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Abstract
Speech Synthesizers have traditionally been built on carefully
read speech that is recorded in studio environment. Such voices
are suboptimal for use in noisy conditions, which is inevitable
in a majority of deployed speech systems. In this work, we at-
tempt to modify the output of the speech synthesizers to make it
more appropriate for noisy environments. Comparison of spec-
tral and prosodic features of speech in noise and results of some
conversion techniques are presented.
Index Terms: speech synthesis, speech in noise, companding,

1. Introduction
As speech synthesis becomes more common we begin to care
more about its performance in context and not just in test sit-
uations. In the real world there are many different forms of
background noise and as humans adapt to the noise situation
they are in, speech synthesis output should also do such adapta-
tion. Such adaptation should not just be changing the gain. Hu-
mans modify their speech on a number of different dimensions
in noise, including prosodic modification and spectral modifi-
cation.

This paper looks at a number of different methods that allow
automatic modification of speech in order to improve under-
standability in noisy situations. First we investigate the ANSI
standard for Speech Intelligibility Index (SII) [1] and use bost-
ing in specific frequency bands to try to improve intelligibility.
We also investigate the differences between natural plain speech
and natural speech in noise and explore automatic modification
techniques that better model how humans modify their speech.
We show the effects of both spectral and prosodic modification.

2. Speech in Noise Database
We use the CMU SIN database [2], a database of speech in
noise designed for speech synthesis. This database uses a short
recording (under one minute) of human conversational babble
from a crowded cafeteria to provide a noisy environment for
recording, though the volume was adjusted to be clearly notice-
able to the listener without being uncomfortable. The babble
was played to the voice talent through headphones, along with
their own speech. This simulated the acoustic environment that
would actually be experienced in a noisy cafeteria, while keep-
ing the noise out of the speech recordings. The noise was played
only during delivery of the prompts, which limited the overall
exposure of the voice talent to the noise, and helped to “reset”
the perceived noise level in between utterances.

Since people generally adapt their speech to the conditions
they are in, we cannot simply play noise to the voice talent
for every prompt if we want to get a consistent elicitation of

speech in noise. For this purpose, noise and non-noise condi-
tions are randomly switched while recording. The result of this
method is that during recording the voice talent was unaware
of the noise condition for a particular prompt until delivering it,
and seemed to consistently and appropriately produce natural
speech in noise.

The transcript is a subset of the CMU ARCTIC [3] prompts
for building voices; specifically, the first 500 utterances (the “A”
set). Recording was done in a quiet room with a laptop, us-
ing a head-mounted close-talking microphone. Each of the 500
prompts were recorded twice, once in noise conditions and once
not in noise. This was done using two separate sessions: in the
first session, approximately half of the prompts were recorded
in noise and half not in noise through the method described
above; in the second session, the noise condition was reversed
so that prompts previously recorded in noise were recorded
without noise, and vice-versa. Two male speakers, one with an
American English accent and one with British English accent,
were recorded.

3. Measures of intelligibility in noise
The American National Standards Institute defines a measure
for the intelligibility of speech in the presence of adverse condi-
tions called the Speech Intelligibility Index (SII) [1]. This mea-
sure is believed to be correlated to the actual intelligibility of
speech in such conditions. The standard states that the SII may
be interpreted as a measure of the total number of speech cues
available to the listener. An SII of 1.0 indicates that all speech
cues reach the listener while an SII of 0.0 means the total loss
of speech cues.

The index involves the computation of the ‘audibility’ in
each band of a set of frequency bands. Each of these bands is
assigned a fixed value of Band Importance. The SII is the sum
of the audibility functions of these bands weighted by the band
importance assigned to each band (shown in Eqn. 1 ),

S =
nX

i=1

Ii ∗ Ai (1)

where Ii is the band importance function, Ai is the band
audibility function and n is the number of bands used in the
standard. The standard defines the band audibility function as a
number between 0.0 and 1.0 that specifies the effective propor-
tion of speech dynamic range within the band that contributes
to intelligibility.

The band importance function depends on the application
that this measure is used for. The accuracy of the SII is de-
pendent on picking the right importance function. Though the
SII standard defines importance functions for different tasks, for
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Figure 1: Band importance function for Intelligibility

the problem discussed here, we selected the function designed
for intelligibility tests on short passages of easy reading mate-
rial [1]. Figure 1 shows the relative importance of each fre-
quency range for with respect to intelligibility in the presence
of noise for a task involving short passages of easy reading ma-
terial.
3.1. Correlation of SII with perception

In order to determine the extent to which listeners can distin-
guish between the two conditions, a perceptual ABX test is con-
ducted where listeners were to identify which of the two pre-
sented stimuli was spoken in the presence of noise. 10 example
stimuli were taken from both speech in noise and without noise
databases. All of 5 subjects who took the test identified the cor-
rect instance with 100% accuracy.

The results were similar even for the synthesized examples
from these databases, showing that there are perceptually iden-
tifiable changes that occur in the speech when spoken in noise.
We also conducted a preference test for these stimuli. The re-
sults are summarized in Table 1 below.

#Test case Mean preference

SIN Orig Vs. SWN orig 62.95 %
SIN Synth Vs. SWN Synth 53.33 %

Table 1: Preference scores for speech with added noise

These results suggest that subjects preferred speech recorded in
noise for natural speech but not significantly so for synthetic
speech. To test how these perceptual results correlate with the
SII standard, we computed the SII for these examples. Table 2
shows the mean SII measures for all the above testing stimuli.

#Stimulus type SII mean SII Std. Dev.

SWN orig 0.229 0.027
SIN orig 0.235 0.032

SWN synth 0.284 0.039
SIN synth 0.281 0.043

Table 2: Intelligibility measures for different stimuli

For natural speech, the SII values are higher for speech in noise,
in line with perceptual preference. However for synthesized ex-

amples, the difference in SII values is insignificant, and in fact
is slightly greater for speech without noise. This is not corre-
lated with the perceptual evaluations and suggests that there is
a need for metrics more suitable for measuring intelligibility of
synthetic speech.

4. SII-based improvements for Speech in
Noise

In this section, we report experiments conducted to increase the
intelligibility of normal speech in added noise. We describe two
techniques to improve synthesis quality for noisy environments.
The first is a post processing technique that boosts the ampli-
tude in the important frequency bands as described by the SII
standard. The second technique operates at the training stage,
where each training frame is weighted with its SII value during
clustering. These techniques are detailed in the sections below.

In the following sections we describe techniques that use
the SII to improve intelligibility. Despite our earlier results
showing low correlation between SII and perceptual preference,
we believe that these techniques can give better results with
measures more suited to synthesized speech.

4.1. Band significance based boosting

Since the SII is known to be highly correlated to the actual intel-
ligibility of speech in adverse conditions, naively optimizing for
this measure seemed reasonable. This involved reshaping the
spectral characteristics of the speech such that the bands that
were assigned higher values by the band importance function
are boosted relative to bands assigned lower values. The band
importance function is a relatively smooth function and so de-
signing a filter whose magnitude response matched the function
was not difficult. The filter was chosen such that the boosting
that was done did not cause a significant amount of distortion.
This is due to the fact that the SII is not a perfect measure of
speech intelligibility and therefore, excessive optimization for
the SII would not yield good results in perceptual experiments.

A subjective test was then conducted where listeners were
asked to choose between the boosted synthesized speech and
unmodified synthesized speech. In nearly all cases, the un-
modified synthesis was judged to be more intelligible than the
boosted synthesis (with added noise). While it may seem coun-
terpointed that the boosting seems to affect intelligibility, the
cause of this degradation is simple to explain. The band spe-
cific boosting applied to the speech signals worked by injecting
additional power to bands that were deemed more important by
the band importance function. As a result of this, the boosted
speech signal overall had higher amplitude than the unmodified
signal. To be able to do a valid comparison of the boosted syn-
thesis and the unmodified synthesis, the relative amount of noise
added to the synthesis needed to be the same and therefore both
synthesized signals were normalized on amplitude. Since the
dynamic range of the amplitude of the boosted synthesis sig-
nal was greater, normalizing this signal meant that regions of
lower amplitude were suppressed greater than they were in the
unmodified signal. As a result of this, the normalized boosted
synthesis tended to sound quieter. Similar results were obtained
when power normalization was done instead of amplitude nor-
malization. Listeners also mentioned that they preferred the un-
modified synthesis because it sounded less ‘processed’.
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4.2. SII weighted clustering

This section describes our experiment on computing Cluster-
gen [4] codebooks using a SII-based weighting scheme. Our
approach is similar to [5] where SII measure is used in a unit
selection setup. The intelligibility cost is optimized in addi-
tion to unit cost and join cost in choosing a particular unit for
concatenation. We extend the concept of SII cost function to
parametric synthesis. In Clustergen, contextual decision trees
are used to cluster speech frames in each labeled state into var-
ious representative clusters. A single Gaussian is estimated for
each cluster. The first and second order sufficient statistics are
calculated as follows.

θc(o) =

NcX
i=1

xi, θc(o
2) =

NcX
i=1

x
2
i (2)

where Nc is the number of speech frames in each cluster and
xi is the feature vector. The cluster-specific mean and diagonal
covariance are then computed as

μc =
θc(o)

Nc
, Σc =

θc(o
2)

Nc
− μ

2
c (3)

If γi is the SII value for frame i in cluster c. From the definition
of SII, 0 ≤ γi ≤ 1. The count and SII-weighted sufficient
statistics are then calculated as

γc =

NcX
i=1

γi, θ̂c(o) =

NcX
i=1

γixi, θ̂c(o
2) =

NcX
i=1

γix
2
i (4)

The cluster-means and diagonal covariances are

μ̂c =
θ̂c(o)

γc
, Σ̂c =

θ̂c(o
2)

γc
− μ̂c

2 (5)

For each training speech utterance, we generate a white noise
waveform with equal power. The silences within the speech
waveform are excised using a simple threshold function to im-
prove the reliability of frame-wise SII score [6]. The SII values
are then calculated for every 25ms frame with a 5ms shift [7].
A Hamming window is used to smoothen the edges before SII
computation. The frame and shift sizes are chosen to coin-
cide with MCEP feature extraction for easy manipulation of SII
scores. CLUSTERGEN parametric synthesizer is built follow-
ing the usual steps, except that the cluster-specific means and
covariances are calculated using the weight adjusted formulae
shown above. There are no modifications to the synthesis pro-
cedure. We used Roger Arctic set [8] with 1132 utterances for
this experiment. Every 10th utterance is pooled into a held-out
test set (113 utterances) and the rest (1019 utterances) are used
as training set.

For objective testing, we calculated SII values for each syn-
thesized waveform and computed the mean SII for the entire
test set. The results are shown in Table 3.
As shown, SII-weighted clustering performs better than the
baseline method with respect to the SII metric. Thorough sub-
jective tests are required to further confirm this result.

It is important to note that although the SII measure is used
to predict the intelligibility of speech in noise, it is not very

codebook type SII-Mean SII-Stdev

baseline 0.4590 0.0948
sii-weighted 0.4711 0.0941

Table 3: SII values for synthesized speech

robust when calculated within segments of duration of a phone
or state. There have been techniques proposed in the literature
to improve the reliability of SII within short segments [9], which
is now an addendum to the original ANSI-S3.5 SII standard. We
plan to experiment with these improved intelligibility measures
in future.

5. Spectral analysis of speech in noise

In order to study any systematic changes in the spectral char-
acteristics of speech in the presence of noise, we analyzed the
speech delivered in both conditions. We used the database de-
scribed in a section 2. Appendix A shows the spectrograms of
the same sentence spoken under within and without the pres-
ence of noise.

As can be observed, segments of speech change differently
in the presence of noise. There is no consistent change in char-
acteristics like the sub-band energies of different speech re-
gions. To study the spectra in more detail, the average spectral
behavior of each phoneme was analyzed. The Fourier trans-
forms of speech segments are used as the spectral features. For
each 5 ms of speech, 512 point FFTs are extracted. The pho-
netic labels are used to accumulate the statistics of all the frames
that belong to a particular phoneme. To isolate the behavior of
the phoneme from reticulation effects, only the ‘middle’ states
of the phonemes are used. This is assuming that the middle state
roughly corresponds to the steady state of the phoneme. The
mean spectra of phonemes are compared in the two conditions.

Appendix B shows the mean FFT spectra of a example
voiced and unvoiced phonemes over all of the utterances. We
observed that for vowels there is a pronounced increase in the
formant amplitude in the mid-frequency regions (3000-5000
Hz, i.e, mainly the second and third formants frequencies). For
other phonetic categories, the difference is almost negligible
with some exceptions. The interesting find is that the relative
changes in the spectra of all phonemes are similar within two
English speakers. Similar analysis done on a Mandarin speech
corpus gave results that were not comparable to English, sug-
gesting a speaker-independant, language specific behaviour of
speakers in noise. The research on Mandarin is preliminary at
this stage and not reported further in this paper.

Based on the phoneme specific differences observed above,
we designed FIR filters to modify the spectral properties of
speech without noise to match that of speech in noise. How-
ever, the perceptual evaluations with added noise did not show
improvemts, partly due to the normalization issues previously
described in Section 4.

6. Prosodic analysis of speech in noise

Complementing the spectral analysis and conversion techniques
presented above, this section addresses the changes in prosodic
aspects observed within speech in noise.
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6.1. Duration

Duration is a key prosodic aspect that speakers change when
speaking in noise. The goal of this study is to modify dura-
tions of a normal synthetic voice to suit the noisy environment
conditions better.

The same speech database as in Section 2 is used for this
analysis. The speaking rate of the speaker is measured under
each condition. We use the definition of speaking rate to be
the number of syllables uttered per second. The mean and the
standard deviations are reported in Table 4. The mean speaking
rate are not significantly different for speech spoken without
noise, but the standard deviation is much lower. This could be
probably because of the fact that speakers use speaking rate as
a communicative device and have greater degree of freedom in
the noise-free recording condition. While speaking in noise, to
assist the listener, speakers may be compensating for the noise
by speaking consistently with lesser variation.

#Background Mean speaking rate Std. dev.

without noise 4.89 1.046
in noise 4.857 0.669

Table 4: Speaking rates of speech in clean/noisy backgrounds

6.1.1. Statistical modeling of duration

On an average, there were a larger number of phonemes whose
duration is longer in speech recorded in the presence of noise
than in speech recorded in the absence of noise. However, the
relative proportion of phonemes with longer durations is not
substantial enough to make any conclusions. Only 66% of the
phonemes had longer durations while the rest had a shorter du-
ration. Patel et al. [10] approache the problem of duration by
heuristically increasing the duration of content words with an
average stretch of 98ms. Extending this, we investigated the
role of Part of Speech in determining the change in duration of
the word. This analysis of across a large number of utterances
did not suggest any consistent pattern. Some phonemes were
on average longer while others were on average shorter. There
was, however, a large variance in the durations of all phonemes.

To learn these changes automatically from data, we built
decision trees to determine the stretch/shrink factor based on
context features. The duration model consists of means and
standard deviations of the durations of each HMM state and a
decision tree is used to obtain the corresponding z−scores.

Using the above mentioned duration modeling technique,
the following were attempted –

1. Use a duration model with z-score CART from speech-
in-noise, and means from speech-without noise.

2. Use a duration model with z-score CART from speech-
without-noise and means from speech-in-noise.

3. Use the duration model with both z-score and means
from speech-in-noise, with every other model in the
speech-without noise condition.

In all three cases, listening tests revealed that there was no
significant improvement in intelligibility (with added noise) de-
spite a noticeable change in phoneme durations.

6.2. Fundamental frequency (F0)

Similar analysis was conducted on F0s of the speaker under
both conditions. Table 5 shows the means and standard devia-

tions of F0 under the two conditions. A significant increase in
the pitch is observed for speech in noise.

#Background Mean F0 Std. dev.

without noise 126.953 34.450
in noise 136.254 33.091

Table 5: F0 of speech in clean/noisy backgrounds

A z-score normalization procedure, similar to the duration mod-
eling experiment can be done to account for the F0 raise.

It remains to be seen how effective the prosodic modification
techniques perform when done in tandem with spectral modifi-
cations.

7. Post-processing in the time domain
As noted earlier, Sections 4 and 5 had the recurring problem of
normalizations when adding noise. Changing the spectral char-
acteristics of speech, in all cases, resulted in an increase in the
dynamic range of the amplitude of the signal. Perceptual exper-
iments had yielded the result that, after amplitude normaliza-
tion, the speech signal with the larger dynamic range sounded
quieter and therefore harder to understand in the presence of
noise. It therefore seems that the dynamic range of the ampli-
tude of the speech signal plays an important role in how it is
perceived. Lowering the dynamic range makes the signal sound
louder and therefore easier to understand in adverse conditions.
However, this decrease in dynamic range also introduces distor-
tions that make the speech signal sound noisier. Therefore, there
is a tradeoff between loudness and distortion when changing the
dynamic range.

A rather naı̈ve approach to improve the intelligibility of
speech in noise, the μ-law algorithm performed the most effec-
tively. This method is known as the compand operation (com-
pression + expansion) on the speech signal. This has the effect
of making the quieter sounds in speech sound louder while af-
fecting louder sounds to a lesser extent. The μ-law algorithm
is a standard technique used to lower the dynamic range of an
audio signal for various purposes. However, this algorithm is
primarily used for audio coding and using parameters of sim-
ilar magnitude would cause a substantial amount of distortion.
The value of the μ parameter in the μ-law coding algorithm
was chosen experimentally rather than trying to optimize for
any particular intelligibility measure.

8. Conclusion
This paper has identified a number of differences between nat-
ural speech and natural speech in noise. It has investigated both
objective measures and tested with subjective measures. Al-
though natural speech in noise is does reflect improvements in
the objective SII measure and in listening tests, speech modi-
fication techniques do not give such a clear benefit. The only
technique we have found so far that gives a significant improve-
ment is the somewhat simple companding techniques, even
though that techniques ignores all of the identified spectral, and
prosodic differences between the two types of speech.

This work implies there are still more subtle aspects of
speech in noise that we are not yet modeling properly for im-
proving the intelligibility of synthetic speech in noise. An inte-
grated approach to joint spectral and prosodic modifications for
this problem is still due.
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A. Example Spoken Sentence

Figure 2: Sentence spoken without and within noise “There was a change now”

B. FFT comparison

Figure 3: Comparing mean FFT spectra of different phonemes for English speakers BDL and NXT. (blue is speech in noise, red is speech without noise)
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