
Experiments with Cross-lingual Systems for Synthesis of Code-Mixed Text

Sunayana Sitaram1, Sai Krishna Rallabandi1, Shruti Rijhwani1 Alan W Black2

1Microsoft Research India
2Carnegie Mellon University

t-susita@microsoft.com, t-sarall@microsoft.com, t-shruri@microsoft.com, awb@cs.cmu.edu

Abstract

Most Text to Speech (TTS) systems today assume that the input
is in a single language written in its native script, which is the
language that the TTS database is recorded in. However, due
to the rise in conversational data available from social media,
phenomena such as code-mixing, in which multiple languages
are used together in the same conversation or sentence are now
seen in text. TTS systems capable of synthesizing such text
need to be able to handle multiple languages at the same time,
and may also need to deal with noisy input. Previously, we
proposed a framework to synthesize code-mixed text by using
a TTS database in a single language, identifying the language
that each word was from, normalizing spellings of a language
written in a non-standardized script and mapping the phonetic
space of mixed language to the language that the TTS database
was recorded in. We extend this cross-lingual approach to more
language pairs, and improve upon our language identification
technique. We conduct listening tests to determine which of the
two languages being mixed should be used as the target lan-
guage. We perform experiments for code-mixed Hindi-English
and German-English and conduct listening tests with bilingual
speakers of these languages. From our subjective experiments
we find that listeners have a strong preference for cross-lingual
systems with Hindi as the target language for code-mixed Hindi
and English text. We also find that listeners prefer cross-lingual
systems in English that can synthesize German text for code-
mixed German and English text.
Index Terms: speech synthesis, code-mixing, multilingual sys-
tems, pronunciation

1. Introduction
Code-Mixing, in which words from multiple languages are
mixed in the same conversation, sentence or word, occurs in
multilingual communities around the world. With the advent
of social media and conversational content, this phenomenon,
which was restricted to speech, is now seen in text as well. Text
to Speech (TTS) systems that are used for reading text on the
web and social media need to be capable of synthesizing text in
multiple languages. Current TTS systems are typically built us-
ing recordings from a single speaker in a single language, with
the assumption that they will be used for synthesizing text writ-
ten in that language. There is also a strong assumption that the
text that the TTS system synthesizes is written using standard-
ized spellings.

However, code-mixed text provides multiple challenges to
TTS systems: first, the TTS system needs to identify all the
languages present in the sentence. Next, it must be be able to
identify which words in the sentence belong to which language
and apply the appropriate pronunciation rules for synthesizing

words in each language. Finally, the TTS system should ide-
ally have phonetic coverage of all the languages being mixed,
which can be difficult to anticipate in advance and implement
in practice.

Sometimes, there are additional complications created by
code-mixed text in some language pairs, due to the fact that
some languages are not written in their native script, and instead
borrow the script of the language they are mixed with. This
can create problems of spelling normalization, as there may not
exist standard spellings for writing the foreign language. This is
seen in languages of the Indian subcontinent, which are usually
written in Romanized script on social media and Arabic chat
language (Arabizi).

Further, if we are following the approach of using a sin-
gle TTS database trained completely or primarily on a single
language to synthesize code-mixed text, we may also need to
choose which of the mixed languages should be used as the tar-
get language. Here, the concept of the matrix language may be
useful [1], which is defined as the language whose syntax gov-
erns the structure of a code-mixed sentence into which the other
language is embedded. It may be possible that using the matrix
language of the sentence is the appropriate choice in such cases.

There has been some prior work on building bilingual TTS
systems for synthesizing bilingual text written in each lan-
guage’s native script. Previously, we have also introduced a
framework for synthesizing code-mixed text by using a TTS
system trained on a single language. In this work, we extend
this approach to more languages, perform better language iden-
tification and perform analysis on which language can be cho-
sen as the target language. We perform TTS experiments on
code-mixed Hindi and English written in Romanized script, and
German and English written in their native scripts.

Section 2 describes how this work relates to previous work
on code-mixing and bilingual TTS synthesis. Section 3 de-
scribes the data and resources used for this work. Sections 4
and 5 describe the experimental setup and evaluation techniques
with results of listening tests. Section 6 concludes with future
directions.

2. Relation to Prior Work
Code-switching and code-mixing have received interest in both
the Natural Language Processing and Speech Processing com-
munities recently. Although code-switching and code-mixing
are distinct phenomena, in the paper, we use the term code-
mixing as a general term to describe the use of multiple lan-
guages in the same utterance. Note that code-mixing can also
happen at the morpheme level, however, our techniques do not
explicitly handle this and it is beyond the scope of this paper.

Code-mixing has been studied recently with applications
in Information Retrieval and Machine Translation, with a fo-



cus on identifying the languages that are being mixed. The
Code Switching shared task at EMNLP 2014 [2] consisted of
data from 4 mixed languages (English-Spanish, Nepali-English,
Arabic-Arabic dialect, Mandarin-English) and the task was
to identify for each word which language it belonged to, or
whether it was mixed, ambiguous or a named entity. Chittaran-
jan et al. [3] describe a CRF based approach for word level
Language Identification for this task, in which they used vari-
ous lexical and character-based features. Vyas et al. [4] created
a manually annotated corpus of code-mixed social media posts
in Hindi-English and used it for POS tagging. They analyzed
this corpus and found that 40% of the Hindi words in the cor-
pus were written in Romanized script. They also found that
17% of the data exhibited code-mixing, code switching or both.
They found that transliteration and normalization were the main
challenges faced while processing such text. Bali et al. [5] fur-
ther analyzed this data to find that words fall into categories of
code mixing, borrowing and ambiguous, with many borrowed
words being written in English and many Hindi words being
misidentified as English due to spelling. They suggest that a
deeper analysis of morpho-syntactic rules and discourse as well
as the socio-linguistic context is necessary to be able to process
such text correctly. Gupta et al. [6] introduce the problem of
mixed-script Information Retrieval, in which queries written in
mixed, native or (often) Roman script need to be matched with
documents in the native script. They present an approach for
modeling words across scripts using Deep Learning so that they
can be compared in a low dimensional abstract space.

Code Switching has also been studied in the context of
speech, particularly for Automatic Speech Recognition (ASR)
and building multilingual TTS systems. Modipa et al. [7] de-
scribe the implications of code-switching for ASR in Sepedi,
a South African language and English, the dominant language
of the region. They find that the presence of code switching
makes it a very challenging task for traditional ASR trained on
only Sepedi. Vu et al. [8] present the first ASR system for
code-switched Mandarin-English speech. They use the SEAME
corpus [9], which is a 64 hour conversational speech corpus of
speakers from Singapore and Malaysia speaking Mandarin and
English. They use Statistical Machine Translation based ap-
proaches to build code mixed Language Models, and integrate
a Language ID system into the decoding process. Ahmed et al.
[10] describe an approach to ASR for code switched English-
Malay speech, in which they run parallel ASRs in both lan-
guages and then join and re-score lattices to recognize speech.

Bilingual TTS systems have been proposed by [11] for
English-Mandarin code switched TTS. This approach uses
speech databases in both languages from the same speaker and a
single TTS system that shares phonetic space is built. Microsoft
Mulan [12] is another bilingual system for English-Mandarin
that uses different frontends to process text in different lan-
guages and then uses a single voice to synthesize it. Both these
systems synthesize speech using native scripts, that is, each lan-
guage is written using its own script. Polyglot systems [13] en-
able multilingual speech synthesis using a single TTS system.
This method involves recording a multi language speech cor-
pus by someone who is uent in multiple languages. This speech
corpus is then used to build a multilingual TTS system. The pri-
mary issue with polyglot speech synthesis is that it requires de-
velopment of a combined phoneset, incorporating phones from
all the languages under consideration. Another type of multi-
lingual synthesis is based upon phone mapping, whereby the
phones of the foreign language are substituted with the clos-
est sounding phones of the primary language. This method re-

sults in a strong foreign accent while synthesizing the foreign
words, which may or may not be acceptable. Also, if the se-
quence of the mapped phones does not exist or does not occur
frequently in the primary language, the synthesis quality can
be poor. To overcome this, an average polyglot synthesis tech-
nique using HMM based synthesis and speaker adaptation has
been proposed [14]. Such methods make use of speech data
from different languages and different speakers.

Recently, we proposed a framework for speech synthesis of
code-mixed text [15] in which we assumed that two languages
were mixed, and one of the languages was not written in its na-
tive script but borrowed the script of the other language. Our
framework consisted of first identifying the language of a word
using a dictionary-based approach, then normalizing spellings
of the language that was not written in its native script and then
transliterating it from the borrowed script to the native script.
Then, we used a mapping between the phonemes of both lan-
guages to synthesize the text using a TTS system trained on
a single language. We conducted experiments on code-mixed
Hindi-English sentences and found that users preferred the sys-
tem that handled code-mixing to systems that assumed that
the input was monolingual, that is either Hindi or English. In
this work, we also assumed that the matrix language of all the
sentences was Hindi, and made the Hindi synthesizer capable
of synthesizing code-mixed Hindi-English sentences written in
Romanized script.

In this work, we extend our previous work by perform-
ing experiments on German-English code-mixing in addition
to Hindi-English. We improve upon our previous dictionary-
based technique of performing Language Identification for
code-mixed text. We also conduct experiments to determine
which language’s TTS database should be used when synthe-
sizing code-mixed text.

3. Data and Resources
In this work, we conducted experiments on code-mixed Hindi
and English and German and English. For synthesis, we
used one bilingual speaker’s databases for Hindi-English and
twobilingual speakers’ databases for German-English. Next, we
describe the data and tools we used for performing experiments.

3.1. TTS databases

Our speech databases consisted of Hindi and English data
recorded by a female native Hindi speaker and German and En-
glish data recorded by two male native German speakers. The
Hindi database was 2.5 hours long and contained prompts from
a Hindi book by Premchand that is out of copyright. The En-
glish database recorded by the same speaker consisted of the
CMU ARCTIC [16] A set and was 35 minutes long.

The German AHW database was around 32 minutes long,
and the German FEM database was 53 minutes long. The En-
glish database recorded by AHW was around 35 minutes long,
while the English database recorded by FEM was around 30
minutes long, and both were created with recordings from the
ARCTIC A set. The prompts for the German databases were
taken from Europarl data [17].

All three speakers had high proficiency in English. There
were no English words in the Hindi and German data, other
than borrowed words from English in the German data. Since
the Hindi data came from books written in the 19th century, they
contained no borrowed words from English.



3.2. Code-mixed test data

Since our aim was to synthesize code-mixed text, our test
sentences consisted of data from social media in Hindi-English
and German-English. The Hindi-English data consisted of a
corpus of comments on a Hindi recipe website which consisted
of code-mixed Hindi and English written entirely in the Ro-
manized script. The German-English data consisted of tweets
that were crawled from Twitter. We selected 15 sentences from
each corpus for conducting subjective listening tests, which
we synthesized using our techniques. Example sentences from
Hindi-English and German-English are shown below.

Hindi-English: Dear nisha mujhe hamesha kaju barfi banane
mein prob hoti h plzz mujhe kaju katli ki easy receipe bataiye
Translation: Dear Nisha I always have a problem making Kaju
Barfi please give me an easy recipe for Kaju Katli.

German-English: Gay marriage now legal in all US states Der
US Supreme Court hat entschieden und wir feiern
Translation: Gay marriage now legal in all US states the US
Supreme Court has ruled and we celebrate.

In the Hindi example above, the Romanized script is used to
write Hindi words, and standard spellings do not exist for Hindi
words. In addition, this data also has non-standard spellings
and contractions for English words. The German examples are
cleaner with less spelling variations for both German and En-
glish words, even though this data came from Twitter. The
Hindi-English data has many switch points, where the lan-
guages alternate. However, most of the German-English sen-
tences had one or at the most two switch points.

3.3. Spelling normalization

As we saw in the examples above, Hindi written in Romanized
script does not have standardized spellings. To deal with this
and the problem of non-standard spellings and contractions, we
used a spelling normalization technique which replaced each
word with a high-frequency word in the Hindi recipe corpus.
The high-frequency word was chosen using the SoundEx algo-
rithm as described in [15].

We did not perform spelling normalization for our German-
English code-mixed data. However, the same approach can be
easily extended to other languages provided we have a suffi-
ciently large text corpus that has code-mixing in the language
pair.

The image below shows the spelling variants of the word
’recipe’ found in the Hindi-English recipe corpus. Each spelling
variant was replaced by the highest frequency word, which was
the correct spelling of ’recipe’ in this case. In cases where
a high-frequency match was not found, the word was left un-
normalized.

Figure 1: Spelling variants in the ”recipe” cluster

3.4. Language identification

Most language identification (LID) systems classify each docu-
ment or sentence with a single language [18, 19, 20, 21]. With

code-mixed data, it becomes necessary to identify the language
of each word, as code-mixing, apart from at the sentence level,
often occurs at the phrase, word or morpheme level [22, 1].

In previous work on synthesizing Hindi-English code-
mixed text, we used a naive dictionary-based approach, that
assigned an English language tag to all words found in CMU-
dict [23], a lexicon containing English words, and tagged all re-
maining words as Hindi. In subjective listening tests for Hindi-
English, we found that there was a gap between listener pref-
erence for our system compared to a system with ground truth
language labels and manual spelling normalization. We felt that
we could get a large improvement in our system by performing
better LID. Next, we describe in brief a language identification
system for German-English code-mixed text (work in submis-
sion) that we used as part of our system. For Hindi-English
text, we use the system designed by Gella et al. [24] with a
small modification.

For German-English code-mixing, we use a Hidden
Markov Model (HMM) that has a state for each language (Ger-
man and English, in this case) and a state to represent extralin-
guistic tokens (punctuation, digits and other special characters).
Using the Viterbi decoding algorithm, each word in the input
sentence is sequentially labeled by the HMM with either a lan-
guage or as extra-linguistic. Unlike previous work on code-
mixing identification [2, 25, 26, 27, 28, 29], our technique does
not require annotated monolingual data or code-mixed data with
word-level language annotations. Such data is challenging to
obtain and expensive to annotate. Instead, we tuned the HMM
parameters using automatically identified tokens in German and
English as weakly-labeled data. The weakly-labeled data con-
tained 100,000 tokens in each language. The word-level label-
ing accuracy, tested on German-English data from Twitter, was
98.4%.

We used the technique developed by Gella et al. [24] for
LID on Hindi-English code-mixed text. This was the best per-
forming system in the FIRE 2013 shared task on Hindi-English
word-level language labeling [27]. Gella et al. [24] use 5000 in-
stances from the FIRE 2013 training data [27]. The system uses
maximum entropy classifiers trained on character n-grams from
Hindi and English words. For each word in the input, the sys-
tem gives two values that represent the probability of the word
coming from English and Hindi. With these probabilities, we
obtained the most likely sequence of labels using the Viterbi
algorithm. While decoding, we also introduced a parameter
that penalizes code-mixing, as remaining in the same language
(monolingual sequences) is more common than code-mixing.
This parameter was tuned on a development set containing 500
Hindi-English tweets.

3.5. Synthesis techniques

All TTS experiments were carried out using the Festvox voice
building tools [30]. We built standard CLUSTERGEN [31] Sta-
tistical Parametric Synthesis voices that ran using the Festival
[32] Speech Synthesis engine.

We used the Festvox Indic front end [33] to build the Hindi
voice and the Festvox German frontend to build the German
voices. The Festvox Indic frontend contains hand-written rules
to handle various linguistic phenomena in Indian languages
such as schwa deletion, lexical stress rules, contextual nasaliza-
tion etc. The Festvox German frontend made use of the BOMP
lexicon [34] and letter-to-sound rules. The English voices were
built using the standard Festvox US English front end that used
CMUdict as the lexicon and a letter-to-sound model built using



CMUdict for predicting the pronunciation of unseen words.

4. Experiments
We refer to our approach of building voices that are capable of
speaking languages other than the language of the training TTS
database as the cross-lingual approach to distinguish it from a
bilingual approach where TTS databases in both languages be-
ing mixed are used. We build monolingual systems in all the
languages being mixed, assuming that the input was in a single
language. We also built cross-lingual systems for Hindi-English
and German-English, described below.

4.1. Monolingual systems

We built monolingual systems using 5 TTS databases (3 English
and 2 German) in which we used the standard frontends and
assumed that all the test sentences were in the target language.
This was not the case for the Hindi system, since the text was
in Romanized script and the Hindi system assumed that Hindi
input would be in Devanagari. Instead, we built a monolingual
system for Hindi by transliterating all the Romanized text to
Devanagari and treating all the text as Hindi. We performed
this transliteration by using a decision-tree based model trained
on a few hundred Romanized Hindi-Devanagari pairs. This is
described in more detail in [35].

4.2. Cross-lingual systems

We built cross-lingual systems for Hindi-English using the ap-
proach we described in [15]. We normalized spellings using
the approach described earlier. We identified the language of
each word in the sentence by using the dictionary-based tech-
nique or the Maximum Entropy based technique. Once the
languages were identified, we transliterated the Hindi words
into Devanagari using the transliteration model. Then, we ran
the words through their respective frontends (Hindi for the De-
vanagari words, English for the Romanized words) and mapped
phonemes to the target language’s frontend. Finally, we syn-
thesized the sentences by using the monolingual English TTS
system and Hindi TTS system.

Similarly for German-English, we identified the lan-
guage of each word with the dictionary-based technique and
the HMM-based technique described earlier. We mapped
phonemes from the German frontend to English and vice-versa.
When an exact phoneme match was not found, we substituted
it with the closest sounding phoneme based on its phonetic fea-
tures. In case of German, we did not use a transliteration model
to map words since the words were already written in the cor-
rect script. We synthesized all code-mixed sentences using the
German and English TTS systems of both speakers.

In all, we had 6 cross lingual systems, one for each TTS
database.

5. Evaluation and Results
First, we calculated the accuracy of the Language Identifica-
tion systems described earlier. The test data was manually an-
notated with ground truth language labels by bilingual speak-
ers of Hindi-English and German-English. Table 1 compares
the LID system to the dictionary-based approach. For Hindi.
since we felt that spelling normalization was a crucial part of
the pipeline, we report LID accuracies for normalized and un-
normalized spellings.

From the results in Table 1 we find that the accuracy of

Table 1: Language Identification Accuracy

Data Dictionary HMM/MaxEnt
En-Hi (no normalization) 66% 78%

En-Hi (normalized) 69% 89%
En-De 65% 96%

the HMM/MaxEnt systems is higher than the dictionary-based
systems by a large margin for all the systems. We also find that
the accuracy of the LID for normalized Hindi is higher than the
accuracy for un-normalized Hindi, which is to be expected.

In our previous work, we had used a Hindi TTS system
to synthesize sentences in mixed Hindi-English. However, a
choice can be made as to whether to use a Hindi system or En-
glish system as the target language. A heuristic that can be used
in this case is to consider the matrix language to be the lan-
guage with more words in the sentence. However, we decided
to ask users to listen to cross-lingual systems in both languages
and choose the one they prefer. To test our synthesized out-
put, we ran listening tests on Amazon Mechanical Turk using
the Testvox tool [36] in which we asked 10 bilingual speakers
of Hindi-English and German-English to listen to 10 sentences
and evaluate our systems. We asked them to choose the sys-
tem that was easier to understand among the two cross lingual
systems in a language pair.

Table 2: Listener Preference - Matrix Language

Data Matrix En Matrix Hi/De No difference
En-Hi 17% 79% 4%

En-De (AHW) 76% 16% 3%
En-De (FEM) 82% 11% 7%

From the listening test results in Table 2, we can see that
for Hindi-English, there was a strong preference for the Hindi
voice as the target language. On analyzing the test sentences,
we found that the majority of the words in the Hindi-English
data belonged to Hindi (63%). However, the Hindi TTS system
was built with significantly more data than the English system,
which could also have influenced the listeners’ judgments.

In the German-English case, the data was more balanced,
with 50.6% German words in the sentences. There was a strong
preference for using English as the matrix language when com-
pared to German, even though the amount of German and En-
glish in the sentence was roughly the same. This could have
been due to two reasons - the quality of the English frontend was
superior to the German frontend, which made the English sys-
tems better in general. In addition, in most of the test sentences
we looked at, the first half of the sentence was in English, while
the second half was in German, which may have influenced lis-
teners to pick the English system, which would pronounce the
first half of the sentence correctly over the German system.

Our best cross-lingual systems were built with normaliza-
tion (for Hindi-English), the new LID methods we described
and the matrix language that users preferred. Next, we tested
our best cross-lingual systems against monolingual systems in
the matrix language users preferred. Once again, we asked 10
bilingual Hindi-English and German-English speakers on Ama-
zon Mechanical Turk to listen to 10 sentences in each pair and
choose the system that was more understandable. In this case,
the base TTS systems were the same, so the only difference the



users heard was in the pronunciation of the words.

Table 3: Listener Preference - Cross-lingual vs Monolingual

Data CrossLingual Monolingual No difference
En-Hi 81% 16% 3%

En-De (AHW) 41% 30% 29%
En-De (FEM) 46% 35% 19%

From the listening tests we found a very strong preference
for the cross-lingual Hindi-English system over the monolin-
gual Hindi system, that assumed that all the input was in Hindi.
We also found a preference for cross-lingual systems in English
that could synthesize German words for both the AHW and
FEM databases, although the preference was not as high as for
Hindi, and many listeners found no difference between the sys-
tems. This could be because the pronunciation rules for Hindi
and English differ much more than the pronunciation rules for
German and English.

6. Conclusion
In this paper, we extended the capabilities of monolingual sys-
tems to synthesize code-mixed text, in which multiple lan-
guages are used in the same sentence. We used 6 TTS databases
in Hindi, German and English to synthesize Hindi-English and
German-English mixed text.

We extended preliminary work on Hindi-English code-
mixed synthesis to other databases and also improved our Lan-
guage Identification system. Further, we also made use of the
fact that we had bilingual databases from the same speaker to
compare which language could be used as a target language
while synthesizing code-mixed text.

We used a straightforward approach for spelling normal-
ization in which words from a large corpus were replaced by
their high frequency spelling variants. This approach did not
take into account the pronunciation of the words or the context
in which they appeared. Using word vectors to find the closest
spelling variant could be an interesting direction to pursue for
this problem, particularly since many contractions in social me-
dia are difficult to normalize using spelling and pronunciation
alone.

We are currently working on using the databases used in
this work to build bilingual voices. We are exploring techniques
to combine the phonetic space in both languages and map pro-
nunciations across languages better. Future work includes com-
paring the cross-lingual systems we have built with such bilin-
gual systems.

Finally, in this work we used monolingual databases of
Hindi, German and English to create systems that were ca-
pable of synthesizing code-mixed Hindi-English and German-
English. None of these databases were explicitly designed to
handle code-mixing, however, the German databases may have
had some foreign words in them. Future work in synthesizing
code-mixed text includes designing databases explicitly to han-
dle code-mixing and foreign words.

7. References
[1] C. Myers-Scotton, Duelling languages: grammatical structure in

codeswitching. Oxford University Press, 1997.

[2] T. Solorio, E. Blair, S. Maharjan, S. Bethard, M. Diab,
M. Gohneim, A. Hawwari, F. AlGhamdi, J. Hirschberg, A. Chang

et al., “Overview for the first shared task on language identifi-
cation in code-switched data,” in Proceedings of The First Work-
shop on Computational Approaches to Code Switching. Citeseer,
2014, pp. 62–72.

[3] G. Chittaranjan, Y. Vyas, and K. B. M. Choudhury, “Word-level
language identification using crf: code-switching shared task re-
port of MSR India system,” EMNLP 2014, p. 73, 2014.

[4] Y. Vyas, S. Gella, J. Sharma, K. Bali, and M. Choudhury, “Pos
tagging of English-Hindi code-mixed social media content,” Pro-
ceedings of the First Workshop on Codeswitching, EMNLP, 2014.

[5] K. Bali, J. Sharma, M. Choudhury, and Y. Vyas, “”i am borrowing
ya mixing?” an analysis of English-Hindi code mixing in Face-
book,” EMNLP 2014, p. 116, 2014.

[6] P. Gupta, K. Bali, R. E. Banchs, M. Choudhury, and P. Rosso,
“Query expansion for mixed-script information retrieval,” in Pro-
ceedings of the 37th international ACM SIGIR conference on Re-
search & development in information retrieval. ACM, 2014, pp.
677–686.

[7] T. I. Modipa, M. H. Davel, and F. De Wet, “Implications of Se-
pedi/English code switching for ASR systems,” 2013.

[8] N. T. Vu, D.-C. Lyu, J. Weiner, D. Telaar, T. Schlippe, F. Blaicher,
E.-S. Chng, T. Schultz, and H. Li, “A first speech recognition sys-
tem for Mandarin-English code-switch conversational speech,” in
ICASSP. IEEE, 2012, pp. 4889–4892.

[9] D.-C. Lyu, T.-P. Tan, E.-S. Chng, and H. Li, “Mandarin-English
code-switching speech corpus in South-East Asia: SEAME,” Lan-
guage Resources and Evaluation, pp. 1–20, 2015.

[10] B. H. Ahmed and T.-P. Tan, “Automatic speech recognition of
code switching speech using 1-best rescoring,” in Asian Language
Processing (IALP), 2012 International Conference on. IEEE,
2012, pp. 137–140.

[11] H. Liang, Y. Qian, and F. K. Soong, “An HMM-based bilingual
(Mandarin-English) TTS,” Proceedings of SSW6, 2007.

[12] M. Chu, H. Peng, Y. Zhao, Z. Niu, and E. Chang, “Microsoft
Mulan-a bilingual TTS system,” in ICASSP, vol. 1. IEEE, 2003,
pp. I–264.

[13] C. Traber, K. Huber, K. Nedir, B. Pfister, E. Keller, and B. Zellner,
“From multilingual to polyglot speech synthesis.” in Eurospeech,
1999.

[14] J. Latorre, K. Iwano, and S. Furui, “New approach to the polyglot
speech generation by means of an hmm-based speaker adaptable
synthesizer,” Speech Communication, vol. 48, no. 10, pp. 1227–
1242, 2006.

[15] S. Sitaram and A. W. Black, “Speech synthesis of code-mixed
text,” in LREC, 2016.

[16] J. Kominek and A. W. Black, “The cmu arctic speech databases,”
in Fifth ISCA Workshop on Speech Synthesis, 2004.

[17] P. Koehn, “Europarl: A parallel corpus for statistical machine
translation,” in MT summit, vol. 5, 2005, pp. 79–86.

[18] H. P. Fei Xia, William D Lewis, “Language id in the context of
harvesting language data off the web,” in In Proceedings of the
12th EACL, 2009, pp. 870–878.

[19] M. P. Erik Tromp, “Graph-based n-gram language identification
on short texts,” in In Proc. 20th Machine Learning conference of
Belgium and The Netherlands, 2011, pp. 27–34.

[20] T. B. Marco Lui, “langid.py: An off-the-shelf language identifica-
tion tool,” in In Proceedings of the ACL 2012 System Demonstra-
tions, 2012, pp. 25–30.

[21] S. Bergsma, P. McNamee, M. Bagdouri, C. Fink, and T. Wil-
son, “Language identification for creating language-specific Twit-
ter collections,” in Proceedings of the Second Workshop on Lan-
guage in Social Media, 2012, pp. 65–74.

[22] J. J. Gumperz, Discourse strategies. Cambridge University Press,
Cambridge, 1982.

[23] R. Weide, “The CMU pronunciation dictionary, release 0.6,”
1998.



[24] S. Gella, J. Sharma, and K. Bali, “Query word labeling and back
transliteration for indian languages: Shared task system descrip-
tion,” FIRE Working Notes, vol. 3, 2013.

[25] B. King and S. Abney, “Labeling the languages of words in
mixed-language documents using weakly supervised methods,” in
Proceedings of NAACL-HLT, 2013, pp. 1110–1119.

[26] D. Nguyen and A. S. Dogruoz, “Word level language identifi-
cation in online multilingual communication,” in Proceedings of
the 2013 Conference on Empirical Methods in Natural Language
Processing, 2013, pp. 857–862.

[27] R. Saha Roy, M. Choudhury, P. Majumder, and K. Agarwal,
“Overview and datasets of fire 2013 track on transliterated
search,” in FIRE Working Notes, 2013.

[28] M. Choudhury, G. Chittaranjan, P. Gupta, and A. Das, “Overview
of fire 2014 track on transliterated search,” 2014.

[29] R. Sequiera, M. Choudhury, P. Gupta, P. Rosso, S. Kumar,
S. Banerjee, S. K. Naskar, S. Bandyopadhyay, G. Chittaranjan,
A. Das et al., “Overview of fire-2015 shared task on mixed script
information retrieval,” 2015.

[30] A. W. Black and K. Lenzo, “Building voices in the Festival
speech synthesis system,” Tech. Rep., 2002. [Online]. Available:
http://festvox.org/bsv

[31] A. W. Black, “CLUSTERGEN: a statistical parametric synthe-
sizer using trajectory modeling,” in Interspeech, 2006.

[32] P. Taylor, A. W. Black, and R. Caley, “The architecture of the
Festival speech synthesis system,” 1998.

[33] A. Parlikar, S. Sitaram, A. Wilkinson, and A. W. Black, “The
festvox indic frontend for grapheme to phoneme conversion,” in
WILDRE: Workshop on Indian Language Data - Resources and
Evaluation, 2016.

[34] T. Portele, J. Krämer, and D. Stock, “Symbolverarbeitung im
sprachsynthesesystem hadifix,” in Proc. 6. Konferenz Elektronis-
che Sprachsignalverarbeitung, 1995, pp. 97–104.

[35] S. Sitaram, “Pronunciation modeling for synthesis of low resource
languages,” Ph.D. dissertation, Carnegie Mellon University, 2015.

[36] A. Parlikar, “TestVox: web-based framework for subjective eval-
uation of speech synthesis,” Opensource Software, 2012.


