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ABSTRACT

This paper presents techniques for building speech synthesizers tar-
geted at limited data scenarios - limited data from a target speaker;
limited or no data in a target language. A resource sharing strategy
within speakers and languages is presented giving promising direc-
tions for under-resourced languages. Our results show the impor-
tance of the amount of training data, the selection of languages and
the mappings across languages in a multilingual setting. The ob-
jective evaluations conclusively prove that the presentedadaptation
techniques are well suited for building voices in resource-scarce con-
ditions.

Index Terms: Speech Synthesis, Adaptation, Voice conversion,
under-resourced languages.

1. INTRODUCTION

In today’s digital age, there is an increasing use and acceptance of
text-to-speech(TTS) technologies in the internet, mobilephones and
dialogue systems. Besides, the use of speech as an output modal-
ity also enables information access for low-literate and visually im-
paired users. There is a compelling case for the developmentof
speech synthesis technology in possibly all languages of the world.
However, most languages have little or no resources required for
building synthesis systems. Even for languages rich in speech and
language resources, there is a need for efficient strategiesfor user-
customization. Eliciting limited data (< 2 mins) from the subject
should sufficiently allow adaptation of an existing synthesizer to his
voice. In this paper, we address both these situations as resource-
scarce scenarios for bilding acceptable quality speech synthesizers.

While there is no definite notion of the minimum amount of re-
sources required for training, availability of at least onehour of clean
speech recordings is the norm for building high-quality functional
speech synthesizers. This is in addition to phonetic and linguistic
knowledge that requires annotated text resources in the language.
This can be expensive and non-trivial for most languages. Many
languages still have limited or no resources required to build text-to-
speech systems. This makes building synthesis systems challenging
using existing techniques. While, unit selection [10] continues to be
the underlying technique in most commercial systems, its require-
ment of a large amount of well recorded and labeled speech data to
ensure optimal unit coverage makes it prohibitive for under-resource
situations. Statistical parametric synthesis [16], on theother hand
is more liberal in its requirements, produces a more flexiblevoice
comparable in quality to unit selection synthesis. Hence itis ideal
for building voices in resource-scarce conditions.

Section 2 briefly describes our statistical parametric speech syn-
thesis framework. A description of the resources required for build-
ing parametric voices follows in Section 3 including strategies for
building voices under the resource-scarce conditions. Experiments
and results are presented in Section 5.

2. STATISTICAL PARAMETRIC SPEECH SYNTHESIS

We use Clustergen [6], a statistical parametric framework within the
Festvox [13] voice building suite. Fig. 1 shows a schematic rep-
resentation of the training and testing phases in Clustergen. In the
training phase, source and excitation parameters of the speech are
extracted. Text-normalization and letter-to-sound(LTS)rules are ap-
plied on the transcription. The speech and phonetic transcriptions
are automatically segmented using Hidden Markov Model (HMM)
labeling. The speech features are then clustered using available pho-
netic and linguistic knowledge at a phoneme state level. Trees for
duration, spectral (e.g. MFCC) and source (e.g. F0) features are
built during the training phase. During testing (i.e. Text-to-Speech)
input text is processed to form phonetic strings. These strings, along
with the trained models are used to generate the feature parameters
which are vocoded into a speech waveform by a synthesis filter(e.g.
MLSA for MFCCs).

Fig. 1. Schematic diagram of the Clustergen framework

In this framework, models are stored as Classification And Re-
gression Trees (CART) of the phone state. Each phone is realized as
a left-to-right Markov chain of three states (roughly corresponding



to the initial, middle and final states of a phone). The intermediate
nodes of the tree are questions about phonetic and other highlevels
of contextual information (e.g., parts of speech). At the leaf nodes of
the tree are the Gaussian codebooks corresponding to the feature in-
stances falling in that path of the tree. The parametric representation
(multi-dimensional Gaussians, in this case) makes transformations
feasible via simple matrix algebraic operations. This flexibility of
parametric models makes them well suited for adaptations required
in under-resource conditions. Although this framework is similar to
HTS [1], Clustergen generates the utterance frame by frame,rather
than by state, allowing more detailed modeling.

3. BOOSTING RESOURCES FOR VOICE BUILDING

In this section, the resources required for building a voiceare de-
scribed, The specific alternatives for dealing with each kind of re-
source scarcity—that of limited target speaker data and target lan-
guage data are presented in subsections 3.1 and 3.2 respectively.
According to [11], the issues that need to be addressed whilebuild-
ing a voice for a new language are 1) Definition of a phoneme set,
2) Creation of a lexicon and/or Letter-to-Sound(LTS) rules, 3) Text
analysis, 4) Building prosodic models and 5) Building a waveform
synthesizer.

For languages that have an IPA, SAMPA or a phoneset defined
on another standard, they may be adequate to produce synthesizers
of acceptable quality. However, for languages that have no estab-
lished phonesets, it takes a few expert hours to design one based on
the acoustic phonetic information of the phonemes in the language.
For languages that are fairly phonetic (high grapheme-to-phoneme
correspondence), grapheme-based phonesets have been shown to be
adequate[17]. It should be noted that there is a certain arbitrariness in
the allophonic variations within a language or even among speakers
and there is no one best phoneset, optimal for all voices. Similarly,
construction of a lexicon and LTS rules is non-trivial and the effort
varies across languages, but a rule-based or a data-driven,statistical
model for LTS has become commonplace for synthesizers in most
languages [18]. In the following sections, the issues with limited
amount of speech data are presented.

3.1. Limited data from a target speaker

As mentioned earlier, building a voice for a speaker requires a good
amount clean recorded speech. It is thus desirable to have techniques
that can work with just a few minutes of speech and produce good
quality output. Recalling from Section 2, building a voice implies
constructing decision trees for duration, source and spectral features.
When the data is limited, phone coverage and contextual converge
are both insufficient. This hurts any automatic technique tolabel the
data. Even the estimated parameters (Gaussian means and variances)
tend to be unreliable.

To compensate for this, data from one or more speakers may be
used to build the ‘source model’ upon which the adaptation tech-
nique can impose the target speaker’s identity.

This problem is studied extensively as ‘model adaptation’ pro-
posed for speech recognition, starting with the work of [19], later
also successfully applied for speech synthesis [20]. The selection
of the source speakers on which to adapt may also be improved.
Techniques involving speaker clustering and cohort selection have
previously shown significant gains. There is also related work in
voice transformation and feature space transforms [4] thatdeal with
limited target speaker data.

3.2. Limited data in a target language

Lack of sufficient speech data for building speech systems isa com-
mon problem for most minority languages of the world. The Glob-
alPhone [8] project addresses this problem for speech recognition
by exploiting existing resources in several languages to create a new
language synthesizer. Similar attempts in speech synthesis [2] [14]
also succeeded in creating a new language synthesizer sharing re-
sources from several languages. This process is briefly described in
the next section.

3.2.1. Multilingual Speech Synthesis

The ‘source’ voice in case of a target language adaptation isa mul-
tilingual voice. The training data for such a voice is speechincluded
from several languages and the processed transcriptions inthe re-
spective languages. Since the phonetic properties (and labels) of
the languages could be different, a global phoneset is created for
the multilingual voice which assigns the same phonetic category to
phonemes of different languages with the same acoustic phonetic
properties. This strategy optimally shares the speech dataacross lan-
guages wherever appropriate. This also helps ‘boost’ the phonetic
coverage of each language. However, this process requires carefully
developed phone mappings between languages. The voice is built in
a similar way as a monolingual voice after the mapping.

For the target language, the phoneset is mapped to that of the
global set of the multilingual voice. The adaptation follows the same
strategy as in a monolingual case transforming only the phonemes
appropriate to the data presented for the target language. As shown
in our results, the choice of the languages included in the training,
and the amount of data in each language also affects the quality of
the voice in a target language.

4. EVALUATION OF VOICES

We use Mel-Cepstral Distortion (MCD), a spectral distance measure
proposed for evaluating voice conversion performance. It is given by
the equation

MCD = 10/ln10
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are the target and the estimated spectral
vectors respectively. MCD is known to correlate well with the qual-
ity of a voice [12]. The significance of MCD is quantitativelyshown
as a function of the training data size. A reduction of0.12 MCD is
shown as being equivalent to doubling the amount of trainingdata
used for building the voice. This is shown to be consistent across
speakers and languages. The MCD measure is hence relevant both
in the limited target speaker and limited new language data in this
work.

5. EXPERIMENTS AND RESULTS

In this section, we report our observations of the adaptation tech-
niques in each limited data situation. In all experiments, 50 dimen-
sional Mel-Frequency Cepstral Coefficients (static + deltafeatures)
are used as the spectral representation. The features are clustered us-
ing phonetic and contextual questions. For growing the CARTtrees
thresholded with a stop value of 50 instances at the leaf node. All
adaptations are done only on the spectral features. A simplez-score



mapping is done for the fundamental frequency to adjust to the dy-
namic range of the target speaker.

5.1. Limited target speaker data

To evaluate the limited target speaker data scenario, we usevarying
amounts of adaptation data of an American male speaker takenfrom
the arctic database [7]. As the source model, we use 41 American
English speakers of the Wall Street Journal speech corpus [15]. An
‘average’ voice is built from 3 hours of speech data sampled evenly
across 41 speakers. It is shown that such an average voice is closer
to an arbitrary new speaker since it has the average characteristics of
all training speakers, and tends to be speaker independent.

We report two experiments of voice adaptation, one model
based, MLLR adaptation [19] and the other feature based using Joint
density GMM-based estimation (GMM-JDE) [3]. Since the target
data is limited, adaptation is done only on the Gaussian means and
the original variances are retained.

Figure 2 shows the MCD of the estimated speech with respect to
the reference data as a function of the amount of data used foradapta-
tion. It can be seen that even with 20 utterances there is a significant
improvement in the voice and it is closer to the target speaker. The
two techniques begin almost giving same improvements, and begin
to converge with increasing adaptation data. The GMM-JDE tech-
nique converges more quickly. MLLR outperforms the GMM-JDE
technique when more adaptation data is presented. This shows that
of the two techniques, MLLR exploits data more effectively for this
task.

 5.6
 5.8

 6
 6.2
 6.4
 6.6
 6.8

 7
 7.2
 7.4

 0  50  100  150  200  250  300  350

M
C

D

Number of utterances

MLLR
GMM

Fig. 2. Performance with increasing size of adaptation data from
target speaker

5.2. Limited new language data

For simulating a limited new language data condition, a subset of the
Globalphone database is selected. This subset consisted of10 female
speakers, one from each of Chinese (ZH), English (EN), German
(DE), Japanese (JP), Croatian (KR), Portuguese (PT), Russian (RU),
Spanish (ES), Swedish (SW) and Turkish (TR). Of these, German is
set aside as a test target language. The remaining 9 languages are
included in different amounts to also study the effect of data size in
a multilingual setting. 10% of the sentences are set aside astesting
data for each language.

Figure 3 presents the MCDs of the individual languages using
the same multilingual voice. The x-axis is the amount of training
data contributed by each language. The near-linear patternof (es,
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Fig. 3. MCDs of individual languages using a multilingual voice.
Note: en/zh have the same amount of training data and the same
MCD score.

pt, sw ru, en and zh) suggests that MCD (hence, voice quality)is
proportional to the training data size, and this holds even in the mul-
tilingual setting. The good performance of Turkish and Japanese
irrespective of the amount of training data may be explainedby their
simple phonetic structures.

For testing the new languages, we choose German (DE) and Tel-
ugu (TE) languages. The phonemes of these languages are mapped
to their closest alternative from any of the nine different languages
included as training. The overlap in the acoustic phonetic feature
values of these phonemes are used to determine the closenessbe-
tween phonemes (currently no weight is given to different acoustic
phonetic features). The multilingual voice is incrementally adapted
with data from the target language. Figure 4 shows the performance
of the adaptation as MCD gains as a function of increasing amount of
adaptation data. It can be seen that the German voice has a relatively
lower MCD than the Telugu voice even without any adaptation.This
may be explained by the fact that Telugu belongs to the Dravidian
language family which is not represented in the training languages,
while European languages are well represented. Informal listening
tests also show that while the voices are understandable, they have
new accents caused by the training languages.
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6. LANGUAGE SELECTION EXPERIMENTS

In this section, we report our experiments with changing thesubset
of languages included in training the multilingual voice. From, the
initial subset of 9 languages chosen for training in the previous sec-
tion, two subsets are created one including all but English and the
other consisting of all but Chinese language. The choice of these
languages is for two reasons: 1) They are phonetically quitedistinct
and 2) They contribute the same number of training sentences(as
can be seen in the overlayed en/zh tags in the Fig. 3)
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From 6, as we expected the removal of English, a language pho-
netically similar to German, gives worse results, while theremoval
of Chinese, does not make much difference to the quality of German
voice.
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For the same experiment for creation of the Telugu voice, we
find the removal of English does not make much difference, which
we believe is due to the fact that Telugu and English are phonetically
not very close. The unexpected result though is that the removal of
Chinese improves the results. This shows that language selection
is clearly important. One hypothesis for this result is the fact that
Telugu has a larger number of stop distinctions than English(e.g.
aspirated and unaspirated) such allophones do appear in English but

are not phonetic. The initial models have these distinctions con-
flated, but become distinct with more adaptation data. However in
Chinese, aspirated and unaspirated allophones do not occurwithin
stops, hence the training data actually biases the initial phone mod-
els more and requires more training data to contract.

7. CONCLUSIONS

This work proposes adaptation techniques for under-resourced lan-
guages that clearly give promising results. The selection of initial
models, although can be done by simple acoustic phonetic feature
matching, our results show that more subtle selection of initial pho-
netic models and the languages that contribute to them may give even
better results. We have yet to discover an efficient automatic method
to improve these existing techniques.

The second important result is that the resulting synthesisquality
seems to be linearly related to amount of training data, evenacross
several languages.
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