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Abstract
One of the issues in using audio books for building a synthetic
voice is the segmentation of large audio files. The use of stan-
dard forced-alignment to obtain phone boundaries on large au-
dio files fails primarily because of huge memory requirements.
Earlier works have attempted to resolve this problem by us-
ing large vocabulary speech recognition system employing re-
stricted dictionary and language model. In this work, we pro-
pose suitable modifications to the standard forced-alignment
algorithm and demonstrate its usefulness for segmentation of
large audio files. Experimental results are provided on audio
files including an artificially created large audio file and on
EMMA speech corpus of 17.5 hours. Synthetic voices are also
built using these large audio files.
Index Terms: Large audio file, audio books, forced-alignment,
text-to-speech

1. Introduction
Development of a unit selection voice or a statistical parametric
voice requires a speech corpus, i.e., a database of audio files and
text transcriptions. The text transcriptions are sentences (often
incomplete) with five to ten words in each sentence. These sen-
tences are typically recorded by a professional native speaker in
a noise-free environment or in a recording studio. The total du-
ration of audio files varies from two to ten hours. The selection
of sentences used for recording is based on optimal coverage
of phones in a language and hence there may not be a seman-
tic relationship between any two successive sentences. In other
words, a speech corpus built specifically for the purpose of text-
to-speech does not capture prosody beyond an isolated sentence
and it takes considerable amount of effort and time to build such
corpus. Thus it is important to investigate methods where the
amount of effort involved in obtaining a speech corpus for text-
to-speech should be lesser than that of conventional method of
having a professional speaker record in a studio. At the same
time, the obtained audio files should have the following prop-
erties: 1) The recordings of audio files are done in a noise-free
environment by a single speaker and 2) the aspects of prosody
beyond an isolated sentence are encapsulated in speech files.

In this context, it should be noted that the advent of audio
and video sharing networks such as You-Tube and Podcasts, has
increased the availability of audio and video data at exponential
rates. In this type of data, audio books are of particular interest
to us as they provide text and the speech data recorded in a noise
free environment. For example, Librivox (librivox.org) and
Loudlit (loudlit.org) are two portals where volunteers record
books from Gutenberg project and make the audio available for
public usage. These freely available audio books (recorded by
a single speaker in a noise-free environment) act as excellent
candidates for building synthetic voices. Moreover, the text in

these books being a story, is arranged in paragraphs. Hence the
utterances in audio books encapsulate prosody different from
that of an isolated sentence.

However, there do exist a few issues in using audio books
for building synthetic voices. One of the issues is the segmen-
tation of large audio files. The audio books have large audio
files whose durations vary from 5 to 30 minutes. The use of
standard forced-alignment technique to obtain phone level la-
bels on these audio files fails primarily because of huge mem-
ory requirements [1] [2]. For an audio file of 30 minutes, a
standard implementation of forced-alignment technique typi-
cally requires an allocation of 2-D array of 36 GB size. Ear-
lier works have attempted to resolve this problem by segment-
ing the speech at prosodic phrase breaks or by using speech
recognition. In [3], prosodic phrase break locations are first es-
timated in the speech signal, and then words are placed around
breaks based on mean word length and likelihoods of breaks
occurring after each word. In [4], a speech recognizer based on
finite state transducers is employed to segment the large audio
files. In [5], the alignment of large audio files is attempted as a
recursive speech recognition problem with a restrictive dictio-
nary and language model. While the work in [3] relies on ad-
ditional steps to estimate phrase breaks and mean word length,
the works in [4], [5] and [2] rely on availability of large vocab-
ulary speech recognizer to segment the large audio files. In this
work, we demonstrate that the segmentation of large audio files
could be done with simple modifications to standard implemen-
tation of forced-alignment algorithm. Thus our work reported
in this paper makes use of acoustic models built at phone level
as done in a standard implementation of forced-alignment al-
gorithm, but differs significantly from the work reported in [4],
[5] and [2], as we do not rely on availability of large vocabulary
speech recognizer or employ restricted dictionary and language
model to constrain the search space. The fact that our approach
is a simple modification to forced-alignment makes it suitable
for languages (especially less resource languages) where there
is no availability of large vocabulary speech recognition.

The remainder of this paper is organized as follows: Section
II and III discusses the extraction of features from a speech sig-
nal and the set of acoustic models used in this work. Section
IV describes a standard implementation of forced-alignment
algorithm. Section V discusses two suitable modifications to
forced-alignment which could be applied to segment a large au-
dio file. Section VI proposes two different methods of segment-
ing a large audio file. In Section VII, the proposed methods for
segmenting a large audio file are evaluated on an artificially cre-
ated large audio file. In Section VIII, experimental results are
provided on EMMA speech corpus.



2. Extraction of features from a speech
signal

To extract the feature vectors from a speech signal, the charac-
teristics of the speech signal are assumed to be stationary over
a short duration of time (between 10-30 ms). The speech sig-
nal is preemphasized using a difference operator and is divided
into frames of 10 ms using a frame shift of 5 ms. Each frame
of speech data is passed through a Hamming window and then
through a set of Mel-Frequency filters to obtain 13 cepstral co-
efficients. Thus each frame of speech data is represented by a
vector of 13 coefficients [6].

3. Acoustic models
In this work, the acoustic models used to perform segmentation
of large audio files are built using about four hours of speech
data collected from four CMU ARCTIC speakers (RMS, BDL,
SLT and CLB). These acoustic models are context-independent
(CI) HMM models where each phone has three emitting states
and two null states. The states in a phone HMM are connected
in left-to-right fashion with out any skip arcs. The exception
is pau, a silence HMM, where a skip arc is provided to op-
tionally omit the middle emitting state. Each state is modeled
by a two component Gaussian mixture model. Each Gaussian
component is modeled by a 13-dimensional mean vector and a
diagonal covariance matrix. The HMM models were initialized
using a flat start and were trained using Baum-Welsh reestima-
tion algorithm.

4. A Standard Implementation of
Forced-Alignment Algorithm

Let Y = {y(1),y(2), . . . ,y(T )} be a sequence of observed
feature vectors (see Section 2) extracted from a speech signal
of T frames. A forced-alignment technique aligns the feature
vectors extracted from a speech signal with a given transcrip-
tion using a set of existing acoustic models (see Section 3).
Let S = {1, . . . , j, . . . , N} be the state sequence corresponding
to a sequence of words used to force-align the feature vectors
Y , and let x(1), x(2), . . . , x(T ) be the unobserved sequence of
hidden states for Y . Let p(y(t)|x(t) = j) denote the emis-
sion probability of state j for the feature observed at time t and
1 ≤ j ≤ N , where N is the total number of states.

Let us define αt(j) = p(x(t) = j,y(1),y(2), . . . ,y(t)).
This is a joint probability of being in state j at time t and of hav-
ing observed all the acoustic features up to and including time t.
This joint probability could be computed frame-by-frame using
the recursive equation

αt(j) =
∑
i

αt−1(i)ai,jp(y(t)|x(t) = j) (1)

where ai,j = p(x(t) = j|x(t − 1) = i). Note that the Eq.
(1) indicates sum of paths and it transforms to Viterbi if the
summation is replaced with a max operation. Thus Eq. (1)
transforms to Viterbi as shown in Eq. (2).

αt(j) = max
i
{αt−1(i)ai,j}p(y(t)|x(t) = j). (2)

Given the α(.) values in a trellis, a backtracking algorithm
is used to find the best alignment path. In order to backtrack, an
addition variable φ is used to store the path as follows.

φt(j) = argmax
i
{αt−1(i)ai,j}, (3)
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Figure 1: An alpha matrix obtained for the alignment of fea-
ture vectors corresponding to utterance of “ba pau sa” with the
HMM state sequence corresponding to phones /b/, /aa/, /pau/,
/s/ and /aa/. The markers indicate manually labeled phone
boundaries.

where φt(j) denotes a state at time (t − 1) which provides an
optimal path to reach state j at time t.

4.1. A standard backtracking (FA-0)

Given the φ(.) values, a typical backtracking for forced-
alignment is as follows:

x(T ) = N (4)
x(t) = φt+1(x(t+ 1)), t = T − 1, T − 2, . . . , 1. (5)

It should be noted that we have assigned x(T ) = N . This is a
constraint in the standard implementation of forced-alignment
which aligns the last frame y(t) to the final state N and an
implied assumption in this constraint is that the value of αT (N)
is likely to be maximum among the values {αT (j)} for 1 ≤
j ≤ N at time T . The forced-alignment algorithm implemented
using Eq. (4) and Eq. (5) is henceforth referred to as FA-0.

In order to provide a visualization of the usefulness of Eq.
(4), let us consider the following example. A sequence of two
syllables “ba pau sa”, separated by a short pause is uttered and
feature vectors are extracted from the speech signal. This se-
quence of feature vectors is forced-aligned with a sequence of
HMM states corresponding to phones /b/, /aa/, /pau/, /s/ and
/aa/. Fig. 1 displays the values in alpha matrix (HMM states
against time measured in frames). These values are obtained
using Eq. (2) and are normalized between 0 and 1 at each time
frame. The dark band in Fig. 1 is referred to as beam and it
shows how the pattern of values of α closer to 1 is diagonally
spread across the matrix. From Fig. 1, we observe that at the
last frame (T = 201), the last HMM state (N = 15) has high-
est value of α thus justifying the use of Eq. (4) in standard
backtracking.

5. Modifications to Forced-Alignment
The constraint of forcing x(T ) = N is useful when we have
the prior knowledge that the sequence of feature vectors Y are
emissions of the state sequence S. However, such constraints
need to be modified when the state sequence S emits Y ′, where
Y ′ = {y(1),y(2), . . . ,y(T ′)} and T ′ < T or when the state
sequence S′ = {1, . . . , j, . . . , N ′} emits Y , where N ′ < N .
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Figure 2: (a) An alpha matrix obtained for the alignment of fea-
ture vectors corresponding to utterance of “ba pau” with the
HMM state sequence corresponding to phones /b/, /aa/, /pau/,
/s/ and /aa/. (b) Alpha values of all states at the last frame
(T = 109). The markers indicate manually labeled phone
boundaries.

In other words, the constraint x(T ) = N needs to be mod-
ified for situations when 1) the sequence of feature vectors Y
is an emission of a sequence of states S′, where S′ is shorter
than the given sequence S, and 2) the state sequence S emits a
sequence of feature vectors Y ′ whose duration is shorter than
Y .

5.1. Emission by a shorter state sequence (FA-1)

When the given sequence of feature vectors Y is an emission of
a sequence of states S′ which is shorter than the given sequence
S, then the backtracking part of forced-alignment is modified
as in Eq. (6).

x(T ) = argmax
1≤j≤N

{αT (j)} (6)

x(t) = φt+1(x(t+ 1)), t = T − 1, T − 2, . . . , 1. (7)

Equation (6) poses a modified constrained that the last
frame y(T ) could be aligned to a state which has maximum
value of α at time T . This modified constraint allows the back-
tracking to pick a state sequence which is shorter than S. The
forced-alignment algorithm implemented using Eq. 6 and Eq. 7
is henceforth referred to as FA-1.

In order to examine the suitability of Eq. (6) the feature vec-
tors corresponding to utterance of “ba pau” are force-aligned
with the HMM state sequence corresponding to phones /b/, /aa/,
/pau/, /s/ and /aa/. Fig. 2(a) displays the alpha matrix of this
alignment. It could be noted that the beam of the alpha matrix
is not diagonal and moreover at the last frame (T = 109), the
last state (N = 15) does not have highest value of α. Thus the
use of Eq. (4) will fail to obtain a state sequence appropriate
to the aligned speech signal. From Fig. 2(b), we can observe
that the HMM state 9 has highest alpha value at the last frame
and Eq. (6) could be used to pick HMM state 9 automatically
as the starting state of backtracking. Thus the use of Eq. (6)
and Eq. (7) provides a state sequence, which is shorter than the
originally aligned state sequence, but has an appropriate match
with the aligned speech signal.
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Figure 3: (a) An alpha matrix obtained for the alignment of
feature vectors corresponding to utterance of “ba pau sa” with
the HMM state sequence corresponding to phones /b/, /aa/ and
/pau/. (b) Alpha values of the last state (N = 9) for all frames.
The markers indicate manually labeled phone boundaries.

5.2. Emission of a shorter observation sequence (FA-2)

When the given state sequence S emits a sequence of feature
vectors Y ′ whose duration is shorter than Y , then the back-
tracking part of forced-alignment is modified as follows. The
key idea of obtaining a sequence of feature vectors Y ′ aligned
to a state sequence S lies in observing at the values of α at state
N . The alpha values at state N are typically zeros until the
beam of alpha matrix (as dictated by the observation sequence
and state transition probabilities) reaches the stateN . When the
beam reaches the stateN , then the alpha value for stateN tends
to 1.

Let T ′ be the time instant at which the state N attains an
alpha value of 1 and αt(N) < 1 for all 1 ≤ t < T ′. Given T ′,
the backtracking algorithm is modified as follows.

x(T ′) = N, T ′ < T (8)
x(t) = φt+1(x(t+ 1)), t = T ′ − 1, . . . , 1. (9)

Equation (8) poses a modified constraint that the last state N
could be aligned to a feature vector at time T ′ where T ′ < T .
If the state sequence S is emitting an observation sequence Y ′

which is shorter in length than Y , then the time instant at which
the beam in the trellis has reached state N denotes the length
of Y ′. This modified constraint allows the backtracking to pick
an observation sequence which is shorter than Y . The forced-
alignment algorithm implemented using Eq. 8 and Eq. 9 is
henceforth referred to as FA-2.

In order to examine the suitability of Eq. (8) the feature
vectors corresponding to utterance of “ba pau sa” are force-
aligned with the HMM state sequence corresponding to phones
/b/, /aa/ and /pau/. Fig. 3(a) displays the alpha matrix of this
alignment. From Fig. 3(b), it could be observed that the time in-
stant at which the alpha value for the last state (N = 9) reaches
1 also denotes the length of shorter observation sequence (“ba
pau”) corresponding to state sequence representing /b/, /aa/ and
/pau/. Thus Eq. (8) and Eq. (9) could be used to pick a shorter
observation sequence corresponding to the state sequence used
for alignment.



6. Segmentation of a Large Audio File
Let Φ denote a large audio book containing a sequence of K
utterances u(1), . . . , u(k), . . . , u(K), where each utterance is
a sentence / paragraph. The objective here is to obtain phone
level boundaries for each of the utterances. A standard method
is to force-align the text transcription of utterance u(k) (1 ≤
k ≤ K) with the corresponding speech signal. However, in the
case of large audio book Φ, the beginning and the ending of
the utterances are not known. Hence we apply force-alignment
technique using FA-1 or FA-2 for segmentation of a large audio
file.

6.1. Segmentation using FA-1 (SFA-1)

In FA-1, we assume that an observation sequence is being force-
aligned with a state sequence longer than the one which has
emitted the observation and hence the objective is to find this
shorter state sequence. Thus in order to use FA-1, we process
the large audio file Φ in blocks of db = 30 s duration and
force-align each block with a sequence of words whose length
is longer than the actual sequence of words. The method of seg-
menting a large audio file using FA-1 is henceforth referred to
as SFA-1.

Let w(1), . . . , w(m), . . . , w(M) be the sequence of words
present in audio file Φ. Let y(1), . . . ,y(t), . . . ,y(T ) be the
sequence of T feature vectors extracted from Φ. Let nf denote
the number of frames in a block of db s of speech. Let nw

denote the number of words in db s, heuristically estimated as
nw = η ∗db ∗λ, where η = 3 indicates a speaking rate of three
words per second. The value of λ = 1.5 is chosen such that the
estimate of nw is larger than the actual number of words in a 30
s of speech data. The sequence of steps involved in using FA-1
for segmentation of large audio file is as follows.

1. m = 1, t = 1.

2. Let F = {y(t),y(t + 1) . . . ,y(t + nf )} and let W =
{w(m), w(m+1), . . . , w(m+nw)}. A sentence HMM
representingW is constructed such that it introduces op-
tional silence model between every word. This optional
silence model helps to capture any pause regions inserted
by the speaker between any two adjacent words.

3. Force-align F with sentence HMM of W using the
method FA-1. Let x(t), x(t + 1), . . . , x(t + nf ) be the
state sequence obtained as a result of forced-alignment
between F and W . In FA-1, the observation vector
y(t + nf ) is aligned to a state x(t + nf ) which has
maximum alpha value at time (t + nf ). Note that the
speech block F is an ad hoc block considered without
any knowledge of pause or word/sentence boundary and
hence the state x(t+ nf ) need not be an ending state of
a word HMM.

4. Let δ be the minimum non-negative integer value (δ ≥ 0)
such that x(t + nf − δ) is an ending state of a word
HMM in the vicinity of x(t + nf ). Considering the
state sequence x(t), x(t + 1), . . . , x(t + nf − δ), the
corresponding sequence of words W ′ = {w(m), w(m+
1), . . . , w(m+ n′w)} is obtained, where n′w ≤ nw.

5. To obtain a more robust alignment, only the initial por-
tion of W ′ is considered. Starting from w(m), a word
w(m + n′′w) is located such that there exists a pause of
at least 150− 200 ms after the word w(m+ n′′w) where
n′′w < n′w. Let n′′f be the number of frames aligned with
the word sequence w(m), w(m+ 1), . . . , w(m+ n′′w).

6. t = t+ n′′f , m = m+ n′′w.

7. Repeat the steps 2-6 until the end of Φ.

6.2. Segmentation using FA-2 (SFA-2)

In FA-2, we assume that a given state sequence is being force-
aligned with a larger observation sequence and hence the ob-
jective is to find this shorter state sequence. Thus in order to
use FA-2, we process the large audio file Φ in terms of utter-
ances u(1), . . . , u(k), . . . , u(K) where each utterance u(k) is
a sentence/paragraph. The idea is to force-align an utterance
with an observation sequence which is longer than the actual
observation sequence. The method of segmenting a large audio
file using FA-2 is henceforth referred to as SFA-2. The steps
involved in SFA-2 are as follows.

1. k = 1, t = 1.

2. Let U = [u(k), u(k + 1)]

3. A heuristic estimate of duration of U is defined as du =
np ∗ dp, where np is the number of phones in utterance
U and dp denotes the duration of a phone. The value of
dp = 0.1 s is chosen such that the estimated value of du
is higher than the actual duration of the utterance U .
Let nf denote the number of frames in du s and let F =
{y(t),y(t+ 1) . . . ,y(t+ nf )} denote the sequence of
feature vectors extracted from Φ.

4. Force-align F with the sentence HMM representing U .
This forced-alignment is performed using FA-2. As a re-
sult of this forced-alignment the shorter observation se-
quence y(t),y(t + 1) . . . ,y(t + n′f ) emitted by U is
obtained, where n′f < nf .

5. Given that U is force-aligned with a longer observation
sequence, it was observed that the ending portion of such
alignment may not be robust. For example, the silence
HMM model at the end of U might observe a few ob-
servation vectors of next utterance u(k + 2) especially
if u(k + 2) begins with a fricative sound. Hence the
observation sequence y(t),y(t+ 1) . . . ,y(t+n′′f ) cor-
responding to utterance u(k) alone is considered, where
n′′f < n′f .

6. t = t+ n′′f , k = k + 1.

7. Repeat steps 2-6 until k = K.

8. In order to obtain phone boundaries for the last ut-
terance u(K) perform forced-alignment of u(K) with
y(t),y(t+ 1) . . . ,y(T ) using FA-0.

6.3. SFA-1 Vs SFA-2

While both SFA-1 and SFA-2 performs segmentation of long
speech files, there are differences in the output of these meth-
ods. SFA-2 segments the long speech files into utterances cor-
responding to paragraphs in text. A paragraph could be one
or more sentences expressing a single thought or character’s
continuous words. The definition of a paragraph is not criti-
cal here, but it is important to understand that utterances ob-
tained from SFA-2 correspond to boundaries of grammatical
units (sentences) and logical units (thoughts, character’s turns
etc.) as shown in Table 1. Such segmentation is useful for
modeling prosody at sentence and paragraph level, especially
in text-to-speech. In contrast, as shown in Table 1, SFA-1 seg-
ments the long speech file into chunks of 1-30 seconds. These
chunks need not be complete sentences, hence many provide



Table 1: Example utterances obtained from SFA-1 and SFA-2

Utterances obtained from SFA-1
1. I do not know what your, opinion may be. Mrs Weston, said
Mr Knightley,
2. of this great intimacy, between Emma and Harriet Smith,
3. but I think it a bad thing,
4. A bad thing. Do
5. you really think it a bad thing,
6. why so. I think they will neither of them, do the other any
good.
Utterances obtained from SFA-2
1. “I do not know what your opinion may be, Mrs. Weston,”
said Mr. Knightley, “of this great intimacy between Emma and
Harriet Smith, but I think it a bad thing.”
2. “A bad thing! Do you really think it a bad thing?–why so?”
3. “I think they will neither of them do the other any good.”

inaccurate representation of sentence boundaries and the corre-
sponding prosodic boundaries. Thus it is preferred to use SFA-2
for text-to-speech, as it provides paragraph length utterances.

7. Evaluation on an Artificially Created
Large Audio File

To evaluate the effectiveness of SFA-1 and SFA-2 for segmenta-
tion of large audio files, we have made use of RMS voice from
CMU ARCTIC database. The RMS voice consists of 1132 ut-
terances in US accented English. Let this original database of
RMS (i.e., 1132 utterances and the corresponding speech wave
files) be referred to as Θr . For our purposes, all the wave files
of 1132 utterances were concatenated to create an artificial large
audio file, henceforth referred to as Φr . The duration of Φr is
66 minutes. To compare and evaluate FA-0, SFA-1 and SFA-2,
we conducted the following experiments on Θr and Φr .

• Apply FA-0 on each utterance in Θr to obtain phone
boundaries in each utterance.

• Apply SFA-1 on Φr as described in Section 6.1. This
process results in segmentation of Φr into short utter-
ances of approximately 5 − 30 s long and also provides
phone boundaries in each of these utterances.

• Apply SFA-2 on Φr as described in Section 6.2. This
process results in segmentation of Φr into 1132 utter-
ances (the same number of utterances as in Θr) and also
provides phone boundaries in each of these utterances.

The criteria to evaluate the performance of FA-0, SFA-1 and
SFA-2 is as follows:

7.1. Duration of utterances:

The number of utterances obtained by SFA-2 are equal to num-
ber of utterances in the original recordings. Thus the duration of
utterances obtained from SFA-2 is compared with the duration
of utterances in original recordings.

Let dk be the duration of an utterance k obtained from SFA-
2 and let d̂k be the duration of the original recording of k. Let
εk = d̂k − dk. The mean and standard deviation of ε obtained
for all 1132 utterances was found to be -0.023 s and 0.028 s
respectively. These values indicates that SFA-2 could detect
the beginning and ending of each of these utterances with an

average difference of 23 milliseconds and a standard deviation
of 28 milliseconds. In informal listening tests we found that
the beginning and ending of utterances obtained SFA-2 were
indistinguishable from the original recordings.

7.2. Mean duration of phones:

The second criteria is to compare the mean duration of phones
obtained using FA-0, SFA-1 and SFA-2. Here we assume that
the mean duration of phones obtained using FA-0 acts as bench-
mark to evaluate the performance of SFA-1 and SFA-2. Fig. 4
shows the scatter plot of mean duration of phones from FA-0
and SFA-1 or SFA-2 for RMS voice. The linear trend of scatter
plots in Fig. 4 show that the segment boundaries obtained from
SFA-1 and SFA-2 are nearly as good as that of FA-0.

0.05 0.1 0.15 0.2 0.25
0.05

0.1

0.15

0.2

0.25

Avg. dur of phones from FA−0 (in sec)

A
vg

. d
ur

 o
f p

ho
ne

s 
fr

om
 S

F
A

−
1 

(in
 s

ec
)

(a)

0.05 0.1 0.15 0.2 0.25
0.05

0.1

0.15

0.2

0.25

Avg. dur of phones from FA−0 (in sec)

A
vg

. d
ur

 o
f p

ho
ne

s 
fr

om
 S

F
A

−
2 

(in
 s

ec
)

(b)

Figure 4: (a) Scatter plot of mean duration of phones from FA-0
and SFA-1 for RMS voice. (b) Scatter plot of mean duration of
phones from FA-0 and SFA-2 for RMS voice.

7.3. Text to Speech based evaluation

The third criteria is to build a TTS with the phone segments
obtained from FA-0, SFA-1 and SFA-2. The process to build
a TTS voice follows the framework of CLUSTERGEN [7].
CLUSTERGEN is a statistical parametric synthesis engine
which learns the spectral, a 25-D Mel-Cepstral (MCEP) vec-
tor computed for every frame, and duration parameters from
the speech data using classification and regression trees. Dur-
ing synthesis time, spectral (MCEP) and duration parameters
are predicted from the input text. The predicted MCEPs are
passed through Mel-Log Scale Spectral Approximator (MLSA)
and are excited with white noise or pulse train to generate the
speech signal. To evaluate the quality of a TTS voice, one could
perform a subjective evaluation and an objective evaluation on
a held-out test set of utterances. Let V 0

r , V 1
r and V 2

r denote the
TTS voices built from Θr using FA-0, Φr using SFA-1 and Φr

using SFA-2 respectively.

7.3.1. Objective evaluation of a TTS voice

A TTS voice is built using a set of utterances from train set and
the utterances from held-out set are synthesized using this TTS



Table 2: MCD scores obtained on TTS voices of RMS (V 0
r , V 1

r ,
V 2
r ) and EMMA (V 1

e , V 2
e ).

MCD # utts. (train) # utts. (held-out)
V 0
r 5.27 1019 113
V 1
r 5.27 1049 116
V 2
r 5.29 1019 113
V 1
e 5.09 13757 1528
V 2
e 5.04 2424 269

Table 3: DND listening tests on TTS voices of RMS (V 0
r , V 1

r ,
V 2
r ) and EMMA (V 1

e , V 2
e ).

diff no-diff
V 0
r vs V 1

r 15/50 35/50
V 0
r vs V 2

r 12/50 38/50
V 1
e vs V 2

e 17/50 33/50

voice. Mel Cepstral Distortion (MCD) is an objective measure
for evaluating the quality of synthesized utterances [7]. The
synthesized wave file is aligned with original wave file using
dynamic programming and Mel-Ceptral Distortion (MCD) is
computed between the synthesized and original wave file. MCD
is computed as given in equation below.

MCD = 10/ ln(10) ∗

√√√√2 ∗
25∑
l=1

(csl − col )2 (10)

where csl and col denotes the lth coefficient of the synthesized
and the original wave files, respectively.

Table 2 shows the MCD scores obtained on TTS voices V 0
r ,

V 2
r and V 2

r . From Table 2, we can observe that the MCD scores
obtained on these three different voices are similar indicating
that the voices built from large audio file Φr perform as good as
that of Θr .

7.3.2. Subjective evaluation of a TTS voice

In order to evaluate the TTS voices V 0
r , V 1

r and V 2
r we have

also conducted a perceptual listening test. A set of five speakers
(henceforth referred to as subjects) participated in this listen-
ing test. A set of 10 utterances were synthesized from these
three voices. Each subject was asked to listen to an utterance
synthesized by V 1

r /V 2
r and compare it against the same utter-

ance synthesized by V 0
r . The subject was asked whether there

was a difference or no-difference in the pair of utterances. We
henceforth refer to this listening test as DND (difference-no-
difference) test. Table 3 summarizes the results obtained on 50
utterances (five subjects x 10 utterances). From Table 3, it could
be observed that in a majority of utterances the subjects did not
find any difference between the voices V 1

r /V 2
r and V 0

r .

8. Evaluation on EMMA Speech Corpus
from Librivox

LibriVox (http://librivox.org) is an on-line resource which pro-
vides public domain recordings of a range of fiction and non-
fiction works in numerous languages and provides informa-
tion on where to download the associated text. For our ex-
periments we have collected the recordings of EMMA by Jane

Austen. These recordings are done by a female speaker . All
the recordings were concatenated to form a large audio file,
henceforth referred to as Φe, whose duration is 17.35 hours.
We downloaded the associated text from Project Gutenberg
(http://www.gutenberg.org), and added text at the beginning and
end of each chapter to match the introductions and closings
made by the speaker. The text was arranged into 2693 utter-
ances, where each utterance is of sentence/paragraph length.

Both SFA-1 and SFA-2 were applied on Φe, and CLUS-
TERGEN voices were built. Let V 1

e , V 2
e denote the TTS voices

built from Φe using SFA-1 and SFA-2 respectively. Table 2
shows the MCD scores obtained on TTS voices V 1

e and V 2
e .

The lower MCD scores of V 1
e and V 2

e in comparison with MCD
scores of V 0

r /V 1
r /V 2

r could be attributed to the large amount of
speech data available in Φe as compared to one hour of RMS
voice. The fact that a decent MCD score was obtained on
V 1
e /V 2

e indicates that the methods SFA-1 and SFA-2 could be
applied for segmentation of large audio files such as EMMA
corpus. Table 3 shows the DND listening tests conducted on
V 1
e and V 2

e . The results indicate that in a majority of utterances
the subjects did not perceive any difference between the voices
V 1
e and V 2

e .

9. Conclusion
In this paper, we have proposed modifications to the standard
forced-alignment technique and showed the proposed modifi-
cations could be employed to develop two different methods
(SFA-1 and SFA-2) to segment a large audio file. Thus it alle-
viates the need of a large vocabulary speech recognition system
(and the corresponding algorithms) for segmenting a large au-
dio file. More importantly, the methods SFA-1 and SFA-2 en-
able the forced-alignment algorithm to be used in less resource
language where a large vocabulary speech recognition system
is not readily available.
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