthesis

Emotional Synthesis modelling and evaluation framework
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But the results are far from full conclusions, we have shown that AFs can used e�ciently
enough to produce similar quality to MCEPs along in statistical parametric synthesis. Our goals
are to investigate this direction further. AFs o�er interesting potentials for cross-lingual and
inter-speaker conversion. As AF conversion can be run on data without a phoneme set, we have
a novel potential direction for modeling of languages without a pre-de�ned phoneme set or even
a well-de�ned writing syste,.

Articulatory features also have a better notion of continuity than conventional spectral models
o�ering a chance to build �language models� to constrain prediction. That is build a priori models
of how AFs change over time.

We have only begun to address the issues of synthesizing expressive speech. The LF-Model
shows great potential yet it was only toward the end of the workshop that our prediction system
came together. But the success of the small experiments we did do point to an area worth much
more investigation.
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